Fighting the arch-enemy with mathematics and climate ... - SETA 2009

136 downloads 351 Views 4MB Size Report
104 years. 2. What is the effect of increased greenhouse gases on the extreme sea levels? Fighting the arch-enemy with mathematics and climate models – p.4  ...
Fighting the arch-enemy with mathematics and climate models SETA - 6 March 2009

Henk van den Brink KNMI

Fighting the arch-enemy with mathematics and climate models – p.1

The Netherlands with dikes..

Fighting the arch-enemy with mathematics and climate models – p.2

The Netherlands without dikes..

Fighting the arch-enemy with mathematics and climate models – p.3

Why this research? 1. Dutch law states that sea dikes have to withstand the sealevel that is reached once in 104 years 2. What is the effect of increased greenhouse gases on the extreme sea levels?

Fighting the arch-enemy with mathematics and climate models – p.4

Sea level depends on: astronomical tides (deterministic) sea level rise (slow process) storm surge (stochastic): wind sea level pressure

Fighting the arch-enemy with mathematics and climate models – p.5

Fighting the arch-enemy with mathematics:

Fighting the arch-enemy with mathematics and climate models – p.6

Xp vs k (γ not fixed):

Fighting the arch-enemy with mathematics and climate models – p.7

Xp vs k (γ = 0):

Fighting the arch-enemy with mathematics and climate models – p.8

As a Gumbel plot: Hoek van Holland

2

103

104

observations 1888-2005 GEV to observations Gumbel to observations

5.5 5 water level [m]

5

return period 10 25 50 100

4.5 4 3.5 3 2.5 2 1.5 -2

0

2

4 Gumbel variate

6

8

Fighting the arch-enemy with mathematics and climate models – p.9

water level in Hoek van Holland: Hoek van Holland

2

103

104

observations 1888-2005 GEV to observations Gumbel to observations

5.5 5 water level [m]

5

return period 10 25 50 100

4.5 4 3.5 3 2.5 2 1.5 -2

0

2

4

6

8

Gumbel variate

large statistical uncertainty

Fighting the arch-enemy with mathematics and climate models – p.10

water level in Hoek van Holland: Hoek van Holland

2

103

104

observations 1888-2005 GEV to observations Gumbel to observations

5.5 5 water level [m]

5

return period 10 25 50 100

4.5 4 3.5 3 2.5 2 1.5 -2

0

2

4

6

8

Gumbel variate

large statistical uncertainty is extrapolation allowed...?

Fighting the arch-enemy with mathematics and climate models – p.10

water level in Hoek van Holland: Hoek van Holland

2

103

104

observations 1888-2005 GEV to observations Gumbel to observations

5.5 5 water level [m]

5

return period 10 25 50 100

4.5 4 3.5 3 2.5 2 1.5 -2

0

2

4

6

8

Gumbel variate

large statistical uncertainty is extrapolation allowed...?

→ need more data

optimally » 10000 year... Fighting the arch-enemy with mathematics and climate models – p.10

Fighting the arch-enemy with climate models:

global models

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy with climate models:

global models does not contain measurements

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy with climate models:

global models does not contain measurements results depend on CO2 concentrations

Fighting the arch-enemy with mathematics and climate models – p.11

Fighting the arch-enemy with climate models: generate meteorological data with climate models:

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy with climate models: generate meteorological data with climate models: ECMWF seasonal forecasts (1600 yrs) ⇒

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy with climate models: generate meteorological data with climate models: ECMWF seasonal forecasts (1600 yrs) ⇒ ESSENCE (ECHAM5 MPI-OM) 20×(1950-2000)=1000 yrs 17×(1950-2100)=2550 yrs =3550 yrs

Fighting the arch-enemy with mathematics and climate models – p.12

Fighting the arch-enemy with climate models: generate meteorological data with climate models: ECMWF seasonal forecasts (1600 yrs) ⇒ ESSENCE (ECHAM5 MPI-OM) 20×(1950-2000)=1000 yrs 17×(1950-2100)=2550 yrs =3550 yrs feed wave/surge-model with wind and pressure from climate model

Fighting the arch-enemy with mathematics and climate models – p.12

Advantages of models wrt observations: strongly improved extreme-value-statistics: (almost) no extrapolation needed assumptions of extrapolation can be checked dynamical-physical properties can be investigated influence of greenhouse effect can be determined

