Finite Element Calculation with Experimental Verification for a Free

0 downloads 0 Views 1MB Size Report
Sep 17, 2018 - Abstract: A free-flooded transducer that couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum ring was ...
sensors Article

Finite Element Calculation with Experimental Verification for a Free-Flooded Transducer Based on Fluid Cavity Structure Zhengyao He *, Geng Chen, Yun Wang, Kan Zhang and Wenqiang Tian School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (G.C.); [email protected] (Y.W.); [email protected] (K.Z.); [email protected] (W.T.) * Correspondence: [email protected]; Tel.: +86-137-5994-4527 Received: 16 August 2018; Accepted: 15 September 2018; Published: 17 September 2018

 

Abstract: A free-flooded transducer that couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum ring was investigated. Given the transducer is based on a fluid cavity structure and has no air cavity, it can resist high hydrostatic pressure when working underwater, which is suitable for application in the deep sea. At first, the structure and working principle of the transducer were introduced. Then, the axisymmetric finite element model of the transducer was established; and the transmitting voltage response, admittance, and radiation directivity of the transducer were simulated using the finite element method. According to the size of the finite element model, a prototype of the transducer was designed and fabricated, and the electro-acoustic performance of the prototype was measured in an anechoic water tank. The experimental results were consistent with the simulation results and showed a good performance of the transducer. Finally, the improvement of the radiation directivity of the transducer by the optimal design of the free-flooded aluminum ring was obtained using the finite element method and verified by experiments. Keywords: free-flooded transducer; fluid cavity structure; finite element model; acoustic radiation

1. Introduction Since ocean exploration is developing towards the deep sea, underwater acoustic transducers require the performance of low frequency and high power in deepwater. The free-flooded structural transducers have good performance in deepwater, with low resonant frequency and high transmitting response [1]. Piezoelectric ceramic rings and tubes are often applied as deepwater transducers, because their characteristics are essentially independent of depth [2–4]. Free-flooded ring transducers composed of piezoelectric ceramic rings are studied [2,3]. A deepwater tube transducer, which transmits signals by mechanically tuning a resonator tube is researched [4]. The Helmholtz resonant transducers are studied for their high-power deepwater use [5–7]. This paper investigated a transducer with a free-flooded structure that couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum ring, which is suitable for application in the deep sea. It can be used in deepwater sonar detection, deepwater acoustic communication, and sound propagation characteristics research in deep sea, etc. The finite element method is a modeling and analysis method of transducers commonly used in recent years. It uses a series of discrete units to represent and model the transducer structure and fluid domain, as such its outstanding advantage is that it can adapt to complex conditions, such as irregular boundary shapes, inhomogeneous materials, and anisotropy; and can perform

Sensors 2018, 18, 3128; doi:10.3390/s18093128

www.mdpi.com/journal/sensors

Sensors 2018, 18, x FOR PEER REVIEW    Sensors 2018, 18, 3128

2 of 7  2 of 7

and  calculation  on  transducers  of  complex  structure  [8–10].  Using  the  finite  element  method  to  model  the  easily  calculate  the  resonant  frequency,  observe  displacement  modeling andtransducer  calculationwe  on can  transducers of complex structure [8–10]. Using the finite the  element method distribution of the transducer at resonance, and obtain the admittance curve, transmitting voltage  to model the transducer we can easily calculate the resonant frequency, observe the displacement response curves, and directivity pattern of the transducer [10]. It can also be used to optimize the  distribution of the transducer at resonance, and obtain the admittance curve, transmitting voltage structure of transducers. The acoustic radiation characteristics of free‐flooded ring transducers are  response curves, and directivity pattern of the transducer [10]. It can also be used to optimize the calculated using the finite element method [2]. The Class IV flextensional transducer is modeled and  structure of transducers. The acoustic radiation characteristics of free-flooded ring transducers are calculated  using  the  finite  element  method  ANSYS  The  Class  III  barrel‐stave flextensional  calculated using the finite element method [2].in  The Class [10].  IV flextensional transducer is modeled and transducer  coupling  the  fundamental  flexural  and  longitudinal  modes  of  vibration flextensional is  calculated  calculated using the finite element method in ANSYS [10]. The Class III barrel-stave using the finite element analysis techniques [11]. In this paper, the finite element method was used  transducer coupling the fundamental flexural and longitudinal modes of vibration is calculated using to finite model  and  calculate  the  free‐flooded  based  on  fluid  cavity  the  the element analysis techniques [11]. Intransducer  this paper, the finite element methodstructure,  was usedwhere  to model influence  of  the  free‐flooded  aluminum  ring  on  radiation  directivity  is  analyzed,  the  size  of  the  and calculate the free-flooded transducer based on fluid cavity structure, where the influence of the transducer aluminum is  optimally  designed,  and directivity the  performance  is  verified  by ofexperiments  in  is the  anechoic  free-flooded ring on radiation is analyzed, the size the transducer optimally water tank.  designed, and the performance is verified by experiments in the anechoic water tank. 2.2. Structure of the Transducer  Structure of the Transducer