Fighting the arch-enemy with mathematics and climate models – p.13

Possibilities: extreme wind extreme surge extreme wave heights extreme precipitation extreme temperature river discharges ..... simultaneous occurrences of extremes

Fighting the arch-enemy with mathematics and climate models – p.14

Example 1: Surge in Hoek van Holland return period [years] 2 5 10 25 100 103

7

104

observations ECMWF

6

surge [m]

5 4 3 2 1 0 -2

0

2

4

6

8

Gumbel variate

→uncertainty 4 times smaller! Fighting the arch-enemy with mathematics and climate models – p.15

Example 1: Surge in Hoek van Holland

1 febr 1953

’26 dec 1987’

Fighting the arch-enemy with mathematics and climate models – p.16

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP level influenced by:

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP level influenced by: high tide at sea

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier

Closure if level in Rotterdam ≥ 3 m NAP level influenced by: high tide at sea large Rhine discharges

Fighting the arch-enemy with mathematics and climate models – p.17

Example 2: Maeslant closure barrier return period of closure events [year]

10

5

2

1

0.5

0.2 0

0.2

0.4 0.6 sea level rise [m]

0.8

1

Fighting the arch-enemy with mathematics and climate models – p.18

Example 3: Petten’s seadike:

Fighting the arch-enemy with mathematics and climate models – p.19

Example 3: Petten’s seadike: Dike fails if: dike load L + 0.3H > 7.6 [m]

Fighting the arch-enemy with mathematics and climate models – p.20

Example 4: CO2 effect on surge: Vlissingen and Cuxhaven

2 5

5

return period 10 25 50 100

103

1950-2000 2050-2100

4.5

104

Cuxhaven

skew surge [m]

4 3.5 3

Vlissingen

2.5 2 1.5 1 0.5 -2

0

2

4 Gumbel variate

6

8

ESSENCE + WAQUA Fighting the arch-enemy with mathematics and climate models – p.21

Is the extrapolation always valid? 2

sea level at Key West, Florida [m]

3

return period [years] 5 10 25 50100 103 104

105

106

hurricane Wilma, October 2005

2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2

observations 1971-2008

1 -2

0

2

4

6

8

10

12

Gumbel variate Fighting the arch-enemy with mathematics and climate models – p.22

Is the extrapolation always valid? (2) 2

return period [years] 5 10 25 50 100

103 9

8

15 7

Beaufort scale

wind speed (m/s)

20

6

10

5 4

5 -1

0

1

2 3 4 Gumbel scale

5

6

7

’Martin’, december 1999 in France (ERA40)

Fighting the arch-enemy with mathematics and climate models – p.23

Probability of ’outlier’: return period T 10 100 yr F(y)

103

104

g(x)

y=yn

x=ln(n)

x=-ln(-ln(F(yn)))

y

∆Xn

-2

0

2

4

6

8

10

Gumbel variate x=-ln(-ln(F(y))) Fighting the arch-enemy with mathematics and climate models – p.24

Application: ˆ n for every record/grid point Determine ∆X Require independence between outliers Compare distribution of independent values of ˆ n with theory ∆X

Fighting the arch-enemy with mathematics and climate models – p.25

Locations of outliers: 70˚

60˚

50˚

40˚ 300˚

310˚

320˚

330˚

340˚

350˚



10˚

Fighting the arch-enemy with mathematics and climate models – p.26

Distribution of outliers: number of independent records m 2 5 10 20 50 100 250 6

Gumbel to uk Gumbel to u GEV to uk theory

5 4

∧ ∆Xn

3 2 1 0 -1 -2 -2

-1

0

1 2 3 Gumbel variate

4

5

6

Conclusion: Fit Gumbel to uk ! Fighting the arch-enemy with mathematics and climate models – p.27