The structure of the free‐flooded transducer based on fluid cavity structure is shown in Figure 1.  The structure of the free-flooded transducer based on fluid cavity structure is shown in Figure 1. This kind of transducer is free‐flooded with a fluid cavity, which has no air cavity. It can resist high  This kind of transducer is free-flooded with a fluid cavity, which has no air cavity. It can resist high hydrostatic pressure when working underwater, which is suitable for application in the deep sea.  hydrostatic pressure when working underwater, which is suitable for application in the deep sea. The transducer couples the vibration of a longitudinal vibration transducer and the fluid cavity of an  The transducer couples the vibration of a longitudinal vibration transducer and the fluid cavity of an aluminum  ring.  longitudinal  vibration  transducer  is  using stacked  using of24  pieces  of  PZT‐4  aluminum ring. TheThe  longitudinal vibration transducer is stacked 24 pieces PZT-4 piezoelectric piezoelectric ceramic. The two head mass, which are made of stainless steel material, are an inverted  ceramic. The two head mass, which are made of stainless steel material, are an inverted frustum a  longitudinal cone.  The  longitudinal  vibration  in transducer  in  this  can  obtain  a  high  offrustum  a cone. of  The vibration transducer this structure canstructure  obtain a high transmitting transmitting voltage response. When the parameters of the transducer are optimally designed, the  voltage response. When the parameters of the transducer are optimally designed, the longitudinal longitudinal  resonant  frequency  is  close  to  the  cavity  resonant  frequency;  so ofthe  of  of the  resonant frequency is close to the cavity resonant frequency; so the resonance theresonance  fluid cavity fluid cavity of the free‐flooded aluminum ring couples with the longitudinal vibration transducer,  the free-flooded aluminum ring couples with the longitudinal vibration transducer, and a higher and a higher transmitting voltage response can be obtained.  transmitting voltage response can be obtained.

Figure 1. The structure of the transducer.

 

Figure 1. The structure of the transducer. 

The resonant frequency in the fluid cavity of the aluminum ring is given by Equation (1) as shown in Reference [12]: frequency  in  the  fluid  cavity  of  the  aluminum  ring  is  given  by  Equation  (1)  as  The  resonant  q −1/2  rH shown in Reference [12]:  ρ 0 c  2  f1 = 1+ (1) 1/2 2πr ρt

 rH  ρ0   2 ring,  ρ0 = 1000 kg/m3 is the density(1)  In this formula, r = 59 mm is the radius cof the aluminum of  f 1   water, ρ = 2700 kg/m3 is the density of 1aluminum, is the height of the aluminum ring, 2πr  H =ρt110 mm  t = 2 mm is the thickness of the aluminum ring, and c = 5200 m/s is the speed of sound in aluminum,  

so that the calculated cavity resonant frequency is f1 = 4040 Hz. 3 The resonant frequency of longitudinal vibration given byring,  Equation (2) as shown r  59 mm In  this  formula,    is  the  radius  of  the  is aluminum  ρ0  1000 kg/m   is  in the  Reference [12]: r density  of  water,  ρ =  2700  kg/m³  is  the  density  of  aluminum,  H  110 mm   is  the  height  of  the  1 Km c  5200 m/s   is the speed of  (2) f2 = aluminum ring,  t  2 mm   is the thickness of the aluminum ring, and  2π Mm sound in aluminum, so that the calculated cavity resonant frequency is  f1  4040 Hz . 

Reference [12]: 

f2  Sensors 2018, 18, 3128

1 Km   2π M m

(2)  3 of 7

In the formula, km is the stiffness of the piezoelectric ceramic stack, and Mm is the dynamic  mass.  the  of  the  longitudinal  vibration  transducer,  longitudinal  resonant  InAccording  the formula,to km is size  the stiffness of the piezoelectric ceramic stack, andthe  Mm is the dynamic mass. frequency of the transducer is 4156 Hz, which is close to the above cavity resonant frequency.  According to the size of the longitudinal vibration transducer, the longitudinal resonant frequency of the transducer is 4156 Hz, which is close to the above cavity resonant frequency. 3. Finite Element Modeling and Principle of Operation of the Transducer  3. Finite Element Modeling and Principle of Operation of the Transducer Since the transducer is axisymmetric, and symmetric up and down, the 2‐D axisymmetric finite  Since the transducer is axisymmetric, and symmetric up and down, the 2-D axisymmetric finite element model can be used to calculate the transmitting characteristics of the transducer. Only the  element model can be used to calculate the transmitting characteristics of thesymmetric conditions  transducer. Only the upper half of the transducer needs to be modeled, as shown in Figure 2. The  upper half of the needs to be modeled, as shown Figure 2. Theceramic  symmetric conditions were were  applied  to transducer improve  the  simulation  efficiency.  The inpiezoelectric  stack  consisted  of    applied to improve the simulation efficiency. The piezoelectric ceramic stack consisted of 24 pieces of 24 pieces of PZT4 ceramics. The thickness of each ceramic was 4 mm and the radius was 10 mm. The  PZT4 ceramics. The thickness of each ceramic was 4 mm and the radius was 10 mm. The polarization polarization direction was the Y‐axis direction, which was the longitudinal direction. The adjacent  direction was the Y-axis which was thedirection.  longitudinal The adjacent two ceramics two  ceramics  had  the  direction, opposite  polarization  The direction. driving  voltages  were  exerted  on had the  the opposite polarization direction. The driving voltages were exerted on the piezoelectric ceramics. piezoelectric ceramics. The head mass of the transducer was made of steel, the maximum radius was  The head mass of the transducer was made of steel, the maximum radius was 38 mm, and the height 38 mm, and the height was 16 mm. The free‐flooded ring was made of aluminum, the inner radius of  was 16 mm. The free-flooded ring was made of aluminum, the inner radius of the ring was 60 mm, the ring was 60 mm, the height was 100 mm, and the thickness was 8 mm. In the ANSYS software,  the height was 100 mm, and the thickness was 8 mm. In the ANSYS software, the geometry of the the geometry of the transducer was drawn using the above size, and then meshed to obtain the finite  transducer was drawn using the above size, andYoung’s  then meshed to obtain finite element Inand  the element  model.  In  the  model,  the  density,  modulus  and the Poisson’s  ratio model. of  steel  model, the density, Young’s modulus and Poisson’s ratio of steel and aluminum materials, the density, aluminum materials, the density, dielectric constant, piezoelectric constant, and elastic constant of  dielectric constant, piezoelectric constant, and elastic constant of piezoelectric ceramics, and the density piezoelectric ceramics, and the density and sound velocity of the fluid are needed. In addition, the  and sound velocity of the fluid are needed. In addition, the piezoelectric ceramics were assigned piezoelectric ceramics were assigned by Plane13 element; the aluminum ring and steel head mass by  Plane42;  the  water  area  by  Fluid29;  and  the  outermost  water  layer  by the Fluid129  to  simulate  the  by Plane13 element; the aluminum ring and steel head mass by Plane42; water area by Fluid29; nonreflecting boundary; which were all axisymmetric elements. The radius of the fluid area should  and the outermost water layer by Fluid129 to simulate the nonreflecting boundary; which were all satisfy  the  far‐field  condition  and  be  large  as  possible  a  condition high  precision  of  axisymmetric elements. The radius ofselected  the fluidas area should satisfy to  theachieve  far-field and be calculation. The condition which should usually be satisfied is:  selected as large as possible to achieve a high precision of calculation. The condition which should usually be satisfied is: D R> D +0.2λ   (3)  R > 2 + 0.2λ (3) 2 where distance from the center of the transducer to the outermost boundary of the fluid area, where RRis the is the distance from the center of the transducer to the outermost boundary of the fluid  D is the maximum size of the transducer structure, and λ is theλsound wavelength. area, D is the maximum size of the transducer structure, and    is the sound wavelength. 