whole Northern Hemishpere (ERA40): 10

2

100

5 10

103

100

2

5 10

103

100

2

5 10

103

100

6 5

4 3 2

2

−2

−1

0

100

1

2

10

2

3

4

5 10

−2

5

−1

0

100

1

2

2

3

4

5 10

5

0

1

−2 −1

0 0

1

2

2

100

3

4

5

5 10

6

7

−1

0

1

100

2

2

3

4

5

5 10

6

−2 −1

7 3

100

10

0 2

1

2

5 10

3

4

5

6

3

100

7 4

10

10

6

5

4 0

0

3

4

5 10

5

6

−1

0

1 2

2

3

4

5 10

5

6

−2

−1

0

100

1 2

2

3

4

5 10

5

−2

−2 −1

−1 −2

100

−2 −1

6

0 2

100

1

2

5 10

3

4

5

6

7

−2

0

2

3

100

4

2

10

6

8

5 10

10

100

4

4

4

3

4

3

2

2

2

1

2

1

6

7

104

−1

0

1

2 5 10

100

0

4

2

3

103

4 104

5

6

105

106

−1

0

1

2 5 10

100

0

4

2

3

103

4 104

5

6

105

106

−1 −2

−1

0 2

1 5 10

2

3

4

5

6

103

100

−2

−2

−1 −2

−2

0 2

2 5 10

4

6

−1

0 2

1 5 10

2

3

4

5

6

103

100

6

10

4

2

2

2

6 4

0

0 0

2

4

6

8

10

−2

2

6

8

10

12

14

−2

2

6

8

10

12

−2

14

−2

−2

−2

0

−2

−2

0

0 −2 −2

0

2

2

2

4

4

6

4

4

8

8

6

10

−2

8 103

100

6

8

−2

−1 −2 −2

8

5 103

6

4

8

3 100

8

2

12

10

1 5 10

12

0 2

14

−2 −1

30˚

14

−2

−2 −1

−1

0

0

0

0

0

0

1

1

1

2

2

3

3

3

4

4

5

6

5

6

2

2

6

10

1

5

0

8

100

−2

−1 −1

3

6

5 10

−2

8

5

6

7

2

4

6

2

5

0

6

−2

50˚

−2

−2

−2

−1

0

0

0

0

1

2

1

1

1

2

2

2

2

2

3

3

3

4

3

4

4

4

4

6

8

5

−1 −2 −1

10

6 3

7

5

6

5 10

4

6

3

8

2

2

5

1

6

0

5

−1

6

−2

70˚

−2 −1

−2

−2

−2

−1

−1

−1

0

0

0

0

1

1

1

2

1

1

2

3

3

2

2

3

4

4

3

3

4

5

4

4

5

6

6

5

7

2

100

6

10

5

5

7

2

100

7

5 10

5

2

5

90˚

0

2

4

6

8

−2

0

2

4

6

8

−2

0

2

4

6

8

10˚ 180˚

240˚

300˚



60˚

120˚

180˚

Fighting the arch-enemy with mathematics and climate models – p.28

5 10

100

2

10

2

5

10

2

4

3

4

5 3

5

10

2 1 0

0

0

1

2

3

4

−2

−1

0

1

2

2

5 10

3

4

5

6

−3

−2

−1

0

1

2

5 10

2

3

4

5

−1

−1 −3

−2

−1

0

1

2

3

4

−2

−2 −3

−3

−2 −3

−2 −1

−2

−1

0 −1

−1 −2 −2

−1

0

0

1

0

1

1

2

1

1

2

3

2

2

2

3

4

5

4

2

3

100

6

5 10

3

2

4

10

5

5

4

2

−3

−2

−1

0

1

2

3

4

−2

−1

0

1

2

3

4

70˚ 2

5 10

100

2

100

2

5 10

100

5

5

10

3

3

1

1

1 1

1 4

5

6

−3 −2 −1

0

100

1

2

3

5 10

4

5

6

1

5 10

2

3

4

5

6

−3 −2 −1

0 −2 −3

103

100

−2

−1

0

1

2

5 10

2

3

4

5

−2

−1

0

100

1 2

5

6

0 2

2

3

5 10

4

5 103

100

−3 −2 −1

0

1 2

2

3

4

5 10

5

6

100

1

1 5 10

4

6

100

103

−2

0

2

2 5 10

100

0

4

4

103

6

104

106

12 10

−3 −2 −1

−2 −3 −2 −1

105

0

1

2

3

2 510