  Figure 2. The finite element model of the transducer. Figure 2. The finite element model of the transducer. 

The acoustic radiation characteristics of the transducer in water can be calculated by harmonic response analysis in ANSYS, based on the finite element model. The transmitting voltage response (TVR) of the transducer is calculated by: TVR = 20 × log(p(r) × r/pref )

(4)

Sensors 2018, 18, x FOR PEER REVIEW   

4 of 7 

The acoustic radiation characteristics of the transducer in water can be calculated by harmonic  response analysis in ANSYS, based on the finite element model. The transmitting voltage response  (TVR) of the transducer is calculated by:  Sensors 2018, 18, 3128

4 of 7

TVR = 20 × log(p(r) × r/pref) 

(4) 

where p(r) is the far‐field pressure generated at r meter range by the transducer in water when the  where p(r) is the far-field pressure generated at r meter range by the transducer in water when the driving voltage is 1 V, which can be collected in the finite element model directly, pref = 1 μPa is the  driving voltage is 1 V, which can be collected in the finite element model directly, pref = 1 µPa is the reference pressure.  reference pressure. 4. Finite Element Analysis and Experimental Verification of the Transducer  4. Finite Element Analysis and Experimental Verification of the Transducer   The finite element model of the free‐flooded transducer based on fluid cavity structure is shown  The finite element model of the free-flooded transducer based on fluid cavity structure is in Figure 2. The admittance simulation curve of the transducer is shown by the dotted line in Figure 3a,  shown in Figure 2. The admittance simulation curve of the transducer is shown by the dotted and the transmitting voltage response curve of the transducer is shown by the dotted line in Figure 3b.  line in Figure 3a, and the transmitting voltage response curve of the transducer is shown by the dotted The admittance and transmitting voltage response of the transducer were measured in the anechoic  line in Figure 3b. The admittance and transmitting voltage response of the transducer were measured water tank, and the measured results are shown by the solid lines in Figure 3a,b, respectively. The  in the anechoic water tank, and the measured results are shown by the solid lines in Figure 3a,b, resonant  frequency  of  the frequency transducer  4650  Hz  from  admittance  simulation  results  by  the  respectively. The resonant ofwas  the transducer wasthe  4650 Hz from the admittance simulation finite  element  method.  The method. maximum  transmitting  voltage  response  was  129.5  dB  at  4650  results by the finite element The maximum transmitting voltage response was 129.5Hz  dB by  at simulation.  The  resonant  frequency  of  the  transducer  was  4700  Hz  from  the  experimental  4650 Hz by simulation. The resonant frequency of the transducer was 4700 Hz from the experimental admittance results. results.  The  maximum  transmitting  voltage  response  dB  Hz  by  admittance The maximum transmitting voltage response was 130was  dB at130  4700 Hzat  by4700  experiment. experiment.  The  admittance  and  transmitting  voltage  response  results  of  the  transducer  by  finite  The admittance and transmitting voltage response results of the transducer by finite element simulation element simulation were consistent with those by experiment.  were consistent with those by experiment.

 

 

(a) 

(b) 

Figure 3.3. (a) (a) The The simulated simulated and and measured measured admittance admittance results results of of the the transducer. transducer. The The solid  red and and  Figure solid red blue line, line, respectively, respectively, represent represent the the measured measured conductance conductance and and susceptance. susceptance. The The dotted dotted red red and and  blue blue line, respectively, represent the simulated conductance and susceptance. (b) The simulated and blue line, respectively, represent the simulated conductance and susceptance. (b) The simulated and  measured voltage response of the The solid dotted are the measured measured transmitting transmitting  voltage  response  of transducer. the  transducer.  The and solid  and line dotted  line  are  the  and simulated results, respectively. measured and simulated results, respectively. 

The experiments were carried out in an anechoic water tank. The experiment diagram is shown The experiments were carried out in an anechoic water tank. The experiment diagram is shown  in Figure 4. The computer generated the signals we needed and sent them to the data acquisition in Figure 4. The computer generated the signals we needed and sent them to the data acquisition and  and transmission device. Then, the data acquisition and transmission device converted the digital transmission device. Then, the data acquisition and transmission device converted the digital signal  signal to an analog signal, andsignal  the signal was outputted totransducer  the transducer power amplifying. to  an  analog  signal,  and  the  was  outputted  to  the  after after power  amplifying.  The  The transducer transmitted the signal as an acoustic wave. Then, the hydrophone received the transducer transmitted the signal as an acoustic wave. Then, the hydrophone received the acoustic  acoustic signal and transformed it into an electrical The data acquisition and transmission signal  and  transformed  it  into  an  electrical  signal.  signal. The  data  acquisition  and  transmission  device  device converted the analog signal into a digital signal and stored it in the computer for later converted  the  analog  signal  into  a  digital  signal  and  stored  it  in  the  computer  for  later  data data  processing. the transmitting processing.  Thus, Thus,  the  transmitting  voltage voltage  response response  and and  radiation radiation  directivity directivity  could could  be be  calculated. calculated.  The 205 dB, The hydrophone hydrophone we we used used was was BK8104 BK8104 with with aa sensitivity sensitivity of of −−205  dB,  at at  the the frequency frequency range range of of    10 Hz–10 kHz. The distance between the transducer and hydrophone was 8.3 m, which satisfied the 10 Hz–10 kHz. The distance between the transducer and hydrophone was 8.3 m, which satisfied the  far-field condition. far‐field condition. 

Sensors 2018, 18, x FOR PEER REVIEW    Sensors 2018, 18, 3128 Sensors 2018, 18, x FOR PEER REVIEW   

5 of 7  5 of 7 5 of 7 

  Figure 4. The diagram of the experiment.  Figure 4. The diagram of the experiment. Figure 4. The diagram of the experiment. 

 

5. Optimization of Radiation Directivity of the Transducer  5. Optimization of Radiation Directivity of the Transducer 5. Optimization of Radiation Directivity of the Transducer  In the modeling and simulation of the transducer, it was found that the size of the aluminum  In the modeling and simulation of the transducer, it was found that the size of the aluminum In the modeling and simulation of the transducer, it was found that the size of the aluminum  ring around the outside of the transducer could not only change the transmitting voltage response of  ring around the outside of the transducer could not only change the transmitting voltage response ring around the outside of the transducer could not only change the transmitting voltage response of  the  transducer,  but  also  adjust  the  radiation  directivity  of  the  transducer.  Through  appropriate  of the transducer, but also adjust the radiation directivity of the transducer. Through appropriate the  transducer,  but  also  adjust  the  radiation  directivity  of  the  transducer.  Through  appropriate  optimization of the size of the aluminum ring, the radiation directivity of the transducer could be  optimization of the size of the aluminum ring, the radiation directivity of the transducer could optimization of the size of the aluminum ring, the radiation directivity of the transducer could be  improved.  Two  kinds  of  size  of  the  aluminum  ring  were  designed  and  the  performances  were  be improved. Two kinds of size of the aluminum ring were designed and the performances were improved.  Two  kinds  of  size  of  the  aluminum  ring  were  designed  and  the  performances  were  compared. Figure 5 shows the size of the aluminum ring before and after optimization. The thickness  compared. Figure 5 shows the size of the aluminum ring before and after optimization. The thickness compared. Figure 5 shows the size of the aluminum ring before and after optimization. The thickness  of  the  aluminum  ring  was changed  from  2  mm  to 8  mm,  the  radius  was  changed from 59 mm  to    of the aluminum ring was changed from 2 mm to 8 mm, the radius was changed from 59 mm to 60 mm, of 60 mm, and the total height was changed from 110 mm to 100 mm after optimization. Figure 6 shows  the  aluminum  ring  was changed  from  2  mm  to 8  mm,  the  radius  was  changed from 59 mm  to    and the total height was changed from 110 mm to 100 mm after optimization. Figure 6 shows 60 mm, and the total height was changed from 110 mm to 100 mm after optimization. Figure 6 shows  the  simulated  and  measured  results  of  the  radiation  directivity  of  the  transducer  before  and  after  the simulated and measured results of the radiation directivity of the transducer before and after the  simulated  and  measured  results  of  the  radiation  directivity  of  the  transducer  before  and  after  optimization, at the resonant frequency of 4700 Hz. The 0° and 90° direction were the longitudinal  optimization, at the resonant frequency of 4700 Hz. The 0◦ and 90◦ direction were the longitudinal optimization, at the resonant frequency of 4700 Hz. The 0° and 90° direction were the longitudinal  and lateral direction of the transducer, respectively. The radiation directivity results simulated by the  and lateral direction of the transducer, respectively. The radiation directivity results simulated by the and lateral direction of the transducer, respectively. The radiation directivity results simulated by the  finite element method were consistent with the experimental results. The directivity of the transducer  finite element method were consistent with the experimental results. The directivity of the transducer finite element method were consistent with the experimental results. The directivity of the transducer  was improved after structure optimization, the beam pattern in the 90° direction was broadened and  was improved after structure optimization, the beam pattern in the 90◦ direction was broadened and was improved after structure optimization, the beam pattern in the 90° direction was broadened and  the transmitting response was higher in that direction, which is considered more useful in practical  the transmitting response was higher in that direction, which is considered more useful in practical the transmitting response was higher in that direction, which is considered more useful in practical  application.  It  verified  the  correctness  of  using  the  finite  element  method  to  simulate  radiation  application. It verified the correctness of using the finite element method to simulate radiation application.  It  verified  the  correctness  of  using  the  finite  element  method  to  simulate  radiation  directivity and improving the directivity by structure optimization of the transducer.  directivity and improving the directivity by structure optimization of the transducer. directivity and improving the directivity by structure optimization of the transducer. 