100 103

0

4

4

5

104

105

6

−2

0

106

2

2

4

5 10

6

−3 −2 −1

103

100

1

2

5 10

3

4

5

6

103

100

4 2

2

6

20

−2

0

2

4

6

8

−2

2

6

8

10

12

14

2 510 100 103 104 105 106

2

6

2 5 10

8

10

103

100

12

104

0 −2

−2 −2

14 105

10

20

35

15

2 510 100 103 104 105 106 107

−2

0

2

2 5 10

4

6 103

100

8 104

−2

105

0

2

4

2 5 10

12

15

6 103

100

8 104

105

0

2

4

6

8

8 2 0

0 25

30

103

35

0

104

5 2

10

15

20

103

100

0

104

5 2

10

5 10

15

−2

103

100

0

2

4

6

8

10

−2

12

2 510 100 103 104 105 106 107

−2

0

2

4

2

6

8

5 10

10

12

103

100

−2

0

2

4

2

6

8

5 10

10

12

103

100

5 10

6

8

−2

0

2

10

2

4

6

8 103

100

4 2 0

0

10 104

−2

0

2 2

4

6

5 10

0

5

10 2

15

20

5 10

−2

0

100

2

2

4

5 10

6

8 103

100

−2

0

2 2

5

4

6

5 10

8

100

4

4

1

2

2

2 1

2

6

−2

0

2 2

4

6

8

5 10

10

−3 −2 −1

0

1

100

2

2

3

4

5

5 10

6

0

1

2

5 10

2

3

4

5

6 103

100

−2

0

2

4

2

6

8

5 10

−3 −2 −1

0

100

1

2

2 5

3

4

5

10

6

100

0

2

4

2

5 10

6

8

−1

0

1

2

3

4

5

6

0 −1

−1 −3 −3

−2

−1

0

1

2

3

4

5

−2

0

2

4

6

−2

−2

−2

−2 −2

−3

−2

−1

0

1

2

3

−70˚ 5 10

100

2

5 10

100

2

5

10

100

2

5 10

4

5

103

100

−1

0

1

2

3

4

5 10

5

100

5 2

4

0

−3

−2

−1

0

1

2

3

4

5

−1

−1 −3

−2

−1

0

1

2

3

4

5

−2

−1

0

1

2

3

4

5

6

−2

−2

−2

−3

−3

−2

−2

0

−3 −2 −1

0

−1

−1

0

2

1

0

0

1

1

2

1

1

2

3

2

2

3

3

6

4

4

4

5

4 3

4 3

−2

2

8

5

6

2 5

5

100

6

−2

−3

−2

−2

−1

0

0

−1

0

0

0

1

2

1

1

2

1

2

2

2

2

4

3

4

3

3

3

4

6

4

5

−3 −2 −1

−2 −3 −2 −1

100

5

5 103

4

4

5

3 100

4

2

6

1

5 10

5

0

8

2

6

−3 −2 −1

−50˚

−3 −2 −1

−3 −2 −1

−2

−3 −2 −1

0

0

0

0

0

0

2

1

1

4

2

4

3

3

3

6

4

6

8 4 3

−2

−2

8

100

5

5 10

5

6

0

−2

10

100

6

4

2

5

2

8

0

6

−2

−30˚

6

−2

−2

0

0

0

5

2

2

2

2

4

10

4

4

4

6

6

15

8

6

6

8

20

10

5 10

8

20 100

6

15

8

10

2 5 10

8

5

10

0

−10˚

−2

0

−2

0

5

0

5

2

4

6 5

4

10

20 15 10

6

10

15

25

8

30

10

10

10

5

3 4 5 6 7 2510100 1010 101010

12

0

10˚

12

−2

−2

−2

0

0

0

0

2

0

2

5

4

4

2

6

10

0 2

4

4

8

15

6

20

−3 −2 −1

8

8

2

2 8

0

6

−2

8

6

6

5

14

4

12

3

10

2

8

1

2 510 100 103 104 105 106 107

14

0

0

0 −2

0 −2

−3 −2 −1 −3 −2 −1

30˚

0

0

0

1

2

2

2

2

2

2

4

3

3

3

4

4

4

4

4

6

5

−1

−1 −2 −3 −3 −2 −1

103

100

8

6

2

6

3

5

2 5 10

6

1 2

6

0

0

0

−3 −2 −1 −1

−3 −2 −1

0

0

1 0 −1 −2 −2

50˚

1887-year ESSENCE dataset:

2

2

2

2

2

2

3

3

3

3

4

4

4

5

5

6

100

4

4

4

5

5

6

100

5

100

6

5 10

6

2

−2

−1

0

1

2

3

4

5

−2

0

2

4

6

8

−3 −2 −1

0

1

2

3

4

5

6

−90˚ 180˚

240˚

300˚



60˚

120˚

180˚

Fighting the arch-enemy with mathematics and climate models – p.29

90˚

Extreme precipitation: Wilson&Toumi (2005): R = κ(qρw)zm

R κ q w ρ zm

precipitation efficiency/fraction specific humidity vertical velocity density

level independent variables q, w, κ:

r 2/3 Pr(R > r) = exp[−( ) ] R0 Fighting the arch-enemy with mathematics and climate models – p.30

Extreme precipitation (2): R Weibull-distributed with k = 2/3 R2/3 exponential-distributed fast convergence to Gumbel-distribution for R2/3 fit Gumbel distribution to R2/3 !

Fighting the arch-enemy with mathematics and climate models – p.31

Extreme precipitation (3) 70˚ −2.5

−1.5

−0.5

0.5

1.5

2.5

3.5

4.5

5.5

6.5

7.5

8.5

9.5

10.5

65˚

60˚

55˚

50˚

45˚

10 9 8 7 6 5 4 3 2 1 0 −1 −2 −2−1 0 1 2 3 4 5 6 7 8 9 10

40˚ 35˚ 30˚ 25˚ 20˚

1−day sums, annual maxima of R2/3 GEV shape parameter = 0 (Gumbel) 310˚ 315˚ 320˚ 325˚ 330˚ 335˚ 340˚ 345˚ 350˚ 355˚ 0˚



10˚

15˚ 20˚ 25˚ 30˚ 35˚

40˚ 45˚ 50˚

Fighting the arch-enemy with mathematics and climate models – p.32

Extreme precipitation (4) 10

GEV to R (k=free) GEV to R (k=0.10) Gumbel to R2/3 theory

8

DXn

6 4 2 0 -2 -2

0

2

4

6

8

10

Gumbel variate Fighting the arch-enemy with mathematics and climate models – p.33

Extreme precipitation (5) 2

return period [years] 5 10 25 50100 103

104

105

160

precipitation [mm/day]

140 120 100 80 60 40

annual maxima Gumbel to R2/3 GEV to R (k=0.10) GEV to R

20 0 -2

0

2

4 6 Gumbel variate

8

10

12

MANSTON, England (1961-2005 – 19730920) Fighting the arch-enemy with mathematics and climate models – p.34

Back to sea levels: use 17 runs of ESSENCE data (1950-2100) feed surge model (WAQUA) with wind and pressure from ESSENCE time series for 19 coastal stations apply extreme value statistics to 50-year time series 17 × 19 × 3 = 969 records require 3-day interval between extreme events

Fighting the arch-enemy with mathematics and climate models – p.35

Back to sea levels (2): 54˚ −2.0 −1.5 −1.0 −0.5 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

−2 −1

0

4.5

5.0

5.5

53˚ 5 4

∆X

3

52˚

2 1 0 −1 −2 1

2

3

4

5

Gumbel variate

51˚ 1˚

















Fighting the arch-enemy with mathematics and climate models – p.36

For observations: number of independent records m 2 5 10

20

3 2.5 2 1.5 ∧ ∆Xn

1 0.5 0 -0.5 -1 -1.5 -1.5 -1 -0.5

Gumbel to subseries theory 0

0.5

1

1.5

2

2.5

3

Gumbel variate

Fighting the arch-enemy with mathematics and climate models – p.37

Example for Scheveningen: 2

sea level at Scheveningen [m]

7

return period [years] 5 10 25 50 100

103

104

observations 1896-2005 Gumbel to observations GEV to observations

6 5 4 3 2 1 -2

0

2

4

6

8

Gumbel variate Fighting the arch-enemy with mathematics and climate models – p.38

Conclusion: climate models are helpful tool for analysis of (never observed) extremes Gumbel distribution optimal model for (all?) meteorological variables not in tropics simple power transformation needed

Fighting the arch-enemy with mathematics and climate models – p.39

Questions....?

Fighting the arch-enemy with mathematics and climate models – p.40