 

  (a)  (a) 

 

(b)  (b) 

 

Figure 5. (a) The size of the aluminum ring before optimization. (b) The size of the aluminum ring  Figure 5. (a) The size of the aluminum ring before optimization. (b) The size of the aluminum ring after optimization. Figure 5. (a) The size of the aluminum ring before optimization. (b) The size of the aluminum ring  after optimization.  after optimization. 

Sensors 2018, 18, 3128 Sensors 2018, 18, x FOR PEER REVIEW   

6 of 7 6 of 7 

  (a) 

  (b) 

Figure 6. The  (a) The simulated measured results of radiation  the radiation directivity before optimization. Figure  6.  (a)  simulated  and  and measured  results  of  the  directivity  before  optimization.    (b) The simulated and measured results of the radiation directivity after optimization. The solid and (b) The simulated and measured results of the radiation directivity after optimization. The solid and  dotted lines are the measured and simulated results, respectively. dotted lines are the measured and simulated results, respectively. 

6. Conclusions 6. Conclusions  In this paper, the finite element method was used to calculate the transmitting voltage response, In this paper, the finite element method was used to calculate the transmitting voltage response,  admittance curve, radiation directivity of the free-flooded transducer based on fluid cavity admittance  curve,  and and radiation  directivity  of  the  free‐flooded  transducer  based  on  fluid  cavity  structure, which was suitable for application in the deep sea. The influence of the size of the free-flooded structure,  which  was  suitable  for  application  in  the  deep  sea.  The  influence  of  the  size  of  the  aluminumaluminum  ring on thering  radiation directivity the transducer was also analyzed. prototype of the free‐flooded  on  the  radiation ofdirectivity  of  the  transducer  was  A also  analyzed.    transducer was designed and fabricated, and experimental measurements were carried out in an A prototype of the transducer was designed and fabricated, and experimental measurements were  anechoic water tank. The theoretical calculation results were consistent experimental results. carried  out  in  an anechoic  water  tank.  The  theoretical  calculation  results with were the consistent  with  the  It was verified that the finite element model was correct and feasible for the calculation and analysis of experimental results. It was verified that the finite element model was correct and feasible for the  the transducer. The free-flooded transducer based on fluid cavity structure in this had good calculation  and  analysis  of  the  transducer.  The  free‐flooded  transducer  based  on  paper fluid  cavity  performance, radiation directivity was improved by the optimal design of the transducer. structure  in  this  and paper  had  good  performance,  and  radiation  directivity  was  improved  by  the 

optimal design of the transducer.  Author Contributions: Data curation, G.C. and Y.W.; Funding acquisition, Z.H.; Investigation, Z.H., G.C., Y.W., K.Z., and W.T.; Writing—original draft, Z.H. and G.C.; Writing—review and editing, Z.H., Y.W., K.Z., and W.T. Author Contributions: Data curation, G.C. and Y.W.; Funding acquisition, Z.H.; Investigation, Z.H., G.C., Y.W.,  Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 11574251), K.Z., and W.T.; Writing—original draft, Z.H. and G.C.; Writing—review and editing, Z.H., Y.W., K.Z., and W.T.  the Fundamental Research Funds for the Central Universities (Grant No. 3102017jg02017), and the Seed Foundation of Innovation and Creation for Graduate Northwestern Polytechnical (Grant Funding:  This  work  was  supported  by  the  National Students Natural  in Science  Foundation  of  China University (Grant  No.  No. ZZ2018005). 11574251), the Fundamental Research Funds for the Central Universities (Grant No. 3102017jg02017), and the  Conflicts of Interest: The authors declare no conflict of interest. Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University  (Grant No. ZZ2018005). 

References

Conflicts of Interest: The authors declare no conflict of interest.  1. Mo, X. Technical innovations with progress of underwater transducers. J. Shaanxi Norm. Univ. 2018, 46, 1–12. References  2. He, Z.-Y.; Ma, Y.-L. Advantage analysis of PMN-PT material for free-flooded ring transducers. Chin. Phys. B 2011, 20, 084301. [CrossRef] 1. Mo,  X.  Technical  innovations  with  progress  of  underwater  transducers.  J.  Shaanxi  Norm.  Univ.  2018,  46,  3. McMahon, G.W. Performance of open ferroelectric ceramic rings in underwater transducers. J. Acoust. 1–12.  Soc. Am. 1964, 36, 528–533. [CrossRef] 2. He, Z.‐Y.; Ma, Y.‐L. Advantage analysis of PMN‐PT material for free‐flooded ring transducers. Chin. Phys. B  4. Morozov, A.; Webb, D.A. sound projector for acoustic tomography and global ocean monitoring. IEEE J. 2011, 20, 084301.    Ocean. Eng. 2003, 28, 174–185. [CrossRef] 3. McMahon, G.W. Performance of open ferroelectric ceramic rings in underwater transducers. J. Acoust. Soc.  5. Henriquez, T.; Young, A. The Helmholtz resonator as a high-power deep-submergence source for frequencies Am. 1964, 36, 528–533.  below 500 Hz. J. Acoust. Soc. Am. 1980, 67, 1555–1558. [CrossRef] 4. Morozov, A.; Webb, D.A. sound projector for acoustic tomography and global ocean monitoring. IEEE J.  6. Zhang, Z.-Y.; Wang, Y.; Chen, G.-H. A low frequency Janus-Helmholtz transducer. Tech. Acoust. 2015, Ocean. Eng. 2003, 28, 174–185.  34, 188–192. 5. Henriquez,  T.;  Young,  A.  The  Helmholtz  resonator  as  a  high‐power  deep‐submergence  source  for  7. Sang, Y.-J.; Lan, Y.; Wu, T.; Ding, Y.-W. Outer cavity Janus-Helmholtz underwater acoustic transducer. frequencies below 500 Hz. J. Acoust. Soc. Am. 1980, 67, 1555–1558.  Acta Acust. 2017, 42, 397–402. 6. Zhang, Z.‐Y.; Wang, Y.; Chen, G.‐H. A low frequency Janus‐Helmholtz transducer. Tech. Acoust. 2015, 34,  8. Smith, R.R.; Hunt, J.T.; Barach, D. Finite element analysis of acoustically radiating structures with applications 188–192.  to sonar transducers. J. Acoust. Soc. Am. 1973, 54, 1277–1288. [CrossRef] 7. Sang,  Y.‐J.;  Lan,  Y.;  Wu,  T.;  Ding,  Y.‐W.  Outer  cavity  Janus‐Helmholtz  underwater  acoustic  transducer.  Acta Acust. 2017, 42, 397–402. 

Sensors 2018, 18, 3128

9. 10. 11. 12.

7 of 7

Hamonic, B.; Debus, J.C. Analysis of a radiating thin-shell sonar transducer using the finite-element method. J. Acoust. Soc. Am. 1989, 86, 1245–1253. [CrossRef] Lan, Y.; Wang, Z.-Y.; Wang, W.-Z. Design of flextensional transducer based on finite element method. Tech. Acoust. 2005, 24, 268–271. Jones, D.F.; Christopher, D.A. A broadband omnidirectional barrel-stave flextensional transducer. J. Acoust. Soc. Am. 1999, 106, 13–17. [CrossRef] Sherman, C.H.; Butler, J.L. Transducers and Arrays for Underwater Sound; Springer: New York, NY, USA, 2007; pp. 99–102. © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents