HIGH-P GRANULITE FACIES METAMORPHISM FROM THE ...

8 downloads 8071 Views 192MB Size Report
la forme de blocs dans le mélange ophiolitique à matrice de serpentine .... discontinuous ophiolitic belt underlain by a serpentinite-matrix ophiolitic mélange . The ..... E39 : Pseudosection for the model bulk of sample NB-13-C2 after melt- ...
CARL GUILMETTE

HIGH-P GRANULITE FACIES METAMORPHISM FROM THE TIBETAN PLATEAU AND THE HIMALAYA Metamorphic history and geochemistry of lower crustal and early subduction metamorphic rocks

Thèse présentée à la Faculté des études supérieures de l'Université Laval dans le cadre du programme de doctorat en Sciences de la Terre pour l'obtention du grade de Philosophae doctorae es sciences (Ph.D.)

DEPARTEMENT DE GEOLOGIE ET DE GENIE GEOLOGIQUE FACULTÉ DE SCIENCES ET GÉNIE UNIVERSITÉ LAVAL QUÉBEC

2010

© Cari Guilmette, 2010

Résumé Cette thèse porte sur deux suites de roches métamorphiques de haute-pression et haute température provenant de l'Orogène Tibeto-Himalayen. La première suite de roches consiste en des affleurements d'amphibolites à grenat et clinopyroxène se retrouvant sous la forme de blocs dans le mélange ophiolitique à matrice de serpentine sous-jacent aux ophiolites de la Zone de Suture du Yarlung Zangbo, au Sud Tibet. La Zone de Suture du Yarlung Zangbo est un linéament de plus de 2000 km de long situé à la bordure méridionale du plateau Tibétain, au nord de la crête Himalayenne. Elle contient les reliques du vaste océan qui séparait l'Inde du Tibet pendant le Jurassique et le Crétacé : la Téthys. Dans la suture, des fragments de lithosphère océanique ont été préservés sous la forme d'une ceinture ophiolitique discontinue sous laquelle se retrouve un mélange ophiolitique. Les roches documentées dans la première partie de cette thèse ont été échantillonnées dans les occurrences de Bainang et de Angren/Buma, près de Xigaze, et plus à l'ouest sous l'ophiolite de Saga. Les relations de terrain suggèrent que ces roches représentent une semelle sub-ophiolitique démembrée. Sur la base des teneurs en éléments majeurs et traces de ces roches, cette semelle métamorphique aurait une affinité de N-MORB ou de BABB très similaire à celle de la croûte des ophiolites sus-jacentes. La géochronologie en Ar/Ar sur hornblende indique un âge de refroidissement entre 130 et 123 Ma. Considérant les modélisations complétées pour d'autres semelles métamorphiques dans le monde, ces âges peuvent également être considérés comme datant de très près le pic métamorphique. Les conditions du pic métamorphique on été contraintes thermobarométriquement et sont supérieures à 13 kbar et 800°C avec des moyennes dans l'ordre de 15 kbar et 850°C. Les relations de terrain, les données de littérature concernant les unités associées ainsi que la géochimie, la géochronologie et l'histoire métamorphique de la semelle subophiolitique de la Zone de Suture du Yarlung Zangbo supportent le modèle géodynamique suivant. Pendant le Jurassique ou le Crétacé Inférieur, la croûte des ophiolites du Yarlung Zangbo et le protolithe de sa semelle métamorphique sont formés à un centre d'expansion situé dans une zone de supra-subduction comprenant un bassin d'arrière-arc mature. Vers 130 Ma, une perturbation tectonique majeure change la direction relative des plaques et force l'initiation d'une nouvelle subduction localisée sur la ride d'extension du bassin arrière-arc. Le résultat est une ophiolite d'affinité d'arrière-arc piégée en contexte d'avant-arc et sous laquelle se

u retrouve une semelle métamorphique du faciès des granulites de haute-P et d'affinité d'arrière-arc. La deuxième suite de roches étudiée dans cette thèse consiste en des migmatites alumineuses à kyanite retrouvées dans le coeur de l'Antiforme du Namche Barwa, au sein de la Syntaxie Himalayenne Orientale. Le cœur de l'Antiforme du Namche Barwa est un dôme métamorphique à extrusion très rapide montrant des taux de denudation et d'exhumation extrêmes (~10mm/a). Il est situé à l'extrémité orientale de la chaîne Himalayenne et comporte la gorge la plus profonde de la planète. Les roches étudiées se retrouvent sous la forme de lentilles enrobées dans le gneiss migmatitiques à sillimanite qui forme la majorité du cœur de l'antiforme. Les lentilles migmatitiques à kyanite, d'âge Éocène-Oligocène (Zhang et al. 2010), ont été interprétées comme représentant la croûte inférieure du plateau Tibétain mais leur pic métamorphique dans le faciès des granulites de haute-pression était jusqu'à aujourd'hui contesté. Dans la présente étude, ces roches ont été investiguées quant à leur minéralogie, leur géochimie, les relations texturales entre les minéraux qui les composent et leur chimie minérale. Les résultats ont été interprétés à l'aide de pseudosections. L'interprétation confirme que ces roches représentent des protolithes sédimentaires alumineux ayant été enfouis à des conditions de croûte inférieure de l'ordre de 15 kbar et 850°C où ils ont perdu une proportion de leur liquide anatectique. Cependant, une proportion significative de liquide anatectique est restée piégée dans le réseau cristallin réfractaire, donnant lieu à d'importantes modifications texturales pendant l'exhumation jusqu'à des conditions de l'ordre de 10 kbar et 800°C, correspondant à la solidification finale du liquide piégé. Les résultats des modélisations suggèrent également que le potentiel de fusion par décompression d'une croûte inférieure aussi chaude est très faible puisque la plus grande proportion du liquide anatectique est produite pendant l'enfouissement. Cette étude démontre que la croûte inférieure Tibétaine était déjà fortement épaissie et très chaude peu après la collision initiale Éocène.

Ill

Abstract This thesis bears on two suites of high-pressure and temperature metamorphic rocks from the Himalayan-Tibetan Orogen. The first suite consists in garnet-clinopyroxene-bearing amphibolites underlying the Xigaze and Saga Ophiolites in the Yarlung Zangbo Suture Zone, in South Tibet. The Yarlung Zangbo Suture Zone is a 2000 km long lineament located at the edge of the plateau, north of the crest of the Himalayas. It contains the remnants of the vast ocean that once separated India from Tibet during the Jurassic and the Cretaceous : the Tethys. Within the Suture Zone, relic oceanic lithosphère is preserved as a discontinuous ophiolitic belt underlain by a serpentinite-matrix ophiolitic mélange. The rocks documented in this study were sampled in the Bainang and Angren occurrences, near Xigaze, and in the further west located and newly discovered Saga occurrence. The fieldrelationships of the studied rocks support that they represent a dismembered sub-ophiolitic metamorphic sole. Based on trace element geochemistry, this metamorphic sole has a BABB or N-MORB affinity similar to the crust of the overlying ophiolite. Ar/Ar geochronology on hornblende indicates cooling ages between 123 and 130 Ma. Based on modelling of other sub-ophiolitic sole occurrences around the world, such ages can also be considered as closely dating peak metamorphism. The conditions of peak metamorphism were constrained with thermobarometry and are in excess of 13 kbar and 800°C, with averages around 15 kbar and 850°C. The field-relationships, the data available for surrounding units and the geochemical affinity, geochronology and metamorphic history of the Yarlung Zangbo sub-ophiolitic metamorphic soles support the following geodynamic model. During the first stage, the crust Yarlung Zangbo Ophiolites is generated in a suprasubduction zone that likely comprised a mature back-arc basin. Around 130 Ma, a major tectonical disturbance change the relative plate movements in this supra-subduction zone from divergent to convergent, leading to the inception of a subduction zone at the spreading center of the back-arc basin. The result was a back-arc ophiolite trapped in a fore-arc setting underlain by a back-arc affinity high-P granulite facies metamorphic sole. The second suite of rocks consists in kyanite-bearing aluminous migmatites found in the core of the Namche Barwa Antiform, at the heart of the Eastern Himalayan Syntaxis. The

IV

core of the Namche Barwa Antiform is a very rapidly extruding metamorphic dome with extreme exhumation and denudation rates (~10mm/y) located at the easternmost end of the Himalayan range and featuring the deepest gorge on Earth. The studied rocks occur as lenses in the widespread sillimanite-grade migmatites that make the bulk of the metamorphic core. They had been interpreted as representing a lower crustal exposure but their high-P granulite facies peak metamorphism was still contested. The kyanite-bearing lenses, of Eocene-Oligocene age (Zhang et al. 2010) were studied with regard to their geochemistry, mineralogy, textural relationships and mineral chemistry. Their metamorphic history was investigated with the use of pseudosections. The results confirm that these rocks represent pelitic and semi-pelitic sedimentary protoliths that were buried to lower crustal depths at conditions around 15 kbar and 850°C where they lost an important proportion of the melt they had produced. However, a significant proportion of melt remained trapped within the refractory crystalline network, leading to major textural modifications until the final solidification of the trapped liquid at conditions around 10 kbar and 800°C. The results of the modeling also suggest that such a hot lower crust has a very low potential for decompression melting, most of the mica dehydration melting occurring during burial. This study suggests that the Tibetan lower crust was already over-thickened and partially molten soon after the initial Eocene collision.

Avant-Propos Je tiens tout d'abord à remercier mon directeur de recherche, le Professeur Réjean Hébert, pour m'avoir fait découvrir les joies de la recherche fondamentale en pétrologie ignée et métamorphique et en géodynamique. L'approche personnalisée et humaine du professeur Hébert m'a permis de découvrir librement mes propres intérêts et de me développer en tant que scientifique mais aussi en tant qu'individu; je lui en suis profondément reconnaissant. Je tiens également à le remercier de m'avoir offert l'extraordinaire opportunité de l'accompagner dans ses recherches sur la géologie du plateau Tibétain et de l'Himalaya. Le Dr. Hébert a su me guider et m'encourager tout au long de mes études graduées et je suis grandement redevant de son exceptionnelle disponibilité. Je tiens à lui adresser un merci particulier pour la confiance qu'il a eu en moi, qui s'est manifestée entre autre par ses encouragements et son support constants pour que je puisse toujours présenter moi-même mes travaux et ce dans de nombreux congrès internationaux. Ces expériences merveilleusement enrichissantes m'ont permises de me faire connaître dans la communauté « Himalayenne » internationale et de récolter moi-même le fruit de mes efforts. En second lieu, je tiens à remercier la Professeur Aphrodite D. Indares, ma co-directrice de recherche à Memorial University of Newfoundland. La Dr. Indares m'a permis d'aller plus loin encore dans le domaine de la pétrologie métamorphique en m'apprenant des techniques d'avant-garde, telles la méthode des pseudosections, et en me permettant de me faire connaître parmi les grands noms de ce domaine, dont elle fait sans aucun doute partie. J'ai grandement apprécié son exceptionnelle disponibilité et son dévouement sans réserve pour ses étudiants. Travailler sous sa supervision a été une expérience des plus stimulantes; son enthousiasme communicatif et son positivisme ont su éclairer les périodes difficiles inhérentes aux études doctorales. J'aimerais profiter de l'occasion pour lui adresser un merci tout spécial pour son extraordinaire hospitalité lors de mes nombreux passages à StJohn's. Je dois également souligner le support financier octroyé par le CRSNG (subvention no 1253 au Professeur Réjean Hébert et bourse de découverte au Professeur Aphrodite D.

VI

Indares) tout au long de mes études doctorales. Je remercie Céline Dupuis, Emilie Bédard et Rachel Bezard, toutes étudiantes graduées du groupe GÉO, avec qui j'ai eu la joie de travailler et d'échanger des idées quant à la genèse et à l'évolution des ophiolites; Marc Choquette, du département de géologie et de génie géologique de l'Université Laval, pour son assistance lors des analyses à la microsonde; Activation Laboratories, Jaroslav Dostal de St-Mary's University et Pam King de Memorial University of Newfoundland pour les analyses XRF et ICP-MS; Michael Schaffer, du laboratoire CREAT du centre INCO à Memorial University of Newfoundland pour les analyses au microscope à balayage électronique et l'utilisation du logiciel MLA; Éric David, du département de géologie et de génie géologique, pour la préparation de lames minces; Chris Fisher, du département des Sciences de la Terre de Memorial University of Newfoundland, pour l'utilisation du microscope optique à cathodoluminescence assisté par ordinateur; Jing S. et Gu J., de l'Université des Géosciences de Chine à Beijing, pour leur précieuse aide lors des travaux de terrain ainsi que le professeur Wang Chengshan, de l'Université des Géosciences de Chine à Beijing, pour son support financier et politique lors de nos campagnes de terrain au Tibet. Un dernier merci particulier à mes parents, Claude et Chantale, à ma sœur Audrey et à ma conjointe Mylène, qui m'ont infailliblement supporté de toutes les manières possibles durant la totalité de mes études doctorales. Pour les trois articles formant le corps de la thèse, les auteurs sont présentés par ordre d'importance de leur contribution intellectuelle et financière. Je, Cari Guilmette, suis donc l'auteur principal des trois articles, et les résultats qui y sont présentés et toutes les interprétations en découlant sont le fruit de mes travaux de doctorat. Le deuxième auteur des deux premiers articles et le troisième auteur du dernier article est mon directeur de recherche, le professeur Réjean Hébert, qui a su me guider lors de la rédaction et de la correction des révisions tout en s'occupant de support financier des recherches. Dans le dernier article, c'est le professeur Aphrodite Indares qui est la deuxième auteure, reflétant sa supervision, son apport intellectuel et son support financier. Dans le cas de la co-auteure Céline Dupuis, dans le premier article, cette dernière a été d'une aide précieuse lors des travaux de terrain, comme l'a été Li Z.J. Le professeur Wang Chengshan était notre contact pour entrer au Tibet, et rien de ceci n'aurait été possible sans sa contribution. Le Dr. Mike Villeneuve, de la Commission Géologique du Canada, a été responsable de l'analyse

vu géochronologique en Ar des concentrés d'amphibole et sa contribution a été grandement appréciée. Je tiens finalement à remercier les membres du jury : les professeurs Jaroslav Dostal et Jacques Martignole ainsi que la Dr. Elena Konstantinovskaya. Le 1er article, intitulé : Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet (Guilmette et al. 2008a), a été publié par la revue Journal of Asian Earth Sciences dans le cadre du numéro spécial The origin and tectonic setting of ophiolites in China, édité par Zhou M.F. and Paul Robinson. Le deuxième article, intitulé : Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet (Guilmette et al. 2009a), a été soumis le 3 décembre 2007 et accepté le 11 mai 2009 par la revue Lithos dans le cadre du numéro spécial Recent developments on seafloor petrology and tectonics - A volume in honour of Roger Hekinian for his life-long contributions to marine petrology and tectonics research édité par le Dr. Yaoling Niu. Le troisième article est présenté sous la forme manuscrite et n'a pas encore été soumis. Le dernier article intitulé : High-pressure anatectic metapelites from the Namche Barwa Antiform, Eastern Himalayan Syntaxis; textural evidence for partial melting, phase equilibria modelling and tectonic implications (Guilmette et al. 2010), a été soumis au journal Lithos le 20 Janvier 2010 et a été accepté pour révision dans le cadre du numéro spécial Granulites, Partial Melting and Rheology of Orogenic Lower Crust édité par Karel Schulmann, Richard White, Patrick O'Brien, Michael Brown et Ondrej Lexa. Les travaux de recherche présentés dans cette thèse, en plus d'avoir été publiés sous la forme d'article, ont aussi été diffusés sous forme de présentations orales lors de congrès d'envergure internationale (Guilmette and Hébert, 2003; Guilmette et al., 2005; Guilmette et al. 2006; Guilmette et al. 2007; Guilmette et al. 2008b; Guilmette et al., 2008c; Guilmette et al., 2008d; Guilmette et al., 2009b; Guilmette et al., 2009c). Les résumés d'affiche ont été omis. Il est également à noter que certaines parties de mes travaux ont été publiées dans des articles écrits par d'autres membres du groupe de recherche GÉO et je m'y retrouve donc en tant que co-auteur. Entre autres, je suis troisième auteur dans les articles publiés par

Vlll

Emilie Bédard (Bédard et al. 2008; 2009) et quatrième dans ceux publiés par la Dr. Céline Dupuis (Dupuis et al. 2005b; 2006) pour souligner ma contribution significative aux travaux de terrain et mon apport intellectuel lors des discussions sur l'interprétation des résultats. Je suis également co-auteur dans de nombreux résumés de conférence (Hébert et al. 2008b; Bezard et al. 2008; Bezard et al. 2009) portant sur les intrusions postcollisionnelles d'âge Miocène découvertes dans la Zone de Suture du Yarlung Zangbo par notre groupe de recherche, ainsi que dans d'autres résumés portant sur la ZSYZ en général (Hébert et al., 2008a; 2010).

IX

Table of Contents Résumé Abstract Avant-Propos Table of Contents List of Tables List of Figures Parti Chapter 1 1.1 Introduction 1.2 Rationale 1.3 Objectives and methodology 1.4 Geological Context 1.4.1 The assembly of Tibet 1.4.2 Lithotectonic elements of the Southern Himalayan-Tibetan Orogen The Transhimalayan zone The Indus Yarlung Zangbo Suture Zone The Indian Domain The Tethyan Himalayas The Greater Himalayas The Lesser Himalayas 1.4.3 The present structure of the Himalayan-Tibetan Orogen 1.4.5 Orogenesis models Early models The Channel Flow model Chapter II Methodology and background 2.1 Methodology 2.1.1 Fieldwork 2.1.2 Pétrographie description 2.1.3 Scanning electron microscope 2.1.4 Cathodoluminescence 2.1.5 Microprobe analysis 2.1.6 Lithogeochemistry 2.1.7 Geochronology 2.1.8 Interpretation of textures and mineral chemistry 2.1.9 Interpretation of lithogeochemical data 2.1.10 Geodynamic models 2.1.11 Diffusion of the information 2.2 Theoretical Background and extended methodology 2.2.1 Theoretical Background Metamorphism P-T and P-T-t paths Thermodynamic background of metamorphic reactions

i iii v ix xiv xvv 1 1 1 3 7 9 9 10 13 13 15 15 16 18 19 21 23 25 28 28 28 28 29 29 30 30 31 31 32 33 34 34 35 35 35 35 36

2.2.2 Applications 38 Geothermobarometry 38 Limitations 40 Phase equilibria modelling 42 Pseudosections 45 Software 47 Construction of a pseudosection 48 How to interpret pseudosections 50 Part II : Garnet-clinopyroxene amphibolites from the YZSZ 52 Chapter III: 52 Extended Geological context for the Yarlung Zangbo Suture Zone 52 3.1 The Xigaze Ophiolite Belt 52 3.2 The Saga Ophiolite 57 3.3 Models for the evolution of the Yarlung Zangbo Ophiolites 59 Chapter IV 65 Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet 66 Résumé 66 Abstract 67 4.1 Introduction 68 4.2 Geological setting 72 4.3 Petrography 73 4.3.1 Garnet + clinopyroxene-bearing amphibolites ....Error! Bookmark not defined. 4.3.2 Clinopyroxene-bearing amphibolites 75 4.3.3 Common amphibolites 76 4.3.4 Fractures and veins 76 4.4 Mineral chemistry 77 4.4.1 Plagioclase 77 4.4.2 Amphibole 79 4.4.3 Clinopyroxene Error! Bookmark not defined. 4.4.4 Garnet Error! Bookmark not defined. 4.5 Discussion 85 4.5.1 Metamorphic history from the textural record 85 P-T estimates 86 4.5.2 P-T conditions for the amphibolites 88 4.5.3 P-T-t path 90 4.5.4 Geodynamic significance 92 4.6 Conclusions 93 Acknowledgements 94 Chapter V 95 Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet 96 Résumé 96 Abstract 97 5.1 Introduction 98 5.1.1 Geological setting Error! Bookmark not defined. 5.1.2 The strongly foliated amphibolites 104

XI

5.2 Geochemistry 105 5.2.1 Analytical method 106 5.2.2 Major element geochemistry 108 5.2.3 Trace element geochemistry 111 5.3 Geochronology 114 5.3.1 Analytical Method 114 5.3.2 4 W 9 A r dating 115 5.4 Discussion 117 5.4.1 Timing of metamorphism and protolith age 117 5.4.2 Protolith history from geochemical data 118 5.4.3 Geodynamic model 122 The XO amphibolite protoliths were formed at a MOR 122 The protoliths of the XO amphibolites were formed in a back-arc basin 124 5.4.4 Implications for the "Back-arc closure model" 125 5.5 Conclusions 129 Acknowledgements 130 Chapter VI 131 The Saga amphibolites 131 6.1 Introduction 131 6.2 Field relationships 132 6.3 Petrography 135 6.4 Mineral Chemistry 139 6.4.1 Amphibole 140 6.4.2 Clinopyroxene 142 6.4.3 Garnet 144 6.5 Geochemistry 145 6.5.1 Analytical conditions 145 6.5.2 Major elements 145 6.5.3 Trace elements 148 6.6 Geochronology 150 6.6.1 Analytical procedure 150 6.6.2 Results 153 6.7 Discussion 153 6.7.1 Protolith history 153 6.7.2 Metamorphic history 156 P-T calculations 158 Peak and retrograde conditions 164 6.7.3 Geodynamic significance 164 Part III : Kyanite-bearing migmatites from the NBA 169 Chapter VII 169 High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis; textural evidence for partial melting, phase equilibria modeling and tectonic implications 170 Résumé 170 Abstract 171 7.1 Introduction 172 7.2 Geological context 174

xn 7.2.1 The Namche Barwa massif 7.2.2 Metamorphism 7.2.3 Sampled locality and local geology 7.2.4 General characteristics of the sampled rocks 7.3 Petrography and mineral chemistry 7.3.1 Methodology and analytical conditions 7.3.2 Coarse grained minerals 7.3.2.1 Garnet 7.3.2.2 Kyanite and quartz ribbons 7.3.3 The fine grained matrix 7.3.4 Biotite 7.3.5 Ti content of quartz 7.4 Textural interpretation 7.4.1 Textures related to partial melting 7.4.2. Chemical zoning in the fine-grained matrix 7.5 Phase Equilibria Modelling 7.5.1 Pseudosections calculated with the measured bulk composition 7.5.1.1. General topologies 7.5.1.2. Inferred P-T conditions of melt crystallization 7.5.2 Melt Reintegration 7.5.2.1 Topologies 7.5.2.2 Inferred P-T evolution of the aluminous sample (NB2a) 7.5.2.3 Inferred P-T evolution of the sub-aluminous sample (NB-C2 ) 7.5.3 Melt production in the modelled bulk compositions 7.6. Discussion and conclusions 7.6.1 Textural evolution and phase equilibria modelling 7.6.2 Comparison with previous work 7.6.3 Tectonic implications Acknowledgements Part IV Chapter VIII Conclusion References Appendices Appendix A Petrography Appendix B Mineral Chemistry Amphibole Mineral Chemistry Clinopyroxene Mineral Chemistry Garnet Mineral Chemistry Feldspar Mineral Chemistry Biotite mineral Chemistry Elemental mapping Appendix C Geochemistry Appendix D

175 176 177 177 179 179 181 181 185 187 188 188 188 188 191 192 193 193 195 196 197 199 201 201 202 202 203 204 206 207 207 207 212 235 236 236 245 245 246 264 274 319 330 336 346 346 353

Xlll

Ar/Ar dating of hornblende 353 Appendix E 361 Phase Equilibria modelling of the NBA aluminous gneisses 361 Pseudosections for Sample NB-13b-2a 362 Pseudosections for the melt-reintegrated model bulk composition for sample NB-13b2a 373 Pseudosections for sample NB-13-C2 384 Pseudosections for the melt-reintegrated model bulk composition for sample NB-13C2 395

XIV

List of Tables Table 4.1 : Representative microprobe analyses of amphibole Table 4.2 : Representative microprobe analyses of clinopyroxene

82 82

Table 4.3 : Representative microprobe analyses of garnet

83

Table 4.4: Thermobarometric results with the TWEEQU software and database

94

Table 5.1 : Geochemical composition of the Bainang amphibolites

Ill

Table 5.2 : Geochemical composition of the Angren/Buma amphibolites

112

Table 6.1: Microprobe analyses used for thermobarometric calculations

163

Table 6.2 : Diagnostics of the thermobarometric calculations for a plagioclase-free assemblage

167

Table 7.1 : Representative electron microprobe mineral analyses

187

Table 7.2 : Composition of the calculated melts

203

Table Al Summary of pétrographie data for the Bainang amphibolite

241

Table A2 : Summary of pétrographie data for the Angren/Buma amphibolites

242

Table A3 : Summary of pétrographie data for Saga samples

244

Table Bl : Amphibole mineral chemistry

251

Table C2 : Mineral Chemistry of clinopyroxene

269

Table B3 : Mineral Chemistry of Garnet

279

Table B4 : Mineral Chemistry of Feldspar

324

Table B5 : Biotite mineral chemistry

335

Table CI : Geochemistry of the Bainang amphibolites

351

Table C2 : Geochemistry of the Angren (Buma) amphibolites

352

Table C3 : Standards for major elements analysis

353

Table C4 : Quality control of geochemical data for Bainang and Angren analyzes

354

Table C5 : Geochemistry of the NBA aluminous gneisses

355

Table C6 : Quality control of geochemical data for NBA analyzes (NB samples)

356

Table C7 : Geochemistry of the Saga samples

357

Table DI : Ar/Ar dating raw data for sample BAI-18

358

Table D2 : Ar/Ar dating raw data for sample LUS-07

359

Table D3 : Ar/Ar dating raw data for sample BUM-05

360

Table D4 : Ar/Ar dating of samp le S A-NOBF

361

Table D5 : Ar/Ar dating of sample SA-56a

362

Table D6 : Ar/Ar dating of sample SA-65a

363

Table D7 : Ar/Ar dating of sample S A-85a

364

XV

List of Figures Fig. 1.1 : Geological, physiographical and geographical context of the Tibetan Plateau 5 Fig. 1.2 : Geological map of Tibet 12 Fig. 1.3 : The deep structure of the Himalayan-Tibetan Orogen 19 Fig. 1.4 : Interpretative cross-section of the Himalayan Range 20 Fig. 1.5 : Simplified cross-section of the Himalaya as seen in Nepal 22 Fig. 1.6 : Models proposed for the evolution of the Himalayan Tibetan Orogen 24 Fig. 1.7 : Model 1, development of surface-coupled channel flow 26 Fig. 3.1 : Schematic geologic map of south central Tibet 53 Fig. 3.2 : Geological map of the Yarlung Zangbo Suture Zone 56 Fig. 3.3 : Geological map of the Saga Ophiolite 58 Fig. 3.4 : Pull-apart to subduction geodynamic model 61 Fig. 3.5 : Intraoceanic subduction model 62 Fig. 3.6 : Different scenarios for the evolution of the Yarlung Zangbo Ophiolites 63 Fig. 4.1. Schematic tectonic map of the Himalayas and the Tibetan Plateau 69 Fig. 4.2 : Geological map of the Yarlung Zangbo Suture Zone 71 Fig. 4.3 : Photomicrographs of different amphibolite types .Error! Bookmark not defined. Fig. 4.4 : Ca-amphibole nomenclature 80 Fig. 4.5 : Ti vs ' Al plot of amphibole compositions 81 Fig. 4.6 : (Na + K) vs IVA1 plot for amphibole compositions 81 Fig. 4.7 : Ternary diagram for clinopyroxene nomenclature 82 Fig. 4.8 : Clinopyroxene compositions Error! Bookmark not defined. Fig. 4.9 : Ternary diagram for garnet compositions 83 Fig. 4.10 : Variations in grossular, almandine, spessartite and pyrope mole fractions 84 Fig. 4.11 : P-T diagram for thermobarometry of amphibolites 87 Fig. 4.12 : Hypothetical P-T-t paths for the amphibolites 91 Fig. 5.1: Geological, physiographical and geographical context of the Tibetan Plateau ...100 Fig. 5.2 : Geological map of the Yarlung Zangbo Suture Zone 101 Fig. 5.3: Total Alkali-Silica diagram 110 Fig. 5.4: Mg# vs Si0 2 /Al 2 0 3 diagram 110 Fig. 5.5 : REE patterns normalized to chondrites 112 Fig. 5.6 : Extended trace element patterns normalized to the Primitive Mantle 112 Fig. 5.7 : 40Ar/39Ar spectrum for amphiboles 116 Fig. 5.8 : [La/Nb]n versus [La/Sm]n diagram 119 Fig. 5.9 : Compared geodynamic models 122 Fig. 6.1 : Geology of the Saga Ophiolite 133 Fig. 6.2 : Field relationships 134 Fig. 6.3 : Representative thin section pictures 138 Fig. 6.4 : SEM-EDS maps of garnet-cpx-bearing amphibolites 139 Fig. 6.5: Ca-amphibole nomenclature after Leake et al. (2004) 141 Fig. 6.6 : Ti vs Al (a.p.f.u.) diagram for amphiboles 142 Fig. 6.7 : Clinopyroxene compositions 143 Fig. 6.8 : Ternary diagram for garnet compositions 144 Fig. 6.9 : Total Alkali-Silica diagram 146 Fig. 6.10: Mg# vs Si0 2 /Al 2 0 3 diagram 147

XVI

Fig. 6.11 : REE patterns normalized to chondrites 149 Fig. 6.12: Extended trace element patterns normalized to the Primitive Mantle 149 Fig. 6.13 : ^Ar/^Ar spectrum for amphiboles 152 Fig. 6.14 : Discriminant diagram 155 Fig. 6.15 : [La/Nb]n versus [La/Sm]n diagram, ratios normalized to the Primitive Mantle 156 Fig. 6.16: Results of thermobarometric calculations 159 Fig. 7.1. Lithotectonic map of the Namche Barwa Antiform 174 Fig. 7.2. Handsample pictures 178 Fig. 7.3 SEM maps showing the general textures of representative thin sections 180 Fig. 7.4. Photomicrographs of mineral textures 182 Fig. 7.5. Representative garnet zoning 184 Fig. 7.6. Photomicrographs of mineral textures 186 Fig. 7.7. Composite Na-Mg elemental maps 187 Fig. 7.8. Representative CL-B&W image 189 Fig. 7.9. P-T pseudosections constructed with the measured bulk composition 195 Fig. 7.10. P-T pseudosections constructed with the melt-reintegrated bulk compositions 199 Fig. Al : Examples of amphibole colors 242 Fig. A2 : Examples of inclusion density in plagioclase 243 Fig. A3 : Examples of cataclastic deformation 244 Fig. Bl : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite. ..337 Fig. B2 : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite ...338 Fig. B3 : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite ...339 Fig. B4 : Compositional mapping of a garnet porphyroblast 340 Fig. B5 : Compositional mapping of a garnet porphyroblast 341 Fig. B6 : Compositional mapping of a garnet porphyroblast 342 Fig. B7 : Compositional mapping of a garnet porphyroblast 343 Fig. B8 : Compositional mapping of a garnet porphyroblast 344 Fig. B9 : Compositional mapping of a garnet porphyroblast 345 Fig. El : Topology of the NB-13b-2a pseudosection 362 Fig. E2 : NB-13b-2a pseudosection contoured for biotite proportions 363 Fig. E3 : NB-13b-2a pseudosection contoured for x(bi) 364 Fig. E4 : NB-13b-2a pseudosection contoured for garnet proportions 365 Fig. E5 : NB-13b-2a pseudosection contoured for x(g) 366 Fig. E6 : NB-13b-2a pseudosection contoured for z(g) 367 Fig. E7 : NB-13b-2a pseudosection contoured for plagioclase proportions 368 Fig. E8 : NB-13b-2a pseudosection contoured for k-feldspar proportions 369 Fig. E9 : NB-13b-2a pseudosection contoured for kyanite proportions 370 Fig. E10 : NB-13b-2a pseudosection contoured for liquid proportions 371 Fig. El 1 : NB-13b-2a pseudosection contoured for quartz proportions 372 Fig. E12 : Topology of the pseudosection for the composition of sample Nb-13b-2a after reintegration of a model lost melt fraction 373 Fig. E13 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for biotite proportions 374 Fig. E14 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for x(bi) 375 Fig. El 5 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for garnet proportions 376

xvii Fig. E16 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for x(g) 377 Fig. E17 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for z(g) 378 Fig. E18 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for plagioclase proportions 379 Fig. E19 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for K-feldspar proportions 380 Fig. E20 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for kyanite proportions 381 Fig. E21 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for liquid proportions 382 Fig. E22 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for quartz proportions 383 Fig. E23 : Topology of the NB-13-C2 pseudosection 384 Fig. E24 : NB-13-C2 pseudosection contoured for biotite proportions 385 Fig. E25 : NB-13-C2 pseudosection contoured for x(bi) 386 Fig. E26 : NB-13-C2 pseudosection contoured for garnet proportions 387 Fig. E27 : NB-13-C2 pseudosection contoured for x(g) 388 Fig. E28 : NB-13-C2 pseudosection contoured for z(g) 389 Fig. E29 : NB-13-C2 pseudosection contoured for plagioclase proportions 390 Fig. E30 : NB-13-C2 pseudosection contoured for K-feldspar proportions 391 Fig. E31 : NB-13-C2 pseudosection contoured for kyanite proportions 392 Fig. E32 : NB-13-C2 pseudosection contoured for liquid proportions 393 Fig. E33 : NB-13-C2 pseudosection contoured for quartz proportions 394 Fig. E34 : Topology of the pseudosection for the composition of sample Nb-13-C2 after reintegration of a model lost melt fraction 395 Fig. E35 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for biotite proportions 396 Fig. E36 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for x(bi) 397 Fig. E37 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for garnet proportions 398 Fig. E38 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for x(g) 399 Fig. E39 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for z(g) 400 Fig. E40 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for plagioclase proportions 401 Fig. E41 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for k-feldspar proportions 402 Fig. E42 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for kyanite proportions 403 Fig. E43 : Pseudosection for the model bulk of sample NB-13-C2 after melt-reintegration contoured for liquid proportions 404

Parti Chapter I

1.1 Introduction Across the solar system, all telluric planets are composed of three main layers: a core, a mantle and a crust. On Earth, the strong thermal gradient from the hot core (~ 5880°C; Saxena et al. 1994) to the uppermost cold crust (0°C) is responsible for what we call "plate tectonics". Because of the high temperature within the core of the Earth, the mantle undergoes convection, bringing hot material towards the cool surface and burying colder, denser rocks towards the hot core. These convection cells can be seen as a planetary-scale cooling system. At the surface, this dynamic process is expressed as oceans opening between drifting continents, as orogenic belts uplifting where plates are colliding or as long island arcs or volcanic margins underneath which crust is recycled in the mantle. All of this would stop if mantle convection stops. Hence, the surface of the Earth will keep changing as long as the planetary thermal gradient is strong enough. At the surface of the Earth, changing landscapes exert a first order control on circulation patterns of the hydrosphere and atmosphere whereas degassing of magma strongly influences their composition. The biosphere is in turn strongly responsive to any changes in the hydrosphere and atmosphere. At a smaller scale, magmas and fluids moving through the crust and mantle will also dissolve, concentrate or precipitate some specific elements in specific settings, providing important mineral and fossil resources that were, are and will be crucial to the development, survival and prosperity of mankind. Therefore, understanding the processes and mechanisms that occur at the surface and within the planet is crucial to the survival of our species and to its harmony with its environment. All geological studies indirectly contribute to the achievement of this goal, and this thesis is no exception. Unfortunately, two factors complicate the study of the Earth as a dynamic system. First, the time-scales at which operate tectonic changes are several orders of magnitude larger than those of the processes that control the birth, growth and death of living beings.

Accordingly, humans investigating the Earth only witness a snap-shot in the long history of the planet. Nonetheless, this single "photograph" from which we try to deduce the whole storyline of the movie contains very important clues or trends that reflect dynamic processes. For instance, in some places on Earth, oceans are small and young, in others they are large and mature, and in some the last remnants are being destroyed. Bringing together these observations lead to the understanding of a general model explaining the birth, growth and death of oceans: the Wilson cycle (Wilson, 1965). In other words, because geologists cannot observe a rock "evolve", they try to recognize and compare similar rocks or similar settings that are presently in different stages of evolution to deduce and constrain evolutionary dynamic models. In such a relative logical system, "consistency" is expected to be close to "truth". A second problem that mankind is facing when trying to understand the dynamics of the planet is that these dynamics take roots at the core of the Earth, whereas man thrives at its surface. Indirect geophysical methods allow us to enhance some of our senses and emulate some we don't have, but it remains impossible to sample a specific volume of the Earth's lower mantle, for instance, and document it like we can do with outcropping rocks. Nonetheless, plate tectonics become an ally in this case because the mantle convection, magma migration and crustal dynamics of the Earth will bring to the surface rocks that crystallized or were modified at different depths within the crust and the upper mantle. Such rocks are likely to have kept or partly kept memory of their journey to the surface via mineral textures representing "frozen" mineral reactions, or metamorphism, and therefore someone that understands the "language" in which it is coded might unravel parts of their fantastic history. In other words, rocks that are now at the surface might once have been modified deep in the crust or the mantle and kept record of it, and studying them will bring knowledge on these remote, inaccessible environments and on the mechanisms that bring rocks from there to the surface, or vice-versa. The present Ph.D. project is based on variants of these two geological principles. It is focused on documenting and comparing two uncommon suites of high-P metamorphic rocks from two contrasting settings in the Himalayan-Tibetan orogen. The working hypothesis was that these two suites of rocks were of upper crustal provenance and

experienced, prior to their exhumation, burial from the surface down to or below the typical stable continental crust/mantle transition (in excess of 10 kbar) via 1) inception of an intra oceanic subduction and 2) orogenic over-thickening. The small number of recent studies focused on rocks that experienced such conditions, especially the orogenic ones (e.g. O'Brien and Rotzler, 2003 and references therein), suggests either that such rocks are rare at the surface, i.e. the mechanisms allowing exhumation of deep crustal rocks are few or inefficient, or that such rocks are not easily recognized and/or overlooked due to modifications during their ascent. Nonetheless, once found and recognized, studying them would thus have a strong potential of bringing significant and new insights on subduction initiation/evolution and on continental crustal thickening and overall orogenic processes.

1.2 Rationale The rocks that make the core of this project are garnet-clinopyroxene-bearing mafic amphibolites and kyanite-garnet aluminous migmatites from two contrasting settings in the Himalayan-Tibetan Orogen (Fig 1.1): the Mesozoic Xigaze and Saga Ophiolite Belt, in the Yarlung Zangbo Suture Zone (YZSZ), and the Cenozoic metamorphic core of the Namche Barwa Antiform (NBA), at the heart of the Eastern Himalayan Syntaxis (EHS). On the basis of their mineralogy, both suites were likely metamorphosed in the high-P granulite facies (in excess of 10 kbar and 750°C), conditions that are usually restricted, in a stable continental environment, to lithospheric mantle rocks. Therefore, if the depth provenance estimates are right, such rare rocks would represent an exceptional opportunity to explore deep crustal processes or even crust-mantle interactions both in subduction zones and in over-thickened orogens. However, the difficulties inherent to the documentation and interpretation of textures in granulitic rocks led to lively debates on both studied suites, especially on their peak history as to whether they were metamorphosed at "mantle" or "crustal" depths, and thus on their geodynamic significance. On the other hand, for the last decade or so, retrieving peak metamorphic conditions from, or simply understanding the mineral record in the (high-P) granulite facies has been an active research branch where breakthroughs were numerous, including upgraded and/or new: (l)-petrographic techniques (see chapter VII), (2)-thermodynamic data for minerals of interests (e.g. White et al. 2007)

and (3)-reference frames to recognize and interpret textures in terms of mineral reactions (e.g. Powell and Holland, 2008). The main outcome of this PhD is thus to estimate the metamorphic P-T evolution (including the peak metamorphic conditions) recorded in the studied rocks using the best and most recent tools available. In the case of the garnet amphibolites from the Xigaze and Saga Ophiolites, geochemical and geochronological data integrated to the P-T estimates added constrains to the processes and mechanisms that led to their burial and exhumation, potentially representing a significant contribution in our understanding of nascent subductions. The first suite of rocks was studied during my masters (Guilmette, 2005) and during the first part of my PhD. These rocks consist of foliated garnet and clinopyroxene-bearing amphibolites that occur as blocks in the ophiolitic mélange underlying the Yarlung Zangbo Ophiolites, Yarlung Zangbo Suture Zone, South Tibet (Fig. 1.1). This Mesozoic suture zone contains the remnants of the Tethys paleo-ocean which once separated the Indian continent from Eurasia, prior to the continental collision. The garnet-clinopyroxene amphibolites (and associated rocks) are interpreted as remnants of a dismembered metamorphic sub-ophiolitic sole (Nicolas et al., 1981). Sub-ophiolitic soles are relatively thin slabs (typically around 500m thick) of crustal metamorphic material that are often found underneath the mantle section of Tethyan-type ophiolites (see Dilek, 2003 for a review of ophiolite types). Their metamorphic and igneous histories have been shown to be key elements in understanding the overall processes of ophiolite emplacement (e.g. Jamieson, 1986; Wakabayashi and Dilek, 2000; 2003). Early interpretations in the 1980's ascribed the Yarlung Zangbo metamorphic sole to the disruption of a pull-apart marginal basin during the Early Cretaceous (Nicolas et al. 1981; Girardeau et al., 1985a; 1985b; Burg et al. 1987). However, such a model could not provide an explanation for high-P granulite metamorphism. More recent studies reinterpreted such rocks as having formed during the obduction of the ophiolitic nappes a few My before the India-Asia collision (Malpas et al., 2003), still with no explanation for high-P granulite peak metamorphism. Moreover, recent thematic studies focused on the geochronology and metamorphism of metamorphic soles world-wide (Wakabayashi and Dilek, 2000; 2003) shed doubt on the obduction-sole relationship in such contexts and rather ascribed them to the birth of an intraoceanic subduction zone, especially for soles that display high-P-T assemblages. The

fact that no metamorphic study had ever documented the YZSZ metamorphic sole altogether with the recent reinterpretation of the Xigaze Ophiolite Belt as having been part of an intra-oceanic supra-subduction zone during the Early Cretaceous (Aitchison et al. 2000; Huot et al., 2002; Hébert et al., 2003; Dubois-Côté et al. 2005; Xu and Castillo, 2004; Dupuis et al., 2005a, 2005b; Bédard et al., 2009) necessitated that the metamorphic sole be revisited as well. In addition, recentfield-workby our research group in the Saga Ophiolite led to the discovery of a new occurrence of garnet-clinopyroxene-bearing amphibolites. Documenting the petrography and mineral chemistry of the amphibolites, interpreting their P-T history (chapter IV) and integrating the geochemical affinity of theirprotolith and the timing of metamorphism (chapters V and VI) were primary objectivesin order to understand their significance in an Early Cretaceous intra-oceanic suprasubduction context.

Kunlun Block *sz Qiangtang Block x

South-West .Tibet

• . BNSZ

Lhasa Block

South Tibet

30° N

South-East Tibet

^r^

Nepal

75°E =J

Fig. 1.1: Geological, physiographical and geographical context of the Tibetan Plateau and surrounding areas. Dotted lines represent the main suture zones. Black lenses represent the main ophiolitic complexes. Main cities or important villages are indicated next to dots. Plain black lines are international borders. White areas are below 1000m, pale grey areas lie in between 1000 and 4000m altitude and deep grey areas are higher than 4000m. YZSZ = Yarlung Zangbo Suture Zone, ISZ = Indus Suture Zone, BNSZ = Bangong-Nujiang Suture Zone, KSZ = Kunlun Suture Zone, NP = Nanga Parbat, NB = Namche Barwa, WHS = Western Himalayan Syntaxis, EHS = Eastern Himalayan Syntaxis. Modified from Hodges (2000).

The second major contribution of my PhD (chapter VII) was focused on kyanite-bearing anatectic metapelites from the Namche Barwa Antiform, Eastern Himalayan Syntaxis, South-East Tibet (Fig. 1.1). The NBA is a disputed and remote border area where access is controlled by Chinese political and military instances (and is mostly forbidden to foreigners). Accordingly, published, english-written geological studies covering the NBA are few and recent and the work done there is still at the exploratory stage. The studied rocks, as well as rare garnet-clinopyroxene amphibolites, are found as lenses in the regional sillimanite-grade migmatites that make the core of the actively growing antiform. The mineralogy and restricted geochronology of these lenses suggest that they were metamorphosed in the high-P granulite facies (Zhong and Ding, 1996) during the thickening phase of the Himalayan-Tibetan orogeny (Zhang et al. 2010). Earlier studies suggested that the lenses are preserved lower-crustal rocks whereas the sillimanite-grade host migmatites would represent an exhumation-related metamorphic overprint from which the lenses would have been protected (Liu and Zhong, 1997). If such an interpretation is true, the high-P lenses in the core of the EHS would potentially represent a rare occurrence of Himalayan rocks that underwent peak metamorphism at the lower levels of an overthickened crust. They would therefore represent a unique and extraordinary opportunity to investigate the felsic lower crust of an active over-thickened orogen and -constrain the major process (es) that allowed its exhumation from the base of the orogenic crust to the mountain tops in such a short time span. However, some recent studies did not acknowledge the high-P nature of the lenses and proposed tectonic models that fail to explain the exhumation of orogenic lower crust in the EHS (Burg et al. 1998; Ding et al. 2001). Additionally, a few recent studies focused on the very young granites found in the core of the Namche Barwa Antiform and have ascribed their genesis to decompression melting (Burg et al. 1998; Booth et al. 2004; 2009). However, the timing of melting is obtained from cooling ages on accessory minerals, and the ages might not truly represent the time of melting but rather the time of crystallisation. Recent advances in phase equilibria modelling allow the estimation of the granite-production potential and history along different P-T paths for rocks of broadly pelitic composition, and thus would give insights in the potential for young granite emplacement in the core of the antiform.

1.3 Objectives and methodology As was described above, this PhD thesis bears on two suites of high-P metamorphic rocks: one from the Yarlung Zangbo Suture Zone in the Xigaze and Saga area, and one from the Namche Barwa Antiform in the Eastern Himalayan Syntaxis. The objectives of this thesis are: 1) To assess the geodynamic significance of the studied rocks at the global, regional and local-scale by 2) Constraining as best as possible their respective protolithic history and by 3) Constraining their prograde, peak and retrograde metamorphic evolution In order to satisfyingly interpret the metamorphic record preserved in the studied rocks and their geodynamic significance, one must know what they were before they were modified by metamorphism. Indeed, the initial geometry of the protolith (sedimentary sequence, pluton, sill, etc.), its grain-size, water-content and relative rheology, among other characteristics, have a control on the resulting metamorphic textures and thus will influence their interpretation. Unfortunately, as was mentioned before, the studied rocks are expected to have been metamorphosed in the high-P granulite facies or close to its boundaries. The deformational, textural and mineral modifications implied in such intense metamorphism leave a very low potential for the direct preservation of primary textures at the macro- or microscopic scale. Nonetheless, the hypothesis that primary textures were preserved has to be explored via mapping, macroscopic description and petrography. On the other hand, metamorphism does not explicitly requires the remobilization of major or trace elements at the macroscopic scale, even though partial-melting, melt extraction and/or metasomatism are to be expected. The whole-rock geochemistry of the studied rocks might provide important constraints on the nature and origin of their protoliths. In a case where metamorphism proves to have been isochemical (or close to it), then the geochemistry of the rocks will reflect the nature of their protolith and the geodynamic environment in which they were emplaced, providing an initial setting for an eventual

­

ra E

M

NoOG

No 83

r_J

6bS t u T3

54 However, the mantle section could be much older (Gôpel et al., 1984). Paleo-magnetic data suggest that ophiolite genesis occurred at 10-20° N latitude, near the coast of Tibet (Pozzi et al., 1984) or at equatorial latitudes (Abrajevitch et al. 2005). The middle crust and lower crust are mostly missing due to tectonic attenuation, late deformation or very low magmatic regime (Nicolas et al., 1981; Hébert et al., 2003). Harzburgite is the major component of the mantle section, although clinopyroxene harzburgite, dunites and lherzolites are commonly found (Allègre et al., 1984; Hébert et al., 2003; Dubois-Côté et al., 2005). Although earlier studies claimed that these ophiolitic massifs derived from a mid-ocean ridge setting (Nicolas et al., 1981; Girardeau et al., 1985a; Mahoney et al., 1998; Zhang et al., 2005), recent data rather suggest a supra-subduction zone setting (Zhou et al., 1996; Huot et al., 2002; Hébert et al., 2003; Xu and Castillo, 2004; Dubois-Côté et al., 2005; Dupuis et al., 2005a; 2005b; Bédard et al., 2009) with prominent back-arc and arc signatures. This hypothesis fits the lead isotopes systematics indicating a ridge-generated mantle (harzburgite) of older age intruded by arc-related magmas (e.g. Gôpel et al., 1984). The Bainang and Buma massifs (study area), underneath which were found highly deformed amphibolites, show back-arc geochemical signatures (Dubois-Côté et al., 2005). Jurassic volcaniclastic assemblages have been described about 200 km east, near the Zedong area (Aitchison et al., 2000; McDermid et al. 2002; Aitchison et al. 2007). Geochemical results would suggest an intra-oceanic arc setting for the genesis of these rocks (McDermid et al., 2002; Atchison et al. 2007). Ar/Ar and U/Pb ages constrain arc activity between 161 and 127 Ma (McDermid et al., 2002; Malpas et al., 2003). In this region, strongly depleted mantle has been associated with arc metasomatism (Jinlu massif, Dubois-Côté et al., 2005). At almost all locations in the studied region, the lower contact of the ophiolite is marked by a highly sheared serpentinite mélange containing some sedimentary blocks but mostly rodingitized mafic and ultramafic blocks. This ophiolitic mélange shows a block-in-matrix aspect, with centimetric to kilometric fragments. Geochemical data from fresh mafic and ultramafic blocks suggest a back-arc and even arc setting for their genesis, as seen within the ophiolitic massifs (Huot et al., 2002; Dupuis et al., 2005a). Low to medium grade

55 metamorphism affected these blocks. Geochemical and textural correlations between the mélange and the overlying ophiolite massifs would indicate that the mélange formed by tectonical disruption of the ophiolite during obduction over the passive margin (Girardeau et al., 1984; Huot et al., 2002; Dupuis et al., 2005a). Near Bainang and Buma, rare decametric garnet-bearing amphibolite blocks have been reported. Those have been interpreted as a dismembered dynamothermal sole that would have formed at the inception of the subduction that allowed ophiolite transport towards the Indian passive margin (Nicolas et al., 1981). An imbricate thrust sheet zone can be found south of the ophiolitic sequence, beneath the serpentinite mélange and over Tethyan passive margin sediments. This thrust sheets group, also called the Yamdrock mélange by Searle et al. (1987) and the Bainang terrane by Aitchison et al. (2000), would have preserved an ocean floor stratigraphy (Aitchison et al., 2000; Zyabrev et al. 2004). It is composed of red siliceous shales, radiolarian cherts, local basalts and lower fine-grained, thinly bedded deep marine shales (Chang et al., 1984; Aitchison et al., 2000; Ziabrev et al., 2004; Dupuis et al., 2005a; 2006). The source for these sediments could be a continuous Indian passive margin (Dupuis et al., 2006). Exotic blocks are decimetric to kilometric and include Permian to Jurassic limestones and seamount-derived Campanian-Maestrichtian micrites and pillow lavas of alkaline affinity (Mercier et al., 1984; Dupuis et al., 2005a). Detailed radiolarian biostratigraphy revealed two subgroups. The northern tract would represent Aptian trench-fill sediments and tuffs. The southern tract would contain older (Triassic-Jurassic) pelagic sediments and intraplate volcanics (Ziabrev et al., 2004; Dupuis et al., 2005a). Structurally, the unit is reminiscent of subduction complexes. These imbricated thrust slices were probably off-scraped from the downgoing Tethyan slab (Ziabrev et al., 2004; Chang et al., 1984). Matrix chronology would indicate a Late Cretaceous (Chang, 1984; Mercier et al., 1984) to Paleocene (Burg and Chen, 1984) activity for this unit. However, new data (Ziabrev et al., 2004) indicate accretion of the northern tract during Aptian-Albian followed by hanging-wall erosion until post-Campanian accretion of the southern tract.

56

!

I

I o u 3

1 60 O

B

O

OJ X! +J

E o

*

TJ U C Tl O

E ­—* 3 u

ra

TJ

u D.

E ra x U X

­— an' .S » o

X ■r. r,) C

O N r.)

S

3 C/2

560 C

Nra W)

c3

S > "* Xi

3C O



o p.

ra

ra a; fc M __ c ra ra u 2 '5­i o

09

R u

b

u O

CN Q

fi u si J­ c *­

a

57

3.2 The Saga Ophiolite The Saga massif is a 25 km-long body of an incomplete ophiolitic sequence within the Yarlung Zangbo Suture Zone (Fig. 3.3). From north to south, the massif comprises fresh mantle tectonite, an ophiolite mélange, metamorphosed mafic upper crustal rocks and a sequence of uppermost crustal rocks. The mantle section only outcrops in the western part of the massif (-1.5 km thick) and is mostly composed of lherzolite with minor cpxharzburgite. To the south of the mantle section the ophiolite mélange crops out throughout the whole massif with a maximum thickness of 2 km and less than 1 km in the western and eastern parts, respectively. Lherzolite, dunite as well as local garnet and clinopyroxenebearing amphibolite blocks where identified within the mélange. Underlying the ophiolite mélange, the metamorphosed upper crust (~2—2.5 km thick) is composed of meta-gabbro and meta-basalts in addition to amphibolites as the more metamorphosed end-member. The uppermost crustal unit is 2—2.5 km thick and is composed of ocean floor rocks such as green and red chert, basaltic pillowed, massive or fragmented lavas as well as diabase sills and dikes. It is not certain whether the uppermost crustal unit and to some extent, the metamorphosed mafic upper crust, could be compared to the Yamdrock mélange of other Yarlung Zangbo Suture Zone ophiolites. Middle Miocene shoshonitic intrusions (trachyandesite and trachydacite) crosscutting either the mantle tectonite or the ophiolite mélange have also been identified (not shown on Fig. 3.3; Lesage et al., 2007; Hébert et al., 2008; Bezard et al., 2009). The upper section of the ophiolite is overlain by an ultramafic conglomerate (i.e. rounded peridotite clasts with a carbonate matrix) and chromite-bearing sandstone. Considering that the conglomerate only includes peridotite clasts and is deformed along with the ophiolite, it does not appear to belong to the Xigaze Group which is found along the northern contact of the Saga massif. Spinel-bearing sandstones are also found in the upper section of the ophiolite. To the south, the Saga massif is overlying passive margin Indian sediments and igneous rocks.

58 85°05' E

85°05' E

85° 10' E

85°15'E

Fig. 3.3 : Geological map of the Saga Ophiolite. The garnet-clinopyroxene-bearing amphibolites were taken as the easternmost extension of the ophiolitic mélange. Taken from Bédard et al. (2009).

Recent geochemical studies have suggested that the mantle section of the Saga ophiolite has likely been refertilized in a suprasubduction zone. In addition, mafic rocks from the crustal section display arc and back-arc geochemical signatures (Bédard et al. 2009). Finally, Ar/Ar ages obtained from the amphibolitic crust suggests a metamorphic peak between 123.3±1.1 Ma and 128.8±1.4 Ma (Guilmette et al. 2008). All these characteristics, which are in all ways similar to those of the Xigaze Ophiolite, led Bédard et al. (2009) to suggest that the Saga ophiolite represents the western extension of the Xigaze Ophiolite Belt.

59

3.3 Models for the evolution of the Yarlung Zangbo Ophiolites The first references to the key tectonic significance of the Yarlung Zangbo Suture Zone are from Augusto Gansser during his two first expeditions in the Kingdom of Tibet by the end of the '30s (Heim and Gansser, 1939). In this contribution, Gansser had described the presence of sheets of allochtonous massifs containing exotic blocks of radiolarian chert, of carbonates and of mafic intrusives and extrusives South of Mt. Kailash (possibly the Yungbwa ophiolite, Miller et al. 2003; Chan et al. 2007). In 1964, he interpreted these allochtonous sheets as ophiolitic complexes thrust over Tethyan sediments and rooted in a subvertical shear zone located in the bed of the Indus and Yarlung Zangbo Rivers. Gansser had understood that the Indus-Yarlung-Zangbo Suture Zone was marking the limit between the Transhimalayan domain and Indian domain, but its real geodynamic significance and its oceanic affinity would only be recognized a few years later (Dewey and Bird, 1970; Molnar and Tapponnier, 1975; Gansser, 1980). On the basis of compiled paleomagnetic data, Dewey et al. (1988) suggested the presence of a more than 4000 km wide ocean, the Tethys, between the Eurasian and Indian plates from the Triassic to the Paleocene. Until 1995, the understanding of the Yarlung Zangbo Suture Zone was mostly based on the geology of the Xigaze area (Bally et al. 1980; Shackleton, 1981; Tapponnier et al., 1981a). Field work done by the French-Chinese team in the early '80s allowed to highlight the main lithotectonic subdivisions within the suture : the Tibetan domain, the oceanic domain and the Indian domain. During these years, emphasis was put on units from the oceanic domain. The conclusions of this important mission were that the Xigaze Ophiolite had been generated along a slow-spreading mid-ocean ridge (Nicolas et al. 1981; Girardeau et al. 1985a) active during the Mid Cretaceous (120 +/- 10 Ma, Gôpel et al. 1984) close to the Tibetan margin (Pozzi et al. 1984). It has to be noted that at this time, the linking between suprasubduction zones and ophiolites was still in its infancy (Miyashiro, 1973; LePichon et al. 1976). The debate concerning the ophiolites rather bore on their oceanic or continental nature. The Chinese and French mission also allowed to document the Jurassic-Cretaceous calk-alcaline magmatic activity along the Tibetan margin (Allègre et al. 1984; Schaerer et

60

al. 1984; Coulon et al. 1986) and the associated sedimentary basin (Xigaze group, Girardeau et al. 1984; Burg et al., 1983). The resulting geodynamic model, proposed by Girardeau et al. (1985b) implied the genesis of the ophiolites in a marginal pull-apart basin located off-shore of the southern margin of the Lhasa block during the Mid-Cretaceous (Fig. 3.4). Around 120 Ma, movement along the transform fault parallel to the Tibetan margin was transposed from strike-slip to compression, leading to the northward subduction of the Tethyan oceanic lithosphère underneath the Tibetan margin. The oceanic lithosphère trapped above the subduction zone in a fore-arc setting thus magmatically died. The ophiolitic crust was then covered by turbiditic sequences issued from the growing continental arc that was building on the Tibetan margin. In such a model, the obduction of the oceanic lithosphère on the Indian passive margin (Girardeau et al. 1984) corresponds to the initiation of the collision between the two continents and happens in the Eocene (50 Ma, Dewey and Bird, 1970; Molnar and Tapponnier, 1975; Patriat and Achache, 1984). From the end of the '90s, two international teams showed a renewed interest in the suture zone. One of the teams was composed of Chinese and Occidental geologists from the Hong Kong University. The other team was formed from the collaboration between the GEO team (Genesis and Evolution of Ophiolites), directed by the professor Réjean Hébert of Université Laval, and the Institute of Sedimentary Geology of the Chengdu University of Technologies, later to be moved to the China University of Geoscience in Beijing. The first publications covered the Zedong-Luobusa Ophiolite in 1996. Podiform chromite occurrences in the mantle section of the ophiolite motivated the studies (Zhou et al. 1996). These studies allowed to demonstrate that the Luobusa Ophiolite had been formed in a twostage evolution implying a partial melting event underneath a mid-ocean ridge followed by percolation of suprasubduction magmas (Zhou et al. 1996; 2002). Ages related to this ophiolite are still ill-constrained (e.g. Robinson et al. 2004). The work of Zhou and Robinson has shown that there was a strong supra-subduction zone component in at least one of the Yarlung Zangbo Suture Zone ophiolite, contradicting the French and Chinese mid-ocean ridge origin. This discovery was setting the table for a return to the Xigaze Ophiolite.

61

leoionown

MO Mo

'>. A

• O o B^Mo

Near 50Ma

AO

5 0 ro3GMa

After 36 Ma

Fig. 3.4 : Pull-apart to subduction geodynamic model for the evolution of the Yarlung Zangbo Ophiolites as taken in Girardeau et al. 1985. See text for explanation.

In 2000, Aitchison et al. were publishing a key paper in which they described a Mid Jurassic intraoceanic terrane, the Zedong terrane. This volcaniclastic assemblage was interpreted as a fragment of an intraoceanic volcanic arc. This discovery completely invalidates the geodynamic model proposed by Girardeau (1985a). Actually, there were likely two subduction zones in the Tethys, one at the margin of the Lhasa block and one off-shore implying solely oceanic material. In his model, Aitchison suggests a two step closure of the Tethys (Fig. 3.5). The first step involves destruction of the oceanic lithosphère along the intraoceanic subduction until the leading edge of the suprasubduction zone was obducted over the Indian passive margin around 70 Ma. The second step involved an acceleration of the subduction underneath the Lhasa block from the Late Cretaceous and

62 NORTH

SOUTH

LATE CRETACEOUS

arc-continent collision

Ind /

f

*

\ * f

* .

, \ \ \ \ V \

• • y f * * . . v \ \ \ \ \ ■% f * * * * .

,\\•

\

\

\

\

-s X -

0 +

* t * * t * ê * * * é * * t t t t t t f t * w v

Il \ \ \ s \ * * * * * * * * * •* *• ** * ** *. * * * * * * * * * * * * * * * t * * * * * * * *

r

.

\ ■

************** \ \ \ v \ \ \ \ \ \ \ \ \ v v \ . x * v v s . \ \ \ \ \

continent-continent collision

EOCENE

x \

*********** **************

/ * * * . * * *. .* * * * * * * * * * * * * * * * , * * * *-**********************. *, .

*****

\

Fig. 3.5 : Intraoceanic subduction model for the evolution of the Yarlung Zangbo Ophiolites. See text for explanation. B = Bainaing Terrane, D = Dazhuqu Terrane, Z = Zedong terrane, X = Xigaze Group, Lh = Lhasa block, Ind = India. Taken from Aitchison et al. 2000.

63 ends with a continental collision around 35 Ma (Aitchison et al. 2004). This new hypothesis is mainly based on the Tertiary sedimentary record of the Suture Zone (Davis et al. 2002; 2004), on the tomographic imaging of the Indian mantle (Van der Voo, 1999) and on new paleomagnetic data from the Xigaze ophiolite (Abrajevitch et al. 2005) which rather suggest that the ophiolite formed at equatorial latitudes. Such an interpretation has a strong incidence on the shortening rates estimated up to now for the surrection of the HimalayanTibetan Orogen. In parallel, field work by the GEO team and their Chinese colleagues was focused on the geochemistry and petrology of the mantle and crustal section of the Xigaze Ophiolite. Their results showed that all the massifs between Angren and Dazhuqu had been modified in a suprasubduction zone context, likely in an intraoceanic back-arc basin (Hébert et al. 1999; Huot et al. 2002; Hébert et al. 2003; Dubois-Côté et al. 2005; Dupuis et al. 2005a; 2005b; Bédard et al., 2009).

Obductton Marks Initiation of India-Asia Collision

Tethyan Himalaya «rata

Liozizong Formation Q

YZMT

Unzizong "flare-up" due to siab rollback durmg collision inrbtabon

Obduction Mark* th» Demis* of an Intra-Oceanic Subduction System mtra-oceantc melange

obducted t ^ ^ afC

Imzizong

deformation of Gangdese margin and Linztzong"nara-up" due to increased rate of convergence

Fig. 3.6 : Different scenarios for the evolution of the Yarlung Zangbo Ophiolites. See text for explanation. Taken from Ding et al. 2005.

64

Recent work in the Saga area, west of the Xigaze ophiolite, has shown that the Saga ophiolite has also been modified in a supra-subduction zone setting and is of the same age as the Xigaze ophiolite (Bédard et al. 2009). A sedimentary study by Ding et al. (2005) on the appearance of detritic ophiolite-related spinel and other accessory minerals in Tertiary sedimentary sequences has also raised the question: Were the Yarlung Zangbo Ophiolites trapped in the fore-arc of the Andean-type subduction zone or of the intraoceanic subduction zone?

65

Chapter IV

Guilmette, C , Hébert, R., Dupuis, C , Wang, C.S., Li, Z.J. 2008. Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo Ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 32, 423-437.

66

Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Guilmette, C.a*, Hébert, R.a, Dupuis, Ca, Wang, C.S.b and Li, Z.J.C a

Département de géologie et de génie géologique, Université Laval, Québec, Canada G1K

7P4. b

School of Earth Sciences and Minerai Resources, China University of Geosciences,

Xueyuan Road #29, Beijing, People's Republic of China institute of Sedimentary Geology, Chengdu University of Technology, Chengdu, Sichuan 610059, People's Republic of China. ♦Corresponding author. Tel.: 1-418-656-2131 # 12710; Fax: 1-418-656-7339 E-mail address: carl.guilmette. 1 (a),ulaval.ca

Résumé On retrouve localement, sous les Ophiolites du Yarlung Zangbo dans la région de Xigaze au Sud Tibet, des blocs d'amphibolites fortement foliés enrobés dans un mélange de serpentinite. Les Ophiolites du Yarlung Zangbo sont interprétées comme représentant des reliques d'un ancien bassin d'arrière-arc d'âge Crétacé inférieur qui s'était ouvert au sein de l'Océan Permo-Cretacé Téthys et sont exposées sous la forme d'une ceinture discontinue le long de la Zone de Suture du Yarlung Zangbo. Les rares amphibolites sous-jacentes sont quant à elles interprétées comme représentant les fragments d'une semelle dynamothermale démembrée. Trois types d'amphibolites ont été trouvées : 1) des amphibolites communes comportant un assemblage de Hbl + PI ± Ep ± Ap ± Ttn, 2) des amphibolites à clinopyroxene caractérisées par l'assemblage Hbl + PI + Cpx + Ep ± Ttn ± Qtz ± Ap et 3)

67 des amphibolites à grenat et clinopyroxene montrant l'assemblage Hbl + Cpx + Grt + PI ± Rt ainsi qu'un assemblage coronitique à Grt + Hbl + PI. Dans ces trois types, le plagioclase est pseudomorphisé par un assemblage tardif à préhnite et albite. Des veines cataclastiques contenant un assemblage de Prh + Ab + Ep ± Chi sont également présentes. Les estimations de P-T indiquent que les amphibolites ont atteint un pic métamorphique à des conditions de 13-15 kbar et 750-875°C. Le remplacement partiel de grenat riche en molécule pyrope (jusqu'à 35 mol%) par une Tschermakite alumineuse (AI2O3 jusqu'à 21 wt.%) reflète un épisode de haute pression (-18 kbar, 600°C) suivi d'une exhumation rapide. Peu après leur exhumation, les amphibolites ont subit l'intrusion de dikes de diabase finement grenus qui furent par la suite métasomatisés. Les relations de terrain et l'histoire métamorphique des amphibolites suggèrent une formation pendant la naissance d'une subduction au sein d'un bassin d'arrière-arc intraocéanique. L'injection de dykes et l'altération hydrothermale associées auraient quant à elles eu lieu pendant la subduction d'un centre magmatique avant l'obduction des nappes ophiolitiques sur la paléo-marge passive Indienne.

Abstract Blocks of highly foliated amphibolites are locally embedded within a serpentinite mélange underlying the Yarlung Zangbo ophiolites in the Xigaze area of southern Tibet. The ophiolites are remnants of an Early Cretaceous back-arc basin within the Permo-Cretaceous Tethys Ocean, which are exposed along in the Yarlung Zangbo Suture Zone (YZSZ). These amphibolites are interpreted as fragments of a dismembered dynamothermal sole. Three types of amphibolite are present: 1) common amphibolite with assemblages of Hbl + PI ± Ep ± Ap ± Ttn, 2) clinopyroxene-bearing amphibolite with Hbl + PI + Cpx + Ep ± Ttn ± Qtz ± Ap and 3) garnet-clinopyroxene-bearing amphibolite characterized by the assemblages Hbl + Cpx + Grt + PI ± Rt and Grt + Hbl + PI (corona assemblage). In all three types, plagioclase is pseudomorphed by late albite-prehnite. Retrograde cataclastic veins containing assemblages of Prh + Ab + Ep ± Chi are also present. P-T estimates indicate that the amphibolites reached peak metamorphic conditions of 13-15 kbar and 750-

68 875°C. Partial replacement of pyrope-rich (up to 35 mole%) garnet by Al-tschermakite (AI2O3 up to 21 wt.%) reflects a high-pressure (=18 kbar, 600°C) metamorphic event followed by rapid exhumation. Soon after exhumation, the amphibolites were intruded by very fine-grained diabase dykes that were then hydrothermally altered. Field relationships and metamorphic history of the amphibolites indicate formation during inception of subduction within a back-arc basin. Injection of the dikes and fluid percolation occurred during subduction of a magmatic center prior to obduction of the ophiolites onto the Indian passive margin. Keywords: Ophiolite, amphibolite, metamorphic sole, Yarlung Zangbo, subduction, thermobarometry

4.1 Introduction The Yarlung Zangbo Suture Zone (YZSZ), the southernmost and youngest of the various sutures stretching across the Tibetan Plateau, is widely accepted as the boundary between the Eurasian and Indian plates (Fig. 4.1). Rocks found within this suture suggest that a vast ocean, Tethys, once separated India from Eurasia. At these longitudes, Tethys formed by rifting of the Lhasa block (Tibet) from Gondwana during Permo-Triassic time (Gaetani and Garzanti, 1991). Convergence between India and Eurasia during the Jurassic and Cretaceous caused destruction of Tethys along at least two subduction zones. From the Late Jurassic to the Late Cretaceous, at least one intraoceanic subduction zone was active within Tethys. This subduction is thought to have been north-dipping and to have induced arc and back-arc ridge accretion (Zhou et al., 1996; Hébert et al., 2000, 2001, 2003; Aitchison et al., 2000; McDermid et al., 2001, 2002; Huot et al., 2002; Dubois-Côté et al., 2005; Dupuis et al., 2005a, 2005b, 2006). During the Cretaceous, Neo-Tethyan lithosphère was in turn subducted along the Tibetan active margin, causing extrusive and intrusive calc-alkaline magmatism (Allègre et al., 1984; Coulon et al., 1986; Harrison et al., 1992; Murphy et al., 1997). Paleocene obduction towards India (Tapponier et al., 1981a; Aitchison et al., 2003) thrust portions of Neo-Tethyan lithosphère over passive margin sedimentary rocks. Eocene collision (Molnar and Tapponier, 1975) trapped the Tethyan remnants between India to the

69 south and Eurasia to the north. Late back-thrusting (Tapponier et al., 1981a), strike-slip faulting (Molnar and Tapponier, 1975; Allègre et al., 1984) and east-west extension (Tapponier et al., 1981b) disrupted the relict oceanic lithosphère and its cover into various ophiolitic blocks and tectonic mélanges that now crop out in the YZSZ. In our study area (Fig. 4.2), previous mapping identified the presence of garnet-clinopyroxene-bearing amphibolite blocks embedded in the ophiolitic mélange near Bainang and Buma (Wang et al., 1984). These blocks are thought to represent the upper section of a dismembered, subophiolitic dynamothermal sole (Nicolas et al, 1981; Guilmette and Hébert, 2003; Guilmette et al., 2005). Dynamothermal soles, or metamorphic soles, are found as a - o

csc c-

CQT3 »

-g- .

U -t B u rX 00 o oo . U Os C

u, _r-s tie" -o 5 S S

■73 O O

00 &

S oo'

g . ea CX3

«

i

2
CJ

2 »c

-a e ca _ 2 '"' c ■al o ca •«r 2 •*> S? Os . "51 A, c g a — ca I - — t. ca tt, •a c

s'a

ill II es ^- c oo ca F u >> ê" ca P ^ a cfl €ca Ses

Si? il cj

H

UJ

-

2

e EC UJ UJ

J i

00 u

Cfl

« oo 3 'S 3 —

o U

■ -

o CA

D . 60. Two trends can be observed. One trend is defined by low Mg# samples outside the field of primitive basalts and seems to follow one of the three main differentiation curves. Unfortunately, the small number of samples and their low variability in Mg# make it impossible to distinguish which type of differentiation occurred. The other trend is defined by two outliers, including sample LUS-16 which has the highest Mg# and a high Si02/Al203 ratio. This trend could correspond to pyroxene accumulation which would make both Mg# and Si02/Al203 rise. Accordingly, we will from now on assume that the composition of sample LUS-16 does not correspond to that of a liquid but rather of a pyroxene cumulate.

5.2.3 Trace element geochemistry

For this study, we present trace element contents of the XO amphibolites for REEs, HFSEs and LILEs. Fig. 5.5 shows REE patterns for all analyzed samples except sample LUS-16, a meta-pyroxenite, because its composition is not that of a liquid. Values are normalized to a chondritic (CI) composition (Sun and McDonough, 1989). The patterns are quite flat except for a moderate depletion in LREE. REE abundances vary between 6 and 30 times chondritic values. In a general way, all patterns are parallel, regardless of the mineral assemblages observed in the different samples. Garnet-bearing samples are more depleted in total REE than the others whereas samples containing the common amphibolite assemblage seem to be the most enriched. There is a clear relationship between the bulk Mg# and the total REE abundance, the lowest Mg# being found in the most enriched samples (Tables 5.1 and 5.2).

112 T—i—r

T—r

T

T—i—r

T—r

A ■ 4 »»

100

Common Cpx­hcaring Gi­bearing N­MORB

2 c TJ

o 10 o rr

1 —

J

J

L

I

I

J

L

L

J

I

L

J

I

d

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Fig. 5.5 : REE patterns normalized to chondrites (Sun and McDonough, 1989). N-MORB = Normal MidOcean-Ridge Basalt from Sun and McDonough (1989). 1000

=-|—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—I—T3 >i D ■ \

XO Amphibolites XO SSZ mafic rocks XO N­MORBs XOVABs average N­MORB ■ Lau Basin

Q) 100

i

2

0) >

110

J

I

I

I

I

I

I

I

I

I

L

J

I

I

I

I

I

I

L

RbBa K Th U Nb LaCe Pr Sr Nd Hf ZrSmEu Ti Dy Y Ho Yb Lu Fig. 5.6 : Extended trace element patterns normalized to the Primitive Mantle (Sun and McDonough, 1989). VAB = Volcanic Arc Basalt, N-MORB = Normal Mid-Ocean-Ridge Basalt, average N-MORB from Sun and McDonough (1989). XO SSZ mafic rocks from Huot et al., (2002), Xia et al. (2003), Dubois-Côté et al. (2005), Dupuis et al. (2005a), Xu and Castillo (2005) and Chen and Xia (2008). XO MORBs are from Mahoney et al. (1998) and Zhang et al., (2005). XO VABs are from Dubois-Côté et al. (2005) and Dupuis et al. (2005a). Lau Basin mafic rocks from the GEOROC database.

113 Fig. 5.6 shows a multi-element spider diagram including some REEs, HFSEs and LILEs for the same samples. Values are normalized to a Primitive Mantle composition (Sun and McDonough, 1989). Once again, the patterns are parallel. However, element abundances now vary between 0.2 and 100 times the primitive mantle defining major positive and negative anomalies. The heavy and immobile elements found in the right end of the diagram (Nd to Lu) plot as a flat partem being enriched in between 5 and 10 times the primitive mantle values. Titanium defines a slight to moderate negative anomaly. At the left end of the diagram, Rb, Ba and U show a strong variability, possibly reflecting a mixture of different primary enrichments and retrograde metamorphic histories. In addition to the LREE depletion already described in Fig. 5.5, Nb is depleted when compared to N-MORBs and Ti defines a clear negative anomaly, suggesting that a subduction component is involved in the genesis of these basic rocks (Pearce and Stern, 2006 for a review). Ta also defines a strong negative anomaly, supporting a SSZ origin (not shown). However, very low abundances in Ta, with some samples containing less than the detection limit, forbid us in using Ta in a quantitative way. Nonetheless, it remains that Ta abundances are very low. Another important characteristic displayed in Fig. 5.6 is that when normalized to the primitive mantle, Th is more depleted than Nb. Such a relation is more reminiscent of MORBs than BABBs, even though the Ti negative anomaly cannot be explained by MOR processes. When comparing with the overlying ophiolitic rocks, Huot et al. (2002), Xia et al. (2003), Xu and Castillo (2004), Dubois-Côté et al. (2005), Dupuis et al. (2005a, b) and Chen and Xia (2008) reported collectively trace element data for more than 127 mafic rocks coming from the whole study area (over a 100 sampling sites within the 8 massifs) that showed the same systematic low abundances in Nb-Ta-Ti relative to N-MORBs. However, these rocks all show enriched Th contents relative to Nb, which we do not observe in the amphibolites. On the other hand, Mahoney et al. (1998) and Zhang et al. (2005) reported N-MORBs from the Xialu and Dazuka areas. These rocks have very low abundances in both Th and Nb. However, authors did not report Ta and Ti data. We therefore conclude that the amphibolites underlying the XO display both the N-MORB (flat HREE pattern with LREE

114 depletion, Th more depleted than Nb) and SSZ signature (Nb-Ta-Ti low abundances) that are observed in the overlying ophiolitic massifs.

5.3 Geochronology 5.3.1 Analytical Method

Laser 40Ar/39Ar step-heating analysis was carried out at the Geological Survey of Canada laboratories in Ottawa, Ontario. The data are available for downloading from the Lithos website (Electronic Appendix 2 corresponding to Appendix D in this thesis). Selected samples were processed for

40

Ar/39Ar analysis of whole rock by standard preparation

techniques, including hand-picking of unaltered pieces in the size range 0.25 to 0.50 mm. Individual mineral separates were loaded into aluminum foil packets along with a single grain of Fish Canyon Tuff Sanidine (FCT-SAN) to act as flux monitor (apparent age = 28.03 Ma; Renne et al., 1998). The sample packets were arranged radially inside an aluminum can and then irradiated for 12 hours at the research reactor of McMaster 1 f\

9

University in a fast neutron flux of approximately 3x10 neutrons/cm . Upon return from the reactor, samples were split into one to five aliquots and loaded into individual 1.5 mm-diameter holes drilled in a copper planchet. The planchet was then placed in the extraction line and the system evacuated. Heating of individual sample aliquots in steps of increasing temperature was achieved using a Merchantek MIR 10 10W CO2 laser equipped with a 2 mm x 2 mm flat-field lens. The released Ar gas was cleaned over getters for ten minutes, and then analyzed isotopically using the secondary electron multiplier system of a VG3600 gas source mass spectrometer; details of data collection protocols can be found in Villeneuve and Maclntyre (1997) and Villeneuve et al. (2000). Error analysis on individual steps follows numerical error analysis routines outlined in Scaillet (2000); error analysis on grouped data follows algebraic methods of Roddick (1988).

115 Corrected argon isotopic data are listed in Appendix D, and presented (Fig. 5.7) as spectra of gas release. Each gas-release spectrum plotted contains step-heating data from up to five aliquots, alternately shaded and each one normalized to the total volume of 39Ar released within all aliquots. Such side-by-side plots provide a visual image of reproducibility of heating profiles, evidence for Ar-loss in the low temperature steps, and the error and apparent age of each step. As there is no evidence for excess

40

Ar, the regressions are

assumed to pass through the 40Ar/36Ar value for atmospheric air (295.5) and are plotted on gas release spectra. Neutron flux gradients throughout the sample canister were evaluated by analyzing the sanidine flux monitors included with each sample packet and interpolating a linear fit against calculated J-factor and sample position. The error on individual J-factor values is conservatively estimated at ±0.6% (2a). Since all aliquots of the sample were exposed to sensibly identical neutron flux, plateau steps from each aliquot were combined and regressed to provide a final age and J-factor uncertainty was quadratically applied to arrive at age uncertainty. 40

Blank were measured prior and after each aliquot and are estimated at

Ar = 2.5-3.6xl0"7 nm, 9

1.7xl0" nm,

36

39

Ar = 4.2-13.3xl0"9 nm, 9

Ar = 0.7-1.3xl0"

38

Ar = 0.4-1.7x10"' nm,

37

Ar = 0.4-

nm, with uncertainties of ± 20 %. Nucleogenic

interference corrections are (40Ar/39Ar)K = 0.025 ±.005, (38Ar/39Ar)K = 0.011 ± 0.010, (40Ar/37Ar)Ca= 0.002 ± 0.002, (39Ar/37Ar)Ca = 0.00068 ± 0.00004, (38Ar/37Ar)Ca = 0.00003 ± 0.00003, (36Ar/37Ar)Ca = 0.00028 ± 0.00016. All errors associated with age determinations are herein quoted at the 2c level of uncertainty.

5.3.2 40Ar/39Ar dating Three samples were chosen for 40Ar/39Ar dating. Samples were chosen with respect to their provenance and mineralogy. Samples BAI-18 and BUM-05 are common amphibolites whereas sample LUS-07 is a gamet-bearing amphibolite. Results are shown on gas release plots in Fig. 5.7, along with derived Ca/K. The larger than expected uncertainties on individual steps are the result of error expansion brought about by large Ca/K ratios of the amphiboles. Nevertheless, reproducibly undisrupted plateaus confirm the ages for all

116 BAI-18 (Amphibole) 123.3 ± 3.1

Aliquot 1

Aliquot 2

«yo^Ar LUS-07 (Hornblende) 127.4 ± 2.4

Aliquot 1

Aliquot 2 "/o^Ar

BUM-05 (Hornblende) 127.7 ± 2.3

Aliquot 1

Aliquot 2 o/o^Ar

Fig. 5.7 : 40Ar/39Ar spectrum for amphiboles from the strongly foliated amphibolites with Ca/K plot of released gas

117 samples. Homogeneous prograde tschermakites from sample BAI-18 yielded a plateau age of 123.6 ± 2.9 Ma. Amphiboles from sample BUM-05 are also homogeneous with a plateau age of 127.7 ± 2.2 Ma. Sample LUS-07 has a relatively heterogeneous amphibole population but yielded a reproducible plateau age of 127.4 ± 2.3 Ma.

5.4 Discussion 5.4.1 Timing of metamorphism and protolith age

According to Guilmette et al. (2008), the amphibolites underwent peak metamorphism in the high-pressure granulite facies, near the amphibolite-eclogite-granulite transition. Guilmette et al. (2008) thus argued that the only way to bring crustal rocks to such depths at such temperatures was along a nascent subduction plane above which the hanging wall had not been cooled yet by the continuously incoming cold subducted slab. Numerical modeling of nascent subduction zones also suggests that the subducting crust would still have to be warm (young) to attain HP-granulite facies conditions, e.g. close to the ridge where it crystallized (Peacock et al., 1994).

Otherwise, typical Franciscan series

metamorphism would have been observed. The amphiboles that were dated with the

40

Ar/39Ar method in this paper (130-121 Ma,

including error) are interpreted by Guilmette et al. (2008) as having formed during peak metamorphism. However, 40Ar/39Ar ages on hornblende have to be considered as cooling ages. Considering that the oldest and youngest cooling age obtained in this study are in the range of 125-130 and 121-126 Ma respectively, a mean cooling age of 125 Ma can be proposed. Numerical modelling (Peacock et al., 1994; Hacker, 1990) showed that cooling of the hanging wall in a nascent subduction zone occurs very rapidly, bringing the amphiboles below their

40

Ar/39Ar closure temperature within less than 5 My (Hacker,

1990). Accordingly, the peak metamorphic event would have occurred as soon as 130 Ma. Since the P-T trajectory inferred from mineral assemblages and chemistry and reproduced by numerical modelling requires that the protoliths of the amphibolites were still hot (young) before they were entrained in the nascent subduction, it is then possible to suggest

118 that they crystallized as basalts, gabbros, pyroxenites and diabases within an oceanic upper crust a few My ( ♦

♦ ——\ Xigaze area Gt-Cpx bearing _ Cpx bearing

nn

1

1

1



i

6

4

8

Al 2 0 3 1

1

1

1

1

'

1

1

♦ Na,0 1 ­



♦ \

♦ 1

1

1

1

1

1

Al 2 0 3 Fig. 6.7 : Clinopyroxene compositions: (a) Ti0 2 wt% vs A1203 wt. % (b) Na 2 0 wt. % vs A1203 wt. %. The fields represent the compositions of clinopyroxenes from the Xigaze Ophiolite metamorphic sole as described in chapter IV (Guilmette et al. 2008)

144 6.4.3 Garnet

Garnet compositions were explored with spot analyzes and are displayed in figure 6.8. The compositions vary within Alm38-56Gri6-33Pyo9-29Andoi-i4Spoi-o7- As seen in figure 6.8, two samples out of three show the same systematic core to rim zoning in which pyrope is enriched at the rim for a nearly constant or slightly decreasing grossular content. On the other hand, sample SA-85 has garnets that show a grossular decrease towards the rim for a nearly fixed or slightly decreasing pyrope content. Fe2++Mn

Fig. 6.8 : Ternary diagram for garnet compositions. Molecular end-members are grossular, almandine + spessartite and pyrope. The orange field corresponds to garnet compositions from the Xigaze Ophiolite metamorphic sole as described in chapter IV (Guilmette et al. 2008). The lines are linking core and rim compositions within one single grain.

145

6.5 Geochemistry 6.5.1 Analytical conditions

Thirteen (13) garnet-clinopyroxene amphibolite samples discovered in the Nobunong Valley in the Saga area (including the strongly metasomatised type) have been analyzed for major and trace elements. The concentrations of major elements were determined by X-ray fluorescence at the Regional Geochemical Centre, Saint Mary's University (Halifax, Nova Scotia). Analytical errors, as determined from replicate USGS standard rock analyses, are ± 2% for the major elements (Dostal et al., 1986). Additional trace elements (Y, Zr, Nb, Ba, REE, Hf, Ta, Th, U) were analyzed for six (6) samples by inductively coupled plasma-mass spectrometry (ICP-MS) using a Na202-sintering technique at the Department of Earth Sciences of the Memorial University of Newfoundland. The method is described by Longerich et al. (1990). The precision is between 2 and 4%. 6.5.2 Major elements

The geochemical composition in major elements of thirteen (13) samples from three outcrops has been investigated. The results are displayed in Appendix C. Care has to be taken because of the obvious metasomatic events that affected the rocks, potentially modifying their initial composition. More precisely, the alkalis are expected to have been washed away from the pale green metasomatized facies at least, Ca is expected to be enriched via prehnitization in all samples and there is a possibility for a shift in Mg# and a decrease in Si due to chloritization.

146

60 Si0 2 (wt. %) Fig. 6.9 : Total Alkali-Silica diagram, after LeMaitre et al., 1989. The field represents the composition of the amphibolites from the Xigaze Ophiolite metamorphic sole as described in chapter V (Guilmette et al. 2009). The data from the Saga Ophiolite mafic rocks is from Bédard et al. (2009).

On a classical TAS diagram (Fig. 6.9), the garnet-clinopyroxene-bearing amphibolites from the Saga Ophiolite all plot as picro-basalts except for one sample that plots as a basalt and one that doesn't plot in any labelled field, in the low SiÛ2 part of the graph. They all have a total alkalis content below 3 wt. %. Their distribution defines a trend in which the end members are the low Si02 and alkalis-free metasomatized samples. Such a trend suggests that the major element variations in the studied rocks might also be controlled by the late metasomatic history and therefore cannot be taken as a proxy to the magmatic history of the protolith. Another possibility is that the protoliths of the studied rocks crystallized from ultramafic magmas or that they were issued from cumulative processes.

147 1

90

1

""

pyroxene accumulation

80 Field ofprimitive basalts +

70

I t Gt-CPX amph. • Altered amph.

I*#-a^^

▲ A ■ •

60 garnet or plagioclase accumulation

50

_

Lava Iy . Volcaniclastics ■r. Diabase Gabbro _|F

■ Gt-CPX amph. (Xig)

Mg# 40 Fe-Ti oxide accumulation

30

Calcalkaline

20 Alkalic

10

0 0

oleiitic

J_

_L

3

4 Si02/Al203

8

Fig. 6.10: Mg# vs Si0 2 /Al 2 0 3 diagram showing possible differentiation trends and cumulative processes (modified from Kempton and Harmon 1992). The field represents the composition of the amphibolites from the Xigaze Ophiolite metamorphic sole as described in chapter V (Guilmette et al. 2009). The data from the Saga Ophiolite mafic rocks is from Bédard et al. (2009).

In figure 6.10, the possibility that the protoliths of the garnet-clinopyroxene amphibolites from the Saga Ophiolitic mélange were cumulative rocks is explored through elemental ratios between species that are estimated to be relatively immobile during metamorphism (Pearce, 1976, Gélinas et al. 1982; Rollinson, 1983; Kempton and Harmon, 1992). The relatively high Mg# of the samples suggests that their protoliths were pyroxene cumulates or primitive basalts. However, the low silica content of the samples makes them plot at the edge or out of the field of primitive basalts and clearly doesn't support a pyroxene accumulation origin. Moreover, the data again defines a trend in which the high Mg# and low silica end is occupied by the strongly metasomatized pale-green rocks. These results suggest that metasomatism might have mobilized Si and to a lesser extent changed the Mg#, even though these elements are expected to be immobile during metamorphism.

148 6.5.3 Trace elements

The trace element contents of six investigated rocks are best appraised in the form of REE and spider diagrams like those of figures 6.11 and 6.12. The REE contents are displayed in figure 6.11 whereas selected HFSEs and LILEs are added in figure 6.12. When considering REEs only, the first observation is that there is no difference between the strongly metasomatized samples and the fresher ones, suggesting that metasomatism affected all the rocks at a same degree, or more likely that it did not mobilize the REEs and thus that the REE contents are inherited from the magmatic history of the protoliths. When compared to chondrite compositions, the studied rocks are 6 to 40 times more enriched in REEs. The samples with the lowest Mg# are the most enriched in REEs (not shown). The LREEs show a slight depletion when compared to HREEs, which is also observed in MORBs (Sun and McDonough, 1989). Slight Eu negative and positive anomalies suggest that plagioclase accumulation in a magmatic chamber might have played a role in the genesis of these magmas. When considering HFSEs and LILEs in addition to REEs (Fig. 6.12), the investigated samples have trace element contents that are 1 to 20 times more enriched than the average primitive mantle, except for Th and K. in metasomatized samples which have been washed away. Otherwise, the garnet-cpx amphibolites from the Saga ophiolitic mélange and their metasomatized equivalent display flat immobile element patterns with a very slight positive anomaly in Zr. There is clearly a Nb positive anomaly analyzed in some of the rocks. This anomaly is quite enigmatic because it is not reflected by Ta, which usually has a similar behaviour, and thus potentially represents an analytical problem. However, if the Nb and Ta data proves to be correct, the investigated rocks would have to be separated in two groups. In the first group, Nb defines a positive anomaly and Ta is much more enriched relative to Th, whereas in the second group, Nb is slightly depleted when compared to La and Th is enriched relative to Ta. When compared to average primitive N-MORBs, all the amphibolites have similar immobile element contents but some are enriched in Nb and others appear to be depleted in Th and Ta.

149 ­r­

1

1

I

1

T

1

i

i

i



1

1 ! * ♦

1

1

_ Gt­CPX llllpll Mctasom . amph.



100 —



_

(0

B *c

y—*~

ie—Hk—ie­ "4

T3 C O

—k­

^^ ^ t» ­^­ ^ *fei* ­*—t­

.c — O S10 o o

* *

—■4t—.

"

.

k

_â_

*

­lit* ^—» ■

*f­

a:

­

1 —

1 1 1 1 1 i i i La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1

i

'

i

i

i

z

Fig. 6.11: REE patterns normalized to chondrites (Sun and McDonough, 1989). N-MORB = Normal MidOcean-Ridge Basalt from Sun and McDonough (1989). Sun/McDon. 1989­PM 1000

n—i—i—i—i—i—r if ♦ .•■ .--

Gt-CPX amph. Mctasom. amph. N-MORB(l) N-MORBC)

r T—i—i—i—i—i—i—r T — ■ — ■ — T ^

■ Fractionatedlc a ■ MORB­like . P S ■ Xigaze Met.Sole

©100 TO

i 1 10 C

n

£

h Ta NbLaCe Pr SrNd Hf ZrSmEu Ti Dy Y HoYbLu

Fig. 6.12: Extended trace element patterns normalized to the Primitive Mantle (Sun and McDonough, 1989). N-MORB is for Normal Mid Ocean Ridge Basalt. Average N-MORB (1) from Kelemen and Hangoj (2004) and (2) from Sun and McDonough (1989). The compositional fields for the Saga Ophiolite rocks are from Bédard et al. (2009) whereas the orange field for the Xigaze Ophiolite metamorphic sole is from chapter V (Guilmette et al. 2009).

150

6.6 Geochronology 6.6.1 Analytical procedure

Four (4) samples from the Nobunong valley near Saga have been dated with the Ar/Ar stepheating method by Thomas Ullrich at the University of British Columbia. Samples were crushed, washed in deionized water, dried at room temperature and sieved to obtain the size fraction between 0.25 mm and 0.15 mm. Mineral separates were hand-picked, washed in acetone, dried, wrapped in aluminum foil and stacked in an irradiation capsule with similaraged samples and neutron flux monitors (Fish Canyon Tuff sanidine (FCs), 28.02 Ma (Renne etal., 1998)). The samples were irradiated on November 14 through November 16, 2006 at the McMaster Nuclear Reactor in Hamilton, Ontario, for 90 MWH, with a neutron flux of approximately 6xl0 13 neutrons/cm2/s. Analyses (n = 44) of 20 neutron flux monitor positions produced errors of -

0

•a

2 S

+

.*'->*; 2

2

5 S

■5

_£3

d 3 2 TZ

E 3

0

0.2

£

M CJ

»•".

JJ

CJ

2 «

TZ

JS

_o

00

CA

^:5

y c 0

5

£

yi

s

a Ji

a

E

u

■a

os!

O

2 ^

0 Ë.

Z

Itai O ■O

"73

c

hi

A os

>*

J0 00 / 0 0 vO 0 0 >o cd c>- _ed e > ^cd O.

— n. — a

Ç

ë)JS

JS

&JS .0 c>—

0s g — 0

2 Sî.1

CJ ed CJ

c

o c o u U

E T3

â

"7a

tej

S? O-

G D o x; U Ô

S
r o

^ N

ed

rs s^ CL

*^: 0.

S?-s



ti

E

h o Cra c

E

c

3

r i

o E s. X T3

O 00

Ë

ro





=

cN

rs

1 — —' — s?

— =



M

«s

'O

V.

w-, %C

•* *

cj■d«S

rs rs

r)

rs

rO

r i

(O

'd-

0s

j? c

— s?

=?

*n

cr, cr,

0s 0 rj-

m ^c

00 in

r-

™'

rs

rN

rs

m

ro

rN

ro

r i



0 vC

en t

è? ^ ^ O rs m

CT? O 1-.

rs

à? ^ ^ ■* m en

u

si a c

rO

&

H

c o

il t - C/5 JS u

h-

* -s *

■c

£ 0

33 S £ £ s O

p

(N -H



s

U

<

s? 2 &

jjC . en 8"

o .S

al * s i * â = 1*1

;L„i

/

73

c

E ­ < o

* 11

^

,9

0

U .S ï

o

+­J:

Z 9 5 s? a ob à?" ­

Cu O

­a

g

+ M

u CM

JS g 00

o



en

.

s en

m

O m,

CJ u.

# c o

m

m,

CJS

JS U . 00 .

§

H

r j

Vi

eà­­

"S) H

O c x o CJ

I?1J

z. led >1 1 1 — rs C « — JS ts

c>o 5 x

iii

i

(4­1

H

s

T3

«

O

0

§

■s

s

c|S

' c F» JS p­ ! 0 § °­cd g .S 3 S

­

»

Il il a « 2

B ej

U

ed C C JS

•p O S

. >

60 O

0 >

illl

­et C j cd

0­­ 00 J ^ (N « ; c m0 «I i 3

11

il

.­s: c £ H

.■s: E ca S?X

2?X

2S

CJ

s#Ji

o u.

P­ eo U

y

2 & 'Ç

C 0

s1

rO

Cfl £ ?

Cfl L J ,



0 u

CA

E

il ii

99 O

18 ­g s? g ro

t j


< 1

1 ea 1u

0

0


­0 CJ

CJ

CJ

U c

3

rera

U

lis

B

g

1J

CJ

• n ta



c­ 0 S —

3

C O

CJ

g

ra è ld > a 0 3 > . "S3 ^ g D. ■si £ 0 ^ Na ~ ed C es > N a E S 3 rec* 0 3s J S 01 i « 2 00N a 'cfl O g S 3 J S to" 1i S3 J S E 0 'c c 2 2 I­ X g e>­ 0 0 J ^

JS

.­7S

­ ed

r­,s^:g

Si«* 1 5 J=

11 .E

>,

_>> __

ra c

2

g

.= J S

ni 11 aa t JI ,e+ C

al

§ 0

H

^­3 ­ O Cfl

^

0

Cfl

11

11

C CJe ,

J­.



ce JS

> .

aH 1Al

ra

°r JS

0

0

re

0

£p 1­e

g

E­ H B 0.

O

CJ

CJ

e

CJ CJ

E 0

£

11 "c «

al

.a ë

> la c a a ÇJ E 4 •775 A C '£ a s S E­8 E c c s •­ 'd . 0

CJ

O

i ­ t t 4­ CJ co

C ro — JS 0 c 0 . ~ rs ro

en 3 E CJ cr

■§ g ­" 0 ­g0 .CJ

0 B

c

y a M

. 0 S e­

V

CJ N

"

2

1! !

CJ

E 3a a s>

©

'

.s ...

­S 2

lois O

CJ

. >

C CA r^ èo 60 , S .E o c


° a. J=

CJ

> 0

13 Bi

CJ cr

a "­

JS JS

H

'g °:

c/f

Si i

C'C

CJ

>

o

•c o ­c

CJ

B­2 S CJ

C

CJ . t t

>

_o

­ c

°a^

JS CJ ÇJ

ill

B.

2 5

2 'S

a 1 C



3 JS ÇJ

=

f e»| m 5 3

r3

r. 3

­­ a JS

s? ­T c =£ 6 0 J < ^ t *c c en 72 3

ra £CJ 2C JS 0­

CJ

1J |

ill N

CA

8­g

11 B J S •ç

O E

11

Is CJ

u

o

*0



S 2

T3

S

al la

o §

1| E

ÇJ

c

8 cj

CJ TJ e­ c

c

CA

x 2 J< a c g cd P oo Ç g 3 o 2§ a! 1 eo 0 > B sfcj­g Z o. o TO. t — r s r o 4 —* fN en f N rej

g

r.

g

2 c o " ­g 3Ô O ­ ' ô g CJ C + > g'i + >



fN

a 1 CJ

'S3

^'ë

T3



£

•3 c

^1 1 è 1 8­ ­gC. E — O . .3D

CJ



rs CA CA

u

T^

a

'S3

O

CA

fwN

fc JS

cj

c

ej

c

CT* tt M ÇJ o ­ CJ o

x

Il

U Î11 M

^>

ra



S + cd

ï a "ra

­

E a — =

t.

C

Ï2 "O 7­

.2 S

m c

c 0

p ^>» oô

«>!>. X e.

&

O

rs cL

S'il CA

CJ

'

tt

«s a 0. —

C

ed

00 CJ

E

ra ^

r. E A C

çj

E CJ 0) ■a c



1

(N

2

tn

p

iA

T3

0

JS

su o E c h. CU

C

#1

en o CN O.

.,

= = 0

■t

,_. — ' ' = = ■t ro

Èb5

00 ­3

çs.

o

1

J= CS.

JS C7_

ra

ra x C

E

x ts.

£



U

CJ

c o c CJ« ■S

23 er, oc

U


S

I

CO

CJ Z

*

LL,

CJ

o

i



248 o

CO CM O ) T ­ T t CD T t

CD

TJ

Cfl

3 _l

in

d 3

_i

t

CO

i

E

| E CJ • c

(1)

E

CO

E o O

CM i CO

o E co E o

3 _i O c o

5 EE o

_l O 3

r^

ro d c ra < CM

"ca

CO

CQ

c o E o O

o d E CM E o < mO c o

p E d
p r^ d d ^ "" "" *" T—

o T— i n 0 0 o OO p o r­^ d d d d d T ­ ^ d

CD

*~ ""

CM CO CD CO CD

o

T­ o T—

3

d d csi

r~ CO .J

CO r ­ CD CO

d

o

^

r^ o o ,P 0o0 o o LO — d d d d T^ d

3

SS

O)

Cei

T—

LO o LO o o o o P CO d d d d T ­ r~; CO CO Tt

­~

£

CD T—

Tt CO r ­ N :

Tt

17.

d

p o o 3 CM ^ d Tt d d CM r ~

r^

*~

0

Tt

*"

T— T—

Cei T—

o m p p T­^

T^

o CO T ­ T_ o o d d d CM O)

^

,_

CO T f i^

CM O

d

T—

p

T—

in CD

CO

y—

00

Tt

CO

o o Tt P o d d d d T­^ d

o LO O o o o p CN d d d d T — I"1

g

CD r ^ CO LO N . CO

Cei

T­^

*"

£

CD

r^ d d Tt T |

|

T ^

D)

0 TJ L­

m d

£ CD CO CD CM CO CD

CO

CO CM 0 0 CD T t CD

O)

0 TJ

0 TJ CO

r­ p

CO v ­ O

d d

0 0

l

T— r­ i n CO o CM d d d d

in CO r ­ Tt

ro c | 0 TJ CO

r^ r^ co o Y ­ o CM — p p p CM CN ,o p o v". T J T— T— d d d T— T— ^ o

O) T—



*"

d d T—

£

0 TJ

§ TJ E 2

A

T—

d

r­­

i n m T— o o LO d d d d

CO h ­ CO T ­ ;

o 7 "

*~

g S£ 3 g

0

O a.

o

,­! ""

3

s d

CD

CL

>. o o ro tx.



*

5

w<
.

o

r~ T—



co i n T — CO CM Tf o 00 m CM O CD CO o r~ p r^ d d d d d d CM T — d

CD co m — , CD ,o 00 ,­ CM CM h ­ Tf CN — Tf o o r~ ,­ P

CD CN LO o o o O CD CM d o

d d d

m

CM r^ o o d rei

T ­

CM LO CO T — 00 o r­. o m O T ­ T f p CO T ­ o T t r­^ d d TT CM d d

t—

­

7 ­

O

d

T^

d d d d

^L

d

3

CD

d

d

T—

CN co T — T — Tf CM O CD

,­ 3 oCM 00

o

sd T ­

d

d d d d d

CO CD o CD Cei d O

co r­­ 00 Tf T ­ T p T t CM o d TT d o d

T— T—

d

7 "

7 "

o

d

r^ T — o Tt rei d o

Tf CO

r^ 00 o CD d i­: d

00 00

d 7 "

o — ,p — ,r­ CM CM o r ­ CM

o o

d

33

o o

d d d

Cei

T ^

CD co CO o co o o o

d d d d

CM

— , 3

LO r­­ r^ T^

o o

o o

d d d d

— .

i n CM CM 00 LO co o 00 p CO o o rei T ­ ' d d d

o o

co T — O) m CM O) 00 CO co o LO CM O Tf 00 o CO p r­­ o o d d d d d d CM . J d d d

o o

CD T — r­ CD O O) rei

o o

­

T

­

d

p

e­^

m 00 o d d d

T ­

7 "

CM 00 o O o m CM d o

o O r~ 00 T — co r­­ Tf CM O

— , om o

co CM r^ co Y — T " p co CM O

d d d

00 o co

T f CM CO o m p CD CM o T ^ Cei d d

d d d 7 "

co g CM CD CM

d r­: d

7 "

T ­ co T f O) p CM o Cei r ­ Cei d T—

7 "

7 "

d

d

S oo d d

CD

p

CM ^ r o

m CM o Tf Cei d

T­^

d

T­^

T ­

CD

CM

p

d

o

00 CO TZ co T— r ­ CD C O 00 CO CD co CO C M T t T t o r­­ T CM d d d d •et d d CM ­

T—

T—

z:

o o o

m Tt o r­ CM

o t

o t­ o o d d

CO O) o CM d

Sg

d

d

S

m p T­'

7 "

CD co o CM d T ­

d

o

o r­­ o Tf Cei r­^ T—

i n CM p CD T — r­^ T—

r ­ 00 p in r~

^

T—

d

o O o m CN r­' T—

o O o CÛ CM N^ T

­

d

o o o CD CN r­: 7 "

3

d d d d d d

y—

P T—

CD r^

3

o o

d d d d

o T­ o co CM r~: 7 "

3

d d d d

O

T—

p

O

T ­

d

o m CM co CM o T­ CD CD o d d d d d d

g

CO r o Tf co p r~ CM T — d

3

CM o O o

d d d

CO

T ­

p

CD r­^

T­^

T ­

CD co CM CM o CD p CD O O o CM T J d d d d

co o p Tt T — r^

gg

T—

7 "

8 T "

CM CD

CD



o Tt d d d d

g

co o



CD

P

g

T "

d

CM

T—

d d d d

CM O

38

7 "

t­­:

T—

CM 00

T ­

00 CD co CD O o CD T— d CN

O Tt m d d d d

o o

8

Tj

d d d d

CM

r­: 7 "

m CM o — ,P CD O o T ^



3

2 T f CD TZ CD O ­et Cei T J t ' d d ■et

rr 0

r­ 3 d d

r­ o Cei

3

TT­

00

z;

CM

d d d

r­ O CN

o o 8 d d d

CD r ­ O p Cei

g

O

8

co o

T ­

d

o

P T—

g

CM

o

CM T— CD 00

co o

d d d d d d

8

O

CM

T

p d£ do dg d8 CM

­

8

co Tf Cei r­.' T—

£

CD O O) r­ p

h

3 *"

o

gd

7 ­

T—

00 r~. Tf O l O o o CM cp CM CM d d d

•"

d

T—

8

T ­

Tf

d

o

T—



«5 i—

g 3 CO o—­g

t ­ CM CM CD T — CM o CD o 00 r­; CD o o Cei T ­ d d d

d d d d d d

88 d

CM Tf

CM

T—

| O en

S?

1

1

< or
3

d d d

0

0

gp

CD

CM v ­

CO 00 0

d

CM

CD

r^ Cei d d

Tf 0 CO 0 CM CN CN 0 0 Tf

d d d

r^

CO CD 0

CD

eq 7 "

CD 0 0

CM CD 0 O

d d d Cei

r~



CO

d

T—

O

00

CO

00 Tf

Tf T—

3

0 0

T "

d d d

T~

0

CM

T—

m 0 d d

CD

TT

CD 0



CM

CM

d d 7 "

CO CM

T ­

p T—



00 00

T­icO 0 0 0

T—

0 0

d d d d d d d T "



T—

00 CO

CD Tf

3

CD CD 0

CM

T­^

d

CM

d d d

O

0

T—

O

r­­

0

Tt 0

0

g 8d

0



— ,

in CO CO CO T f

d d d d d d 00 CM

CO

0

j

r^

p p X CL

T ^

TT

Tf

ro rr0 rr

0

T—

in

r~ r­

d d

CO CO CM CO CD 0 Tf 0 0 CO CN r­ O

r^ O)

CM 0 T ­ 0

CM O

CM CO

p p r^

d d d d

T— CO CO

3 P

77 CN

d ^r Tf

X

CO

Tt 7 "

3

CO 0 CD

d r­:

­Q

CM CD

0

CJ

J3 C3

E—

£ 0

5

0

O

0 TJ CO

— . 0

d d

— . ' CM

CD CO O

CM CO CD CO

CM

d Cei

p

T ^

0

sd 0 0

T—

r^

m

CD 0 r— 0

— , 0

CO CM 0

CO CD 0

O

d

CM

d Cei d d

0

CO O

0

T—

CO

g

CN

d

T­'

P CM

T ­

0

T—

d

Tt

Tt

O

8

d

Tt

,_ r­ 3 TT

CM x 0. OT0 1

1

5

r­ p 0d CN

CD CO CO 0

lO CD

d d CO

Tt

CD CD CO

d Tf

CO CO

CO

î

T—

O

CO

3

CM

7 "

m

00 0

00

T—

T

T—

T *

O

d

CM

P ^r

OO Tt 0

m

CD CM

O

0

CM

T—

­

m p



r­~

0

v­I

in 0

CO

r~

3

CO O LO

0

d

0

d

CM

CM CO

S

0

CD CM

0

T—

CD CD

r~

CO

CM

00

p

00 in

CO

g

T­^

d

T—

0

O

d d d d

— ,

0

in 0

0 0

in 0

r^

CD

0

CD Tf

3

0

O

O

CM

d d

0

CN

d

d

CM

W d

O

3d

0 0

3 g p d Cei

s mp

CD CN

p

3

d

T—

d d d d

0

d Cei

5

N 0 LL

c "2

g

O

0

T ­



p d T—

0

T—

p

T­^

in

8

CM O

LO CO CO

TZ

d d

O

in 0

in 00

0

«

0 0

d d 7 ­

CM

d

0

d

g

m

— ,

T—

T­^

0 0

in

d

0

T­*

0

0 CN

as r­: T "

8 8 8 d d

T—

00 0

CM CD f j

r~ r~i 7~

0 0

r­~ r­' 7 "

m

CM CM in 0 0

0 0

d d d d

LO

P

00

T "

r­:

00 CO

CD T ­ CO O

0 0

0 0

O O

d

0

0

Cei r­:

O

7 ­

CM CM 0 CO 0 0

0 0

CD Tf

d d d d

0 0

CM

r­^

CD

0

CD Tf

CO 0

0

P r^ 0 0 0 0 T ­ d d d d Cei

p

3

^

d d d d

T­'

CM CM CM 0 CO 0 0 0

CO

d

T^

T ­

in

T ­

p

CN CD

CN CO

00 CM 0

T—

O

rei

8 r­p

in

, 3— d

m CN r­ p d TJ

g

CO CD CM O 0

Cei d d d

CM T^

T—

O)

Cei

T^

O

r­~'

TT

CM CO 0 0

0

d d

Tf h­ 7 "

p

g r­^

0

O

id d T­^

Tf

CO CM CD 0 0 0

T—

8

0

p d d8 d 8 d 0

CO

0

d d

rei

^ ■ '

3 0p T­^

8 T—

T— Tf

r­ 7 "

m

LO

3 8 p LO r­ d d d d T J r» CM CO 0

S

CD

S

à?

0 0

§

CN

10



0

r^

O O

d d d rei

T— CD OO O CM

1

r­­ jrr Q.

e_ O O

rr CC E CJ 0


d TT —— Cei d d d T — r­

CD

CD

o



O)

o

tD

co

in

00

CD

T—

o

o

to

in

o o

r~

O) CD

S o p r­. o CD P S O^_ P r ­ p oo T— d d d d T ­ d CM T— d d d d T — r­^ T— CD

Tf

CM CD

r~

,­ r ­

p

CL J D

d

rr

1 2

r^ CT) p

CD CD co CD CD CM o CM 0 0 CM CO

to

CD i n

CM i n

T—

r­ o

o

Cei

Cei

d d d d d

Tf

ro 3 £ CL

,_

co P

T ­

d d d

P

co

CT) d

,­ CT) P CD CM

T—

T f

T—

o

d d d d

CD

0)

Tf O

CM

d

,­ P

CM

T—

d d d d

00 O

8

O)

5

d

Cei Cei

P

r­^

CT)

JD

g3 3d

C

g

CO

co o

Cei

d d

S oo p g g 8 p d p TZ d d d d CM

00

co

T—

co T Z o

7 "

CM

g 3 co g 8 8 d

T "

CO CD

co

CM

o

CD

p

'r­

d

d d d d

O •et T

­

o

888

d d d d

Cei

T? ri

O O

CM LO

CM

c­:

CD

f1 CL J D

33

oo o

d d d d T—

T ­ CD CM 0 0 CD L D CM o

co o

CM

Cei Cei

Tt

C

d d d T— 7 "

T~

CD CO O

T "

8

T

­

O

d d d

Cei



d

d

o

T­^

3g

O O

OO CM

d d d d

r­ co

T—

CD

p

O

00

d

P

CM

T~

T­^

3 o,­

o o

o o

d d d d

T—

g

CL JD

ggP 3 d î^ d

cr

O)

s? 3

d d d

CM CM

rQ. CD

co co CM

s gd d8 d O

T "

LO co O CD Cei

d



CM

O

o

c o 0 0 oo CM ■et T — o r­

LO LO LO ■et

m m

d

T—

d d d d

g

CM CM Tt i n

7 "

d

P

g

o

8885

d d d d

Cei

r^

r ­ CD r^ in o

o o o o d d d d

8

r~

Cei

Cei

r­'

ro

X

75 r­

Cei

7 "

CD

f1 CL J D

co CO co CD

d d

rr

1

Tt

P T "

m

CM O CD

co O

S

d d d d T—

O 00

oo

o

Cei Cei Cei T—

o 8 O d d d tD

T—

g CM

CM

co

d

8

r^ o o co o o •et P o d d d d d

P



­et

CL J D 0

0

3

CD

11

0 TJ CO

3

^"^ — 0Q _ÇJ

CL

CD CD

£

CD

"5 X ro 3

co r^ CO

8

rr 0

0 TJ

CM

­a CJ

co CD o co

CD

s

T—

CM

CD O

T­^

CO CM CM CO co

f

0 TJ CO

CM

3

T—

o

O) Tf

CD CM

r~

T—

CD

0 TJ

•et CM

o o

8

O

O

co

£

0

0 TJ

X 0.

P

Cei

r~

c ,_ < 4

CN

d d d d d d d

Tf

f

CO

X CL

r­ d

r­ co CM o o d d d

C 0

CD

T f

c 9

­

Tt

i

CO

X CL

Tf

T~

CD CD CD

CD

1

co T f

o CO co CD

o 0 TJ

CO

X CL

k co p

d o

£

CD Tf

r^ o

CD

£ X

g3

T

T—

T f

Cei

T—

tM

to CO

Tf

3

0 TJ

in

co o

£ CD

i—

m O

T—

T—

o d d d

0

CO

X CL

d

CD CD O O

C

CD

CD i Tf

O

CM

£ CD

!5 E ro rr 0 z E o £ CD

xCL
> f o­ CO

rr

jd CL

o E

< ce
, o CO

rr


.

CO CN 3 CT) d d

d

0 CO 0

CO 0 tn

s

co CO r ­ Je:

m 0

d d d d d d d d d d d d

0 0 0

CN CO CJ

r­ 0

7 ­

7 "

CN

T f 00 O) CM O 0

0

CJ

00 O O

T "

CO

OT XCL

0

. 3— Tf

7 "

, S—

Y ­

co 0

in

CM

d d d Y—



CD CM

d d LO

"c3

c

LO

CO r­ m d d d r­^ d Y—

1—

CM

1



Tt

O

T "

"Y—'

— ' CJ

CO t o Y ­ 0

CO t o Y— 0 CM m CD 0 00 m m CT) d d d d d r­^ d Y— CM

YT

CO

CJ

0

O

■et Y­

8

0 0 0

o

Y ­

33

CO Tt

7 ­

1—

0

X 3 CL

co d

CM le­

CO

0 0 0

X OT 3 CL

OT

Tf

8

2

d

r^ co d d

0 0

d

O

0

3 CL O

b

CM CO t o

l_

CO 0

X

m 0

0

0 0 0

to

O



3

CO Tf

0

X c_

O

r^ o>

0 0 0

0

W X

in

CM

Y ­

LO CD CM 0

0

CO 0 0 0

O

T "

CM CT) p O

d d in

CO

1 CO

p

O

7 "

to

m

1^

Y—

P

0

to Tf

Y ­

V

CO CO

r­ O t o CM 0 0 i n m d d d d d r­^ d 8

d d d

0 0 CJ

to U) 0

O)

r ­ O ) CD CO O CM 0

7 "

_ l

CM

m Y ­

d d in

Y ­

ro X c OT CL re 3 0 c w CQ d o X OT 3 CL



r­ 0 0 O

7~

N. t

g

tN



d o d d

CD 0 0

to 0

OTX

d

d d in

CO

CN i T—

0

ô

Y ­

Y—

0

0

0

CM co

O)

0

0 X CL

s o o

in CO

O 0

1—

CO W)

OT

r—

O O 0

CJ

­

Y ­

co,co





C

r­­ CD

t

CM

8

Y—

Y— Y­

LO CD t o CM

rei d d d

0

7~

to to 0

P

00 m CT) CO CD

d

00 p CO O

CM LO

co 10 0

P

_l

co co 0 e_ O

0

BL

s

X CL CJ

O eo

i



IL

Ji

CJ

s

JN

O P

dd CN


LL 5 0 "2 L L Z O CO

r. CO

0 I ­

> CO


to 1 CD

X < OCL m 7 ­

Y—

in

CM

co

3

CM O 0 O

d

Y *

0 0

CD CN

r­ P Y— T "

CD CM CO CO

T ­ Y ­

— , m p

3

CD

d d d d CN

Y ­

"t—

O

CD 0 0 O

Y—

d d

O



in 0

0 0

0 CD t o CO O

d d d

O

'

O

Tt

3

CD CO O

d d d d

8 Tf

0

mi

CT) T f

d

d d d d m

(0 CD

CT) X

O



O O

3

T ­

Cei CM

T f

7 "

Y ­

CN

T ­ CM 0 CO CM 0 r^ m a> 0 0 S 0 0 CN T ^ d d d CT) d d d d d d d

3

CM 0 0 CD

0

S p

CM CD

T f

r~ CD O d d d d d

T t

r^ CT) co

0

r­­ d

T f

T t

CM O

d d d d

7 "

< CCJL

CD 0 0 co (0 (0 CD

T f

1 O)

X

CL < mO

Y—

LO

X

r~ m — T co

— T

CM 0 0

d d d

CD CD CO CD r ^ OO CM CD CM

Y T

T

­

d r­^ d d

in

P Y—

in

­92

CM CD CO CM Tf 0 0

d d d

Cei

m p Y— Y—

00 00

CD 0 CM CM

CD CO

Cei CM

d

d

r~

p Y ­

3d

to 0

T—

CT)

0

3d 1—

CT)

co

r~

0 0

Y—

0

Y ­

0

CO O

T f

O

d

O

d d d d d d d CT) d d Tf 1

0 0

Tf

00

0

0

0

CD Y ­ O O

O) co

CM CM

O O O

co C/)

co 1 CD

Y T

CO Y ­

0 0 co d d d d d

CT)

0

CD O CD

— , O

r^

0

co co d

co

0

r^

CN O

CM to

co

Tf

d

00 O

co co d

co

CO

m m CT) 3 co

CD 0 CD CD 0

Y ­

T f

p

d d d d d

CO

m CD S co d d d d T f

T f m CD co Y— O d d d d T f

CL

< m0 8 CM 0 0 CM 0 co co 0

CM

d Y ­

x

< COL CO

Cei in

d

m p

CO i n CD T f

d

Cei CM Cei 7 ­ CN

CM CD OO CM CO

0 0

CD

d d

0

d 0

•r­­

3

0 0

CD LO CO 00 T f CN CM 0 0

r~

00 0

m r~ d CD

en

3 0

co r­. CD T ­ 0 CM CD 0 3 00 CD CM 0 00 O r~ CD 0 d d d d d d d d d d d 1 0 0

Tf

Tf

CD i n 00 Y "

00 0

d d d d

O O O

3

in e—

CO

Y—

ro d X c < CL re O 8 c

LO

d d d

LO

Y ­

CT) 3

0 0

Y ­

.3?

P

CM

Y—

Cei CN

d d

Y ­

P Y ­

tD O

0 0

T f

CO 0 0 0

CD CN

d d d d d d

Y— Y "

P

CD Y — 00 O

tD tD

00 CD 0 T—

d d d d d

CN O Tf

co d

T t

d d d d

0

DO

"rë CM CQ mi

CO CD

p

CO CO

Y ­

m

■0)

o W X 3 CL O

i

m o X OT CL 3 O

Y—

cô X

3 CL _ i CJ

*~

to to 0

T

cô X 3 _ l

CL O

to to 0 i_ O O O

0 0

CM i n LO Y CM 0

0

ef Jy

o ea H

T t

Tf

Y­'

Y ­

CO

p Y ­

O

r­ 0 CO CD 0 0 T ­ 0 r­ 0 0 i n co Y— 0 Y " 0 0, 0 0 to co Y— T f — co d d d d d d d■ d d d CT) d d Tf d

co

CD t o

co Y ­ d d d

0

T t

in 0 0

T f

tD tD

CD O

00

YT

Y—

r­ co 0 CD 0 0 0 0 0 co Y ­ Y — m T f CO P 0 0 0 0 0 CN 0 CO O r~ CD 0 Y­^ d d d d d d 9 d d d d d

p 0

T f O T f

Y ­

r«­ d

CD CD CM " t 00

3

d d d

0

p

Y—

d

P Y

­

­

0

0

O

LO

co CO i n CT) d d d d d Y — CM

r~

CD

CM

P

Y­'

Y—

O 7 "

CM CD 0 CN Y —

LO O LO 0 0 CM

Cei

d

00 00

O ) CD CD O CM 0 0 CD

rei d d d d Y— CM

LO

r^ m 0 3 OT ­ tCND 3 0c o YO— CN r^ CD 3 d d d d d d d d d d d d 1

3g

in 0

0 0

0

3

0 0



P

P

Y ­

Y—

d d d d d d

m P

in 0

O

CN

3 p

Y— Y— m r~ 3 0 d d d d d Y—

CO O

r^ co CM O co d d d d

Y ­

CD

r^ d

T t

•et

CN O

O) tD

CD Tt

T f

d

CN O

r­ T t CM O co d d d d

7 "

8 r­­

m

0 0 CJ

r~ T ­ y — 0 0 c­ CM 0 r­ p d d d d d YO­ Y— CM

CM CO 0 0 O O CM LO O

d

P Y J

d

Cei

Tf

CN

0 e_ O

Y ­

0 CM CD m 0 m 0 co — 0. 0 3 0T_ CD CM 0 r~ 3 0 d d d d d d d1 d d d d d

CN O Tf

CD r­ co CO T f co Y ­ 0 d d d d

0

r­. d

7 "

co co r^ YO—) r­ r~­ 0 c o i n i n O) 0 CM 0 0 CM T f T t p Cei d Y ­ ' d Cei d T t d d d Y— LO

CO CO

38 CT) d

co

YJ

0

CT)

CD CD

3

00 0

Y T

Y­'

3

CD

Y—

O

co CD c o CN co 0 O tN­ r­ CT) d d d d d1 d d d d d Tf d 0

,_

CM 0 0

CD Y — CN O



r^ CT)

T ­

Tf

CN O

CO

00 Y—

CM 0

d d d d

7 "

8 CN 0

to to 0

JZ CT) P

d d in

Y"^

CN

0

d

P Y ­

in 0

3 co 3 g d d d d d Y— CN

O

0 0

3

0 0

m 0m

CM

0

co

0

CM i n O)



3

d d d d d d d1 d d d d d

CN O

f^

r~ co CT) co Y—

Tt

d

Tt d d d d

CM O

Y—

W X 3 0. _l 0

CD O O

à?

CN CÛ

l O

tD

Y—

d

0

­

— , CT) p

d d d d Y— CM

m

Y—

T

T f

Cei

W X 3 CL _l O

P

r~

0

CD

CN

T—

co

d

m

0 L_ 0

3

a ­^­» co

CO O CD r ­

3

Y­'

CO

O

T ­

Tf

d

CD CM

00

CT) X OT 3 CL

T t

Cei Cei Y — CM

r~ CM co 0 d d m

d d m

to

Y—

T f

8

0 77

CM CO

O

0

CO

­

0 0

8

to

1

S

d d d d

O

CM 77

Y—

0 to CO f ­ > e Je: to 0 rr 0

< ce

ci

s X CL O

1

■r e Lu

O

CN

O CO

CN

O P

ddd < CM

CJ

0 LL

O 0 O CD ro r r "2 O ­ 2

0 LL

co Z

rô f°

co 0 "■=

ra 0



CÔ < P

5




OT

3 Q. O

Tf CM

C

2

ro c
3 00

X CL

O OT 3 *i

0

tn 0

d d

to 0 8

CL

Y—

0 0

0 0

m

0

d

in 0

0 0

O

m

CD CO CD CM CM T f

d

CM

p

Y-^

P

rei

Y -

CD CO 0 O 0 0

CT) ir^n

CO CD Y— CM O CM 0

in

r^

O

0

0

d d1 d d d CT) d d

r-

00 0

0 0

T f CO CM CN 0 CO 0

0

d d d d d d d

'

O

CD r^ T CM CM 0 0

Tf O CN

t o 00 CM i n

d d d 7 -

CN T f Y—

0 0

CO 0

d

CM

Y -

O

O

d

r^ r^

Tf'

d

ro

r^

Y -

Y--

P

0

O

to in 0 CM CD 0

Tf O CN

r-^

00

CD O

p

d d

Y ^

0

ro

CM CO CO LO CO i n T t CD

Tf

P

d d 0

d

Tf

r^

CO CO r~ CO CM CO i n CD

Tf CM

0

Tf O

CM

CD CD T t CO

CM CO Y O

Tf

0

d d

O

|N-

0

CD CO CN 1 0 0 T t CO

d

d d d d

r~

d

O

,-

CO

0

0

r^

m

CD t n

0 0 CT) d d Tf

CO 0 0 0

in 0

d d d

CM 0 0 0 0

d

CM CD r^ Y CM O CM 0

d d d

O

CT) CT) CO CO 0

CD CD t o r^ O ) 0

CO 0

Tf

d d

ro r-

0

Tf'

0

0

d d d

Tf

CO 0 CD 0

CD CD

in

0

00 00

CM 0 0

0

d d

Y -

Y—

CM 0 0 0

in 0

CO 0 0 0

Tf Y CM O

i n Y— CM O

r^

d

m d

to r~.

CD O ) T f CO

d

d d d d

CO 0

in

CO CD CO CM T f CO 0

Tt

d

d d d d

Tt

CM CT) T f CT) CO 0

d d d d d d d d d d d d d 1

r^

CM

CM t n i n Y - Y r^ CM CM CN CD

d

Y—

Tf O

Y—

0

0 0

CN CO T f Y CM 0 CM O

d d d d d d

in in CD 0

d d d d d d Y CN CD

Tt CM

CO 0 0 0

r~ r^ r^ CD

Tf 0

d d d d d

0

CO 0 Tt

Y— Y -

CM 0

Y—

Y ^

-

Y—

to to 0

d

LO

P

d d d

r^ 0 0 CT) CM O

«* dY -

CO CT) 0 O

O

d

Tt

Y—

O

Y—

m

CO

CD

P

Y—

.J 0

Y -

0 0

CO CO 0 0 0 0

i n Y— CM O

CD T CM O

t^

r^

3

00 0

d d d d d d d1 d d d d d

S 00

r^ 0

CO 0 0 0

CM m CM 0

r^

Y—

CM O

in

r^

d d d d d d d d d d 1

Y—

Tf CN

rr~ co

CD

CT) LO

d d d d 0

r-

P

YJ

CO 0 0 0

3 CM O CT) d d Tf CD

00 0

in 0

0 0

CN h ~ CM O

,-

CD CN 0

CN t o

m

CT) d d d d d d d d d d d d r--

0

1

Tf

Y -

Y -

CT) CT) p

in in

m Tf CM CO CO

a

d d d

CM

Y-^

r--

P Y ^

0

CO 0 0 0

in 0

CM 0 0 0

CM i n CM 0

r-

CO 0 0 0

CO CD CO r- O CD Y-'

d Y—

YT

CM

T Y—

in Tf

0 0

CM t o Y Tf

3

P

Y—

r^ r^ r- CD

Y -

0 Tf

CO T t 0 O

1

CD T f

CD CD 00 0

d d d

CD Y CM O

d d d d d d d d d d d d

T "

d d d d tn

r~

Y—

r~

Y -

0

d d d d

tN

0

p d

m

0 0 CM CM CO Y — 0

d d d d

CM 1 ^ 0 0 0 CM

0 0

CT) — , 00 CO

CM CM O

d d d d d d d1 d d

Tf

CM CD CO CM r^ 0 0 0 O 0

d d

r^

g

Tf

m

O) CT) CO

Y -

CO 0

r^

Tf

d

d d d d

0

CO 0 Tf Tt

CM CO Y— 0

d

O

0

d d

rr^

O in

0 Tf

0

r~

Y -

ID 0 CJ

tD

x

CO 0 0 0

T "

CO T f

r-

Y -

m

b 8 CO CO

1

i n Tf CT) r- CN 0

d d d Y—

in — CT) CT) 0, 0 P 0

_0

,_ Tt

Y~

t—

T "

CO

"2 X 3 0CÛ 0

Y "

d d in

to 0 L_ O O O

to

3

P

Y—

CO r ~ co t o O CD 0 CD 0 m

Y -

CL

r~

0

d d

0

CT) Pr~

S X

rP

CD

0 0 0

CM

t Tf O

CN

d d d

0

CN

T "

ro

T "

3 3 Y "

in

CO CO

"2 X 3 0CÛ 0

_l

«*—

r-

T "

Y—

._ 3

Y—

Y—

0 0

in CM 0

X CL CÛ O

77 CM

CO

CO T f CM

0

CO

"2 3

CQ

0 0

3

0

ro



r^ d d

7 -

0

X CL CJ

CM i Tf CN

3

CO CD O

0

CO CO

1



r1—ï

00 0

co

3

d d

Y—

x b 0

Tf CM

-2

O Tt

LO

to to 0

"2 3 CL DÛ O

m

Tf 0

0

m Tf CN

in Tf

co co

0 00 CM Y -

c-

Y -

d d

CM

d d

r^ r-Cei

Cei

m

rr 0

CN O

CO CO in 0 Tt

rco Tf CM

CM Tt

to

p

d d d d 0

Y—

3

Y—

O

0 Y—

m 0

0 0

CO

d d d d d d

m

0

CO 0 CN 0

Pd

i~-

CO T 0 O

d d d d

Tf

Y -

CM 0

0

d d d

0

CM O

OTO« i £ _l D) 3

O

U) m c re CM X0 - rr c 3OT0 0 £ 'rë CÛ _ l 5 CD 1

in

SI CM Tt 0

CO CD 0 Y— Y 0

LO CM CO CO 0 CD Y - Y " T t T f

d

Y—

Tf

d CM

00 0

3

CD

0

m m

CD 0

d d d0

,-

0

Y~ Y—

in 0

0 0

CD

m 0

Tf 0 CN 0

CO i n CO Y r- CD 0 O

Y—'

d d d d d d d1 d d d d d

3

CD CM CD CO Y— 0 CN

i>~

r--

CD 0 Tf Tf

Tt

d

d d d d

0

CM O

CD CO

00 Tf

Tt

d

d d d d

Y -

1

r~ m

Tf

Tf CO

to X CM _0 Y— CL

3 d

c n

CJ

fN CÛ CJ

-O Ci

H

CO

Y—

r~

d d d d Cei

1

Tf

O O OT 3 _l 5 8 ro

V CM

Y CM CO i n

O OT 3 _i 5

Y -

CM O

m 0 P d d d d Y— in

to

to X 0 CL TT

Y—

CM Y—

m p Y -

CM

CO CT) P

CD CD CD Y " CO r^

3

d d d d 0

Y -

3

CD

Y -

CM Y T Y— CN

d d

Y—

in 00

00 CO

CD 00

0

d

YT

0

8

T t r~ Y — CM 0 CO

d d d d d d

Tt

Y—

O

00 Tf CN

g

9

d

8 0

CO 0 CT) CO 0

Tf CN 0

d d d d d d d1

0

0

r^

r^ m

00

0

d d d

0

tn

to

r~ 0 0 0 d d d d

CO — 0. to Tf

CD 0 0 CO

ro 0

CT)

CO CO ro T f CO 0

d

d d d d

O O CJ ON

0 co co r -

>. JO£ ro O

-

X CL CJ

C

O

d O O OT P < CN

O O q Od?°> CJ CJ CO

OO O rr

2

0 LL

ro

CN

Z



Ji

c; 0 ccc CC O

>

CO < P

<
"2

ro

CJ

s CD u . ro .* t j "2 L0L Zra

to

Z

ro «I

h

0

to

c

LU

to LL

1 —3

IN

,_ >X

Tt 1^ Tf

CO

co

,­ CM CD 8 CT) d r­: d

CO O r­. m o o m CM CO CO CM T f CM CM

d Cei d d m

7 "

o o co C0 CM O

d

7 "

3

Tt O Y­ O

d o O

O O

o

CT)

ro

LO CL 0 CO CJ TT

9

,_ Or^ r­ i~­

m co o to d d d d d •et d

CM CO O CO O T f

O

CD O

00 Tf

co CT) ro Y "

d d

m O

O

O

co

CO

O

< 3 8 OT

m m Tt m g o d d d d rei m

3

oo

CQ i

x

to CL m c

CM Tf 7 ­

CT) g CT) O) oo t D CM

OO CM

8

d d d d d CM

Y—

O Y­

O

CT)

CD co m r­ r^ o Tf o o CM g g o 00 o o d d d d 9 d d d d d

CN O

CN O

CM

Tf

d



3 Tf Y ­ o d d d d

CN

CN

CO CJ 0


5 (5 CÔ < P < < 5

T,

O

0 LL

+ N

0 0 LL LL

rô =«A

c CD ro co ­2 "2 O Z f °

CJK

to

o 1

O

CD

"2 to rr LU

ro

0 LL

Z

to LL

"D

i

—)

271

272

CO CD CO CM O ) T f CM CD CO CO CM O CN CM O CD

IO to

>

g 9 ° < 5 8 OT CO

ce d to

X CL CJ

.A­ < CO C3

0 in

0

tD Tf

r^ m

d Tf

to to 0

Tt

0

d Cei d Y—

o +1 < OTo t ni

P

CL CJ JL

< OTo

to CO

Y—

Y—

P

Y—

O

Y—

O

O

CD

CM CN CO 0 r~ 0 0 UD CM CD CN CO i n

Tf

Cei CM

0

Y—

0 0 r­ 0 LO co 0 d d d d in

3

LO

0

,J

d Y—

O

g

CO CT) 0

0 0 CO CO Y— T f m Y­ 0 00 O CO O r­. CO 3 d d d d d1 d d d d d

0 r­ T t Y ­ Y ­ CD Y ­ 0 co O T t O CD co 3 d d d d d1 d d d d d

CO CN CM Y ­ 0 0 O CN 0

p

d d d

d

Y^

CD

O

m

CM O

CD CD

•et

d

d d d d

CM O

co co d

co

0 0

0

in Tf

Tt

d

co Y — O d d d d

CM 0

3

Tf Tf

Tf'

d

CM O Tf

co co d

CM O

3

Tf

d

m r~ 0 0 CM 0 co d d d d

CM O

co co d

m CD O ) CM Tf co Y " 0 d d d d

Y—

m m 0 co Tf co CM 0 d d d d

Tt

Tf

Tf

CD t D CO Y —

CN O

CM r~ 0 CO CM O

d d d d

r^ CO T f i n r^ CO r­ 0 d d Tf d

00 CM CN

P

7 "

r^ i n m r~ d d d d d CM 0

i n co co Y ­ T f co T f CO 0 CD Tf O co O d d d d d 9 d d d d d

CO CM CM T f CN 0 Y— O CN Y " 0

CO O CD CO CN CD

p



O

CM 0

00

CM CM Y ­ CD 0 O CM 0 0

d

Y ­

co

in

CM CT)

0 0 0

to to _0

0 CT) in

CM Cei

Tf

r~ 0 CM

d d

CM

CD

m CT) d 0

CD co T f CD co O d d d d d d d d d d d d

p

i n Tf CO O

CT) co O Y ­



0

r~ CD CM co Y ­ O d d d d

b 0 0

in

00

Tt CT)

d d

CD CM T f Y " 0

CD CN

Tf

C­ei

p

0

Y—

Tf

X 0 . cr

P o

CD

m m 0 d

0

r^

> in

CO i n

O O O

Tf

ce X

CN

3

d r­'

S3

0 in

m ce X d Q_ CD

Y­'

0

p

Y­^

CM

0 0 CN i n

CT) — ,0 CD CO Y ­

CM CD tn 0

Y ­

d d d d

YT

O

CD

Y ­

P

Y—

O)

Y "

d

0

00 0

0 0

CN t CO O

d

0

0

CD

Y ­

CD CD T f

co O CD co O d1 d d d d d

tD Tf

r^ r^

00

Y "

CM 0

d d d d

0

1

£ < OT5 CT)

>

X

d t D 0.

re i o ro < OT5 re (0 0 0 1

CO

d tD t

X CL

CJ

< *i. OTo r^ CO

to 0

CD 0 0 Y ­ T f CO O Tf

d

Tf

r~ Y­'

r­ CM CO CO CO CM 0 m CM Cei d d d d d CD CM CM t D

CM

in Tf to to 0 I— 0 0 0

5 8

T ­

to

— , CM 0 0

r~ Tf

CD CD CO 1 0 CD CM CO

P

d d d d Tf

CM Y J

0

O 00 CM CN Tf' Y ­

0

0

0

r~ CO r~ 0 r^ d d d Tf

to

< OT

7 "

T

­

CO

CO CM CN CD 0 0 CM 0 0

YT

0

CD CM t r­ Y ­ r­ 0 0 CT) d d r ­ ^ d d CM

3d

i

< CO

S

CO

o +L, CD

ro P
i

0

CT)

m r~ CD CM O O ro ,­ m 0 0 0 0 P CM Y T f d d d d Y­ d d d CM m

P oJ­ 0 £ < OTo b) X 0.

CO CO

0

CO X d 0 . cr

d

r^

CO

­

to

3

d d d d d CM

_0

to

m

Tf

O O O

X 0. CJ



Y ­ Y ­ 0 O) 0 CT) CT) 0 3m 0 O CM 0 co O CD 3 3 d d d d d d 9 d d d d d

Y—

1—

d

P

3

d d Tf

tD

CO

X

to

0

0

CD CN in

r­ LO

CD T f 0 0 CM 0

Tt

d CD

Y^

P

Y­'

r~

0 Tf

CD 0 0

d

0

r~

CM CN 0 0 0 CM

3

§

3

Y—

O

d d d d dp d d

CD CM CD 0

Y—

r­ Y d d

­

r­ O

Y—

CD

CD — CT) t, OO CT) O

Tt

d

d d d d

3

to



Tf

d

m co CD co Tf 0 co d d d d

Y

­

­ m 0 . ilc 1—

*C3

W

3

CM

d G O CJ

ri CO o



CN

>

i CO in CO

< OT

X 0­ CJ

5

in





t

d d d

to to 0 t_ 0 0 CJ

3 O

Tt

r­ co d Cei CM CD

tD 0 CD CD CO CO CO CO CO CM O CN

CO

p

d d d d

7 ­

CT)

d d d

0

in Y­ O ro CD gm 0 co O r­ CO 0 d d 9 d d d d d

CT)

à? 0

1 I

0 eo

0

CO CO

>e

ea !­

5 8

CO

cr


X d 0. m CJ < OT 5

CJ

J3

3 f­

YT

m

d

in

r­~ 3 CM d

,r­ 8—

Tf

T ­

d

Y—

CM

m co CM t ^ co r­ T f o d r­' d d O)

Y ­ r­ T — CM m o 0 0 co CM Y ­ r~ m co , r~ O p o O o o CM o CO o r­ co o — d d d d d d dT d d d d d T f d

m O m CM Tf T t o d d d d

00 Y^

c

11 CD

fN



— , 3



ccN

0 to 'to f ­

>. ro

0 Q.

o X o CL rr ce CJ


CM

d

r~ co m CM d d oo

O

r~ o d

o

CO

CT) Tt

d d d

o 7 "

CD CM CD CD



o co o Y — d d d d d

Y—

p

Y—

Y ­

co c o Y— m o o o O Y— d d d d d

,­ CO

LO T t O CM CD

YT

YT

00

o d

­ Y ­ CM CM m T f 00 o o d d d d d

CD Y—

1er

Et­

OT 3 _ l

S

b

p Tt

o c irr

OT 3 0 _l > b CJ

YT

CM

YT

o o co CN o CO d d d CN o Y—

3

co o O O ) Y ­ p co o P YJ Y— d OY— d Y~ CN

co O)

Y—

CT) d

o o csi d

­

co o 3 d d d d d CM T Tt CM

T ­

CM

o oo

Y ­

CM

>■

Y—

Tf

to

d d co

c

p Y—

CM

— , CN O Y—

d

*J.

CM r­ Y ­ CM CO Y ­ m r^ co O 00 o p P CM CD o d d d d d t J Y ­ d csi d

CM i n CD

d

00 o S d d d d d CM T f

7 "

4 jrr OT 3 £• LS Y—

_ l

CN r­ m CM T f co T f Y — 0 0 Y ­ O O r~ P o 3 Y — CN CD YJ d d d d d d CN d d Y­ CM CM co o— Y

co Y ­ CD O

co CT) o

co o co o CD CT)

Tf

ro p d £ OT8 rr

3 _i

tn Y— 1



OT8

O

_ l

m CÛ o

3

d d co

ro cr

3 G

CO

C3

CO O LO Y— Y­^

CM

g

CO CD Cei Y— CM c o O

d d d

£

CD O

O) Y—

m

y ­ O) T f CM O

to

o

d d d d d

Tf

CO

Y ­

m o P cei P d Y­ CN o Y—

Y—

O

r~ o

d d d d d

3d

Y—

CO

Y ­

co O ) Y— co •et O d d d

r~ r o Y — m O m o d d d d d 00 CN

JD

­rr

o

S?

■7*

c o

c\ ço ■N

"i—

r ­

co co m r^ o Y— p co CD o d d Y ­ Y — d csi d Y ­

O CT) d

JO JTT

1 ^ ­ *

~o CJ

d d

CM

o CO 0

Q

cn

en

d

CD 0 "CT=

O

l

O O O O O O OCN L? Cl)CN CD ro rr O CM OTp < O LL "2 O " 2 Le. Zro H CN

CN

­2

cô P < Ô

0 LL

CD

ro

N*

0

ro

"2 CJ S U . Z

LL

ro

CJ

s­ É £

Q_

p0 e— TJ

< O


,_ o

CT) d d d d

CT)

in o g CM d d d d d

7 "

Y—

m CD

CD CÛ o CM Y —

Y— CT) 8 CT) o 00 o M Tt o m r­­ C CT) CD d d d d d d d d d T­ d d d

d

CM

d d

m Z

Y—

p

O CD

£ co co

r^ Z m co

Y—

0 i—

CO

m CD

CT)

CÛ CD co Tf o

CN Y J ­ t û CO 1 ^ CD o 00 T f Tf csi csi CM CN

P d d d d

5

Tt

,_ T_

t o r^ CD CM co Y— o o o 00

rr

P d d d d m to

m o

in CD O CD CN

E Y—

ce

,_

co CD o

*"

m eo 00 o Y­ O CO o

o o r­ r­ CN o

ce

d d

P

E CD T f O r~ Y— Y— YJ 00 CM

>

­ ­ COICD c o c o CO 0 0 o o r~ ■et o

d d d d d

CÛ o CD o

CM

CM

tD LO

CT) 3 d d d

d d

8 3

> g

CD CD CD O CD O

CM

m

CÛ CM CM o CD o CD o

co o

d CT) d d d d d d

3 Y—

O

p Y ­

CT)

— ,

CD CM Y ­ o o

r^ CM i n

d d d

d d d d d

Y— o CN O

Y—

o

O

E

■ c

— ,

g CT) CT) CT) d d 3

co CD O in o CÛ o

Ce­ 00 r­. r^ CN LO

d d d d

Tf

7 ­

Y—

7 ­

CM o O

Tf Y—

T f CM CM o Tt

d

3

o o

00 LO O) Tf O

T f c o CM r~ CM o

Cei

d

Y—

d d d

p

7 ­

7 ­

m­ Y — o T d d d d d co

Tf

r^

Y ­

> £ 8 m co

m r­

Tf

co

CM

co Y—

d d

Y^

CN

o o

— , 3 Y ­

d

YT

CT)

LO CO

CN T t CD

P

d d d d

P

O o

CM

CD CD

o 00 O Y ­ CT) P p o d d d d d Y— Y ­ d O o

CM LO O

CO

co CO CD o CD o

c o O) o CM " Y ­ CM T f CM o o

d

d d d d d

csi

CO m co

E

■rr

3

CJ

J G O CJ

O) o O

d d co

Y—

CO LO CD

o o

Y­^

CM

d

r^ CO Tt o Y­T

8g8

CM O o r^

cr



S

CJ

Q. 'C CJ to 0

C3



co co

8

r~ Y—

d d d d d

o

P p Y­T Y—*

CT) 3

o o d d d

CT)

co CM T f

co CM o

Y— O

d d d d d

0 i— O cj

0

à?

J3

r~ CD o

p P d d d d CM o

Q

CNl

1

M

en

CN

CN

O O p

en

dO o CM

e?

OT < O

CN

LL 0

o O oq ro ro •> CJ­2LL O

CD

rr

cl) Z

1

1 r­

CO O

t_

cô P

LC"

CM CD.

co

CM m CM o CM d CM

CD o CN O

in o CT) P o O

Y~

Tf

00

o o

d d

,1 X

o o

CM CD Y ­ LO r­­ 00 CO 00 o Cei d cr­ d 00

d d

>< 0 CD

r^

CT) d CT)

CD O r^ o

d d

Tf

co o r^ o

CM

d d

Tf

o o d d

O)

o o d d

YJ

,_

Y— Y—

d d

o o

d d d d d

ro1

CM CD.

r^ jl

d d X

Y ­

Tf 00

d d d

co

CN

co o co o

r^ CM o CN o o Cei d d CN

Y—

CO o O o csi d CN

r^ r^

Tf Tt

Cei

CD co o r^ p o

d

Y—

00

r^ co

d d

CD

Y ­ o CN Y ­ Y — o o P Tf Y — d d Y— d d

Tf'

d

CM o

d d d d d

0

*. CD

N=

2

ro CM Q_

CD

d d

i

co

X



d

i n co CN co Y — Tf 00 o 00 Cei d Y J d d co CD

CM 1^

oo CO 3 LO O r­ CT) d d d d

o co

Tf

o o o o d d

— ,

LO

Y—

d

Tf

d

o O o CM Y ­ o O CD T f Y ­ d d cr> d d

O

Y ­

O CM co T f ,J d

O

Y—

CN

o O d d d d d

0



O

ro

CM CD.

3 m j_

*. CD

Y ­

O

d d co

X

o o

d d

CO Tt Cei

ro

O)

o o d d

Tf

r­­ r^

o o

O

d d

Tf

Y ­ Y ­

Tf'

o d

o CN O o d d d d d CD co i ^ CM t o o

.3> e>"

ro £

CM Q.

Tf 1

X

CD y ­ O O

O r­

d d

TT

00

CN

LO O CO O

co CT) O o

d d

Y ­

S oo

co CD Y ­ CÛ r~ Tf 00 CM

d d d csi d

YJ

ro

T­ o d d

Tf

CD

o ,_ CM ,_ 00 CT) O o co ■et Y ­

Y—

d d

f j

d d

Tf

o o

d

m t o t­~ O CM t o o o

CM

T f r~ t­­ o CM t o o O

CN

o d d d d d

0

S ro 2 CD

,—, ­o o 3

ifc"

CM CL CO

G

i Y—

X

­4—'

S

0

C O CJ

co

Y ­

CM

o co

d d d

Y ­

m

Cei

CD CN O 00 00 o

o

r­ O co o

d d d d co

d d

CD

— ,O oo Tf

CM CN 00 CM CD o O m Tf o Y ^ d d ■et d

d d

o d d d d d

CD

ro CL

CM

o

s?

ro

CCCN



o

CJ

Q. 'e­ CJ 10

co

Cfl

H

0

D

CN

CSI

O O

w

p

ddqO CM

il?

< o

0

LL

O O O O rô CD rr 0 to o ro S LL "2 O z A CN

CD "2

§ +

CC

O





P


d d

CO O

d d

co 80 d d d d d

CM

CN

CT)

ro 2

r­~ 3 d d co I­­

in

p CN

3

X

0

CD

il

ro

CM

CN

X

Y— CN

o i n co o m o co o CM Y — 0 0 Y — o CM d d d d d d d

gi

r­ Y ­

d d co

CN

X e­=

CM

Q.

ro 2

X

CD

ro

CM

O Y—

CM CN

0 0 co co Y— T t r­­ O r­ o o Y ­ CM co co O r­­ d d d d d d d d CM CD

CD CM 0 0 Y— CD

o d d

CO m o o m CD i n co co CM o o o o CM co CO o Y — d d csi d d d d d d d d CN CM O) co

CM

X

CM

Z

8

co

00

o CM o 0 d d d d d 00 Y ­ Tf CM CD

Tf'

o o d d Y—

O

r­ o Y " co o d d d d o

00 ■et O ) YJ

Y—

T f o CM o 0 d d d d d CO Y— CM t o

m o i­­ o d o

Tf

o r>­ o d d

00

Tf

Y ­ Y ­ o o co CO Y ­ 00 o T o o T t 00 — d d Y T d o co d

T f Y— CM t D

o o o d d

CM Y ­ CN CD

T f o CM o 0 d d d d d

Y—

CM CM

S oo d d

CM

Y ­

00

Y—

r­­ CT) d d d d Tt

I­­

CM

o r^ d d Y—

CM

O

CT)

Y—

Tf'

Y ­

Y—

Tf Y—'

3 CT) d d d CO

Y— Y ­

o o d

m o CM Y " o 0 d d d d d

CL

CO o O o CM co CD co co o m d d d d d d d d CM CD

o r­­ CT) o o 8

CT) 38 o

Y— o Y­ Y— co o d d d d

co o m o CM CM CD o O d d d d d

Y— o CO o d d d

co o co o CM CM t û Y " o O d d d d d



CO CD T f CD

d d

Tt

d d

YT

O r­~ co CD o o CM r­ CD CM o 0 0 o co o P o o o co oo t n o r­ o CT) d d Y— d d d d d d d d d d CM CN O) co

Tf

o o o o d d

Tf ■et

Y—

Y—"

YT

CM CO O

d d co

CM CN

CD

0

CM

o

CN

X

Y ­

1

il

CD

Tf

0

ro

CM i CN

o

|d­~ od

CM

CD

Y—

d d d d

CD.

Tf

i

CD CO

0



< 5 CO ro

7 ­

il

CM

p

o CT) CT) o Tf

O)

Tf CO

CM

o o o d d

0

CD

p

Y—

Q. CD CM

P

3

CL

X

Y—

Tf

O

CM

0 L­=

ro 2 a.

CM

CT) 3d ad Y—

CD O

CD i CM

*. CD

S

CD

co oo

S

in

O

3

d

x

,—, ­a o 3

d G G CJ ro CÛ CJ

J3 a



CD co CN

CD

ro

CM

o r­ o CM to o 0 d d d d d CM CM

CT)

co

Y ­ o Y ­ CM o CD 8 CM O ) 3 0 0 oo o CT) ■et o P d d d d d p d CT) d d

CN CN

CM CN

Tf

o o 8 d d

3o 7 "

7 "

co Y ­ r~ o d d d Y— Y ­

r­ CT) s m d d d d O O

CM 0 0

CM

CL

CT) m g 3d d

Y— CM CT) 3 co r­­ Y " 3 r­ o CO rei d d d d d CM d CN

CN

X

g CT) d d d

CM

CM

CD

CO CM

o •et t o o r­~ p d d 7­

00

CM



— ,

CN O T

­

00 00 CN T t

r­­ Y—

Y— Y—

CM 0

d d d

d d d d d

o CT) CD o d d d

CN 0 0 CN

0

Ia.

CD o Y ­ o co CD g8 3 CD in o o co CO 8 d d Cei d d CT) d d d p d CT) P d d CM CM co O O CN O

x

Y— CD O o co r­ CM o p o Y — t­­ O d d 7 " 7 " d co o

0 e­=

CD ■ CM

Tf

CN O O

CO Y — CM O

■ CN

Y ­

CM O

CL

ro 2

CM

CN

0

CO i

o co m ro o CT) iCÛ­ ­ oo o 3 Y— co o CO d d d d CT) d d d p p

t­:

ro 2

CM

LO i n O O

Ss

CD Y

­

•et

CT)

0

o 8 d d Y ­

CM CN Tf Y—

,*.

Y— Y—

co o CM m Y— o 0 d d d d d

il CL

O

ÔA C O

t­t­ CN

1

N

Q.

CD

Q

cn

en

5

en

O

O O O O CN O O OCM O 0 CD c p < o ; u . "2 0ro : 2 U. Zro H OT CN

CN

9

1

CD

­ce to U

"2 k_

cô P




2

CL

3 in

d

o CT) o o

P o d

d

CN

00

X

CM r^ o

o d

p Y ­

CN

o o d

o d

co t o r~ o CT) co T t CO 00 o

o

o CT) 1^ o

Y—

CM

d

P

d

Tf d

d

d

d d co

Y ­

m CM O

CD

d

Y "

YJ

d

Tf'

o d

CO

Y ­

Y—

o d

Y

d

­

d

d

d

o d

xCM 0 CD

ro

1

CM CL

o o d d ro

CO o

CD CM CD

00 co

Y ­

CT) p

Tf

3 Ss0 CD

ro

il

Y—

CM

­

Y

d

CM co o

o d

Y

d

­

CD o CT) d d

co d d

ro

o CO CT) o o o

Y ­

CD

p^

d

d

d

Tf d

CM

o

LD

Tf

co i n o CN tD

Y ­

d

d

d

g

3

d

d

m o co d d

8

Tf CM

So 8

d

d

d

d

o d

CT)

CM CL

CO

d

CN CM

00

X

o o P YT d

CN

d

8 cô g

CD CO

co Tf o

CO CD

d

d

d

ra

d

d

00

d

0 CD tr­

,—. CJ

3 d

ro 2

CM a

G O Q ro CÛ

in CN CM

x CD

ro

CM

Ss 0

CO

P

YT

CN

CT) 8 g g d o d

d

d

tD m CO T t o

d

in

3

CM 00

Y—'

d

d

CM CO

CM

d

d

o

Tf

8

CM

d

d

o

d d co

CT)

co

CO

CD

ra

d

O)

o d

CD Y— Tf

g3

O d d

Y—

Y—

Tf

d

d

CM

o d

a.

J3

cr o a k_ o



Q

CJ

g

d d ro

d

CT)

x

­o

8g

r­ o d d Tf d

to 0

o

à?

■7­1­

CN

CO

en

en

CM

CN

co P


m

t

Y­T

Y—

d d

m Y— Tf

Y ­

o d

o CM ra o o O d d d d d Tf to CM t o

0

CD

ro < CM CQ

Z

CO

Tf

CL

Y— m CO 00 o ra CO r^ r~ m o P o o o CD p 8 o d d Y ^ d d d csi Y— Y— d d CM CO CD oo

Y— |N­

o o o o d d

CO Tf

CO LO o o Y — o o S P o o Y­ o d d Y­ d d d d

r­ |N­ — ,o o oo oo d d Tf d d

CO Tf

in

Y ­

o d d

CO Tf

Y­'

Y ­

CO O CN

m Y— d d

Tf'

o o d

CO CO CN CO

o CO ra o o o d d d d d

Y ­

00 CD 00 CM CD o

0

2

CM CL

00 1

CO

x,

CD

ro X

CO

CN

r~ r^ oo o d d

CD CO

CO 1"­ CM Y—

Y­T

Y ­

P o Tt Y ­ d d CO

CD

Y­^

Y ­

CO CO

m d d

Y—

Tf'

o d

o CM o o d d d d d

0

ro

I



CO

CM CD­

CO

X d X. 0 CD CO

Cei CM

o o CO ra r^ 1 ^ 00 00 o o CO o Y — Y ­ o o d d d d T " co d d o

CM CO

Y ­

o d d

1

00 CN Tf

o o o CM CD o o p m Y— d d d d

•^

Y—

Tf Tf'

Y—

o d

Tf m CO CM CD o

o CM o o d d d d d

il

CM CL

p d x

CO

X

o r­­ ra CO Y ­ i n CM o ra o CM p o CD P d d d d 7 " CO d CT)

CM CO

3

3

d

CO 00

o 3 00 ra od

Y ­

P

3

CM O

o o d d

o o CT) o o

oo

Tf

d d

7 "

o Y— r^ o d d

to Tf

o o CD r^ o o p 3 d d T" d d

Y ­

Y ­

1^

Y ­

r^ o d d

Y—

in CO

■et

S i^ d d

CD CM CM o Tf

d

CM r^ CO CM CO o

o CO o o d d d d d

0 CD i =

ro 2

CM CL

d ro d

P CO d X X.

0

CD

N=

CM CO­

3

3 X0 x ro 1

G O O

CO

0Q

Ji CO

H

Y ­

CM

o d

Tt

|N­ 00 o CO co o o o d d d d d

CM CM

CT)

o i ^ ra CM o CM o P o o m P p o d d Y­T d d d d Y— Y­T d CO CN ro

­a CJ d

CO

ro 2

,—.

­4—»

CM

Y ­ o r^ t o CM O o CT) r^ Y — p p o CO d d d 7 " Y— d ra CO

t n 00 LO CO Tt CO

g ra

CT)

Tf

o o o d d

3

m

Y ­

d d

in

ra ^ Tf

Y ­

O

d

Y— r^ o CO CM CD CT) o o o d d d d d

CD CM

CL

c p

O

JfC

co

Q. C

S Q 0

o

CJ

O

en

en

o o k? o ce

CN

P OT
1

LL

ro

O

£

£­ 0­ É CD


2 CM CL ro

3 d

8

O.

ro

ro

8

il

LO CM CM

o CM m g CN r~ o g P d d d csi T " dco d CT)

co X

r~ r~ d d d

88



CO 0 0

co Cei

7 "

co

œ o d d 00

Y ­

Tt

CT) CO

t o r~ o o r o CT) , O o o P T f Y— Y ­ — d d 7 " d d Tf' d

m m 0 0 o CM co o o o d d d d o CM

0

I

CL

CM O o r~ O o 0 0 CM Y ­ o Y— 8 o m 0 0 Y­T r^ o T f d d csi d d d csi d d d CM 00 CD

3

p d X0 CO

co

œ œ m m Tf Y ­ Y­T d d

CD Tf

Y ­

CM m m 00 co o 8 o d d d d o

o d

CM

x

CD

NC=

ro 2

CM

CL

r^ 3 TY—t oo 8 CT) ra o d d CN csi d d co d Cei ro CM

CT) X CO

d

X. CD

^—^,

■g o 3

ro CM

G O

x

CJ

ro CÛ OJ J3 c­j

H

f

CD

ro

CM

g

o d d co

1^

to

ra CT)

8

d d

o m m

t

8

Tf m CM CD

d d

Tf

d

d d d d d

LO

8 8 3 CT) i n

YZ

o o

m

Tf

d d

Tf

d

d d d d d

Tf

d d

3 oo d d

1—

œo o o o

CM

Q.

3 oo

CO

d

Y—

0

CD

C

CN

œ r~

ra

O Y—

tn

Y­T

d d d

ro

X 0

r­ o o

d d csi d d d csi

CM

8

Tf

CM

r­.

g

co

CM CM

CD

Y—

Tf

Y—

d d

CM

m co

ra o

8

CM

o

il CL

C O Q. k­ O 10 0

D

sP ces

G

§

CN CO ce

dddO co p

CM


ro o 3 CM

t f

Y—

Cei

ro

d ra

O)

8

d d

Tt

d d

ra i~­ o

O

o o

p

Tf

Y—

CM

d d

Y ­

CM CD

­et

d

d d d d d

Tf CD r­ o 0 0 T f CM CM YJ o Tf

Y ­

o

CM CM

d

d d d d d

o

CN CM

7 "

CT)

0

1 CL

m 3 — ­d d

CO CO

ro

3x X

r~ co o co r­ o ' o CO r­ Y­T o o d CM

CT)

Y ­

LO tf

r­ o

Y—

Y­T

CM

CO

CM

Y ­

Y—

co

d d

CD

o o

d d

Tf

d d

d

o o d d

CO

8 8 CT) p

O) Tf

Tf"

d d

Y—

d d

8 ra d d



8

o o

CO

o m

|N­

0

CO

CD

ra 2

CM

CD.

co o r~

t

CO

£ CD ^^ ­a CJ 3 G ­*3 G

O CJ

ro CO CJ J3 BJ

ro

CM

in

3

OO Tf Cei Y J

33 — . d ro

ra

m

3



tn

d CD

CD CN CM Tf

d

r­ œ o co co O o o d d d d d

Y—

CD

0 NT"

o CL CM CD

o o

d d

OO

3X x

CM LO

ro

X

CD

CO

co

o 8 ra o P Y­T d d CN d d d

00

ro

m o P o Y­T

CN

o o

d d

o

g ra T f Cei

Y—

00 Y­T

CM

P o Y— d CO

0

CM

ra

CT)

Y ­

■et"

d d

YJ

r­ ra CM

d d

Tf

O

o ra r­ o

g

co o

d

d d d d d

ro

•> O "2 É é­ CD "b 0­

CD CM

ro

CL

c g

0

à

3

"H. O 10 0

Q

dd

ce

en

O O CN

CM

p OT

0

Tt

o o o o d d

in

00

Y ­

Y "

Y "

Y ­

d d

t f

o d

o p

CO i n Tf Y "

CD

Y ­

Y ­

d d

t f

o d

P

Tt

CO CM CO

o d

il CL

Y—

o d d 00 00

o r­ P X X, 0 CD

t f 1*­

CL

T "

P x

o o YT

2

Tf

r~

|N­

0

CN i

Y—

Y—

CM

d

O

d

in

d csi

CO

O

00

Y­T

d d CO

r­­ co

ro

CT)

Tf

o o o o d d

YT­

d d

o CM o o d d d

tr­

ro 2 CL

CM

Y—

P

P X.

in

o o p d CO

r­ X

o o Csi d CM O CD

CT)

CO Y — CO CO CO CM CO O Tf

Y—

in

d

d csi

d

Y ­

Y—

o P d CM

CO o œ co CO CO CD Y — o r­ o CO T f T f Y " CM o d d d d d d d d d d

in CM

00

Y ­

m 0 0 CD m CM t t o o o d d d d d Tt

Y—

0 tro

CD o

ro

CM

Q.

o

00 O

3 d

P

g CT) dr^

CO

Cei CM

o o d

Y ­

O

d d CO

CM

CO CM

CO

CO

P

o o d

o o d

r~

CT) q 3 CT) csi d

Y ­

o d

o

Y~

o o d

o o d

00 O CO

to

d

Y—

00 00 CO

P x

r~ X

CN

in

Y—



CO

o d

o m Y­ CM Tt o o 8 r~ g Y — d d Tt" d d Y * . d d

CO t t

tn CO

d CD

O

Y ­

Tt

o d

r~ CM

3

d d

00

O

o o d d

CM O

d

0

CD

ro il

CM

CL

d CO

r­ r~ i X I"­

£

Y­^

CN

in

d

00

Y­^

CO

o d

CM in

o o o o O o o d d ■et d d

CD in

o r~ o d d

CO

o o o O d d

r~ P

in

Y "

T "

d d

t f

o o d d

Tf

o o o o d d

3

CM t * i n Y—

00

T ­

d d

t f

r^ t^

d

CD

Y­T

Y ­

Tt

m d d

Y— Y ­

Tf

o o d

in CM CD

m

00 O

d d

d d

O O

CM

o d

0

CD

ro 2

CM

a. CM

o CT) d d

P r^ X P p

2 CD ro

•3 CU 3

Ç Y|__>

3 O

CO u ­O

« f­

Y— CM

CM

Q.

P P x

r~ X

CT) o ra d d CO

00

in

CD

ro

i^

p r­ CT) d Cei

o O

Tf CN

d

d

CO

Tt

Y—

Tt

Y—

Tf

Y—

o o d

m m ra o CM o o o d d d d d CM CD

CD

tec: O

3

CO

o o d

o o d

38 d d



P

ra CO O Y

CD

Y ­

­

7 ­

CO

d

t^

d

tf

Y—

o d

t t to CM CO

d d

o o d d 00 O

CM

o d

CT)

0

% Q.

CM

ro

CO

P

o

~­s? CTJX

cr

5 rS

M

s

Q. kT CN

CD

Q

en CN

cn

o

o po q CJ OT Cei

3 CT) t

,—' CO d

ro CD

ro

m

Y—

Y — CO o o r~ O o o d d tf d d T f

CM CT) m CM

r~

Y—

,—' d d

CD CN ■et

Y—

o d

œ o co o o o d d d d d CD CM CO Y—

I

Q.

ra

ro P X

x.

CD

P o

Tt

CM

CD

œ o d

3

r­­ CT) P X 3 0

CD

Y ­

CL Y ­

CM

co m

CD t t ra d CM"

il

O

CD

CN

O

3

d

3

in O

in 00

CD CO CD

d

Cei

Y ­

p p o Y— 3 d

r^ o co o d d

00

P

CN CN Tt"

o o o o d d

m CO o m Y CN o d d tf d

CN CM t t Y—

­

r~ 0 0 o CM o o o d d d d d CM CM CD

CD

P

er"

ro £CL

CM ,­

e

"O CJ

r^

3 C

P

G O CJ

CD

CO CÛ

CJ X>

X.

ro

CM

d d 00

r~ X

3 T ­

OJ

O

d

Y ­ r­ CT) o o p p o d d Y J Y­T d CO

o

CM

ra ro CT)

co Y ­ T f 8 oo r~ o d d tf d d

CO CM i n Tf i n Y­ Y­T

d d

ra Y

­

t f

o o d

0 0 CD œ o CM CN CD o o o d d d d d

0

1 CL

C

p

eS?

o

I

es

­Y

ce

Q.

o to 0

Q

CO

en

O O O OCM k? OTp < CJ CM

tel

ce

q 0 LL

O O O O OCN rô CD c 0 ro o ro "2 LL Z "2 O 1­

1

CD

CO O

!_ cô P


X

O

CM

Tf O

d

o o d

O

r~

Y—

Y "

Tt

d d

YJ

Y ­

m o r­ o d d oo

O

3

O

CD O

d co

d

g

CO

CD CM

Y

CT) œ CD

­

CD Tf Y­T

m CD m Y­ d d

t f Tf

o o d

CD o co o o o d d d d d CM CD

d p S CD ro

CM

m

d

x CD ro CM

'o Q.

x o CM ro

r^ 0 0 o d d

o o d

o o d

O)

3

Y—

CM

r­ CT) r~ Y " 3 d d T—

8

d d co

o o d

o o d d co

r^ CM o P o o Y­T d d CM

CO co CT) m ^1­ d d ^

Tf

d co

CT)

P Y—

CM

CM T f T ­

Y ­

ro

CM

m o m o d d 00

X

LD

P

Y­T CM

Y

­

O in CT) Tt O

d d

Y­T

Y­*

co

CD

CJ

co

CT) X

CM O

œ

CN

00

d

œ

r^ O d d

CN O

00

Y ­

CO

00

d

d

p

ro CÛ

0



i0

co

X

i0 X. G CD

CM t t

d

r^ o p o

o o d

CO CD

o o d

CM CO

d

P

o o

3

d

8

CO CM

Tf'

d

d d

o

d

P Y ­

CN

T t CM i n Y ­

CT) d CO

8 d

f­­ oo

to

ro

d d

Tf'

tf tf

CD o CO o

CO CO

CD

o o o o d d

m

CT) 3 T Y ­f

d d

m

3

Y—

d

g CT) 8

CN O

o d d d

YJ

CM

Y—

Y—

o

Y—

Y—

d

CO

o o o o d d tf d d

ro CD

CD Y

­

Tf

CO CN Y — Y ­ CN o d Tf' d

CO CD O) o CN CD o o

CO

o

d d

d d d

Y­T

CM

d

CO CO CT) CT) ra oo CM p o in CO Y ­

d d

d

d

d d

o o Y­ p p o d d 7" d

o

CO CD

Y—'

Y—

CO

CT)

CD o Y—

Tt

o

o o

d d

3 mmd d

r^ i n o Y — CM o

Y—

Tf

d

CN CD CN CO

o CT) o o

d d

CO

o d d d

CO 00

CM

CT)CO ro od CM

o o d d

r^

CO

ro

Y

­

CN Tf

in o o o o CT) " oo o o o p m Yra d d 7 ­ d d Tf d

CN r^ CD o CM CD O o

d d

o d d d

CO o o o o CO CT) o o tY­Tf m Y " CO o d d d d ­J d

CM r­ CM CD

o CT) o o

CO

o o o o d d

CO i n o CM CO i n CM CO o Y­T d d Tf d

Y ­

o CT) o

CO

tn in

o CT) o

oo o

CO

O)

2

CL

d

o d



00

CO

1 ^ Y— CO Tf Y­*

CM

Y—

CO

o o d

d

CD

CO

X

o

d

CT)oo g 3 CD Y­T

CN

00

o

CM CD CO

i

■ CO

o o d d

CN CM

P

tn 00

CD in

m

P

d d

CD

CN Tf'

d d

o d d d

CO 00 CT) Tf r~ o CT)

d

d d *J

S

o o

00 CO

YJ

CO

d

CT)

CD in

Tt

ra

r^

CN CD o

d d

o

d d d

1 O­

k_ CO

0

Tf

CO

d

0

S

r^ o in o

CO CO



1—

d

00 œ m CM P o g CD Y­T d d d d

il

00

> 0

3

Y—

d

d

Y ­

Tf

o o

O

CO

X

Y "

3 CM

d

d

m Y— d d

Tt CT) r­ ­et YJ

YJ

CO

CO

o d

T—

o d d

p

CD

CM Tt

Y—

o

Y—

o o p i n CN d d Y— d d

CD CO tf

Y—

Y ­

o d

r^ Cel t o

O

d d

d d d

m

CM

0

£ CD

NP

CD C N CM

i0

2 CL o

i— CD

d

3

X

d

P Y—

CM

o o

d

o o

d

Y—

1^

Tf o

d rsi

p 7 ­

CD r~ CM o CM CO

d

o

CD Tf

Y ­

p

d d

to o

CM o CN o tf d

o o

d

o

ra

Y—

d d

Y—

T t CO CM T f Tf

o d

o CO o o d d d

CT)

CN CD CN CD o

d d

CD

0

X. CD T­

il

CL

CM CM

O

d

X

r~ CO CM m 3 P o 8 tf d d Y­^ d d d CO

CM

CT) CM 8

1^

Y—

P Y^

o d

r­ 3 8 3 co

o r~ o d d Tf

CN

LO

csi d

d

CM CM CO o

CM O)

Y ­

o

Y ­

ra CT)

d d

Tf

CD CM 00 CO CO CM P p o

CO CO

o r­­ o d d

CO

Cei Y J

CO

CD

Tf

d d

Tf

o o d

m o m CN d d

Y—

Y ­

o o o o d d

CN CM T f C N CO Tf CM CO

o o o o d d

3

Y­^

CT) o oo 3 to d d d d d CM

0

il

CL

­

O

d

d

tt

g

CN

d

Y—

ro

X

CN

8

i n r~ i n Y—

d

d d

r­ ■et

«■>

«^ 00

d

0 tr­ O Q.

O

CM i

O

o

X

r~

d

CO

ro CM

g 8

Y—

d

d d

d

Y ­

Y­^

00

d

r­ o

CO

d

CD

Y—

Tt

o o o o d d

Y ­

CO o Tt d

CO CT) m ra CN Y—

CO YT

Y ­

d d

Tt

Y—

o

d

Y—

r^ CD

CM t o

d d

o 8 o d d d

CO

o CO CT) o o o d d d d d CO rM CD

0

4—>

G O

CD

CJ

CJ.

H

CD CD CO

d

o CO o d d

O

o d

00

to X 0

CO

X J CCS

o o

CO

m o o o d d

l—

1

CJ

o o

CD

d d

LCT.

CD CM L O

CO

Y­^

o d

CD

0

x. CD

ro

d d

o

CM in

k_ 1

3 C

d

ro

CM O O

2 CL

0

CD

O CM

d

CO

O

CN Tf

CD­

i— CO

CM

g g

d d

ra oo

Tf i n CN CD o

Y ­

N=

>

5

CD

7 ­

0

CO C N CO

CD

d d

o o o o CO m m o CM o o P i n e — d d Tf d d 7 ­ d d

CM CO

Tf

1 X

*. CD

,—. ­a CJ

d

o o d

CO

I­ CO

■ CD

d

d

g

0

co

CM

3

O O

Y ­

Y_

CL

co X

2 CD

Y

CM T f CO

2 k­

d

CD

o o

0

CO CM CO

CM

CM O

d

CO

X

CD

CD

P

Tt

X.

s

d

o.

CO

co

CD CM

o

3

CD

0

< CO

in

2

£

CM

,_

O

CD

CD

N=

£

CL

o

ce?

­ P 1

cs

"5.

cn

0

Q

ro

CO

CM

Ji z: 0 c= CO

o o q rô o c

O O O O O O OCM eL" CN CD ro CO 0 0 P OT < CJ LL "2 CJ "2 LL Z 1 ­ CJ

k.

OTP 3 O

­e 0 LL

CT) ro

ro

cr N0 "2 CJ "2 LL z

N q rr CD 0 CO 0 "2 LL CJ LL •2i

£­ É

Cl­


0 LT.

k_

CD Y ­ CM CM

d

co o p o Y—

CM

d

o o

d

3

CO O

d d

OO

r~

co O CT)

O

O

00

CD O

Y—

d d

P

d d

o

Tt

00

CT) o o d d

CO CN

O CD

œ

CN Y— CM O

P

d d

Tf

d d

Tf

00

o r­ o

CO

(^ ro CT)

d d

o o

Tf

o o to o

CN CN

o O

p m 7 ­

o o

m I». ­

O O

m

Y ­

Y—

d d

Tf

d

d d

o o o o tf d d

T ­

00

o o

Y ­

o o

1^

d d

CD

P

3

Y

tn CM CD

œ O o O d o

CM O O

2 CL CD

X

(O

O

o

co 0 0 o o

CM

3

Y—

d

P CN

o o

d

o o

d

o co

3

d d

o 7 ­

O) Tf

3

d d CO

g

Y—

CO

p

m

P m Y— Y d d ­

Y ­

tn CM

CM O

d

3 ora oo

Tf

d d

d d d

00

Y ­

in in CM CD

o ra o o

CM

o o

CM

œ o o o

CM

ra o Y ­

CD

0

CD

N=

ro o 2 CL

CM CM

CO T ­

j» 0

i—

3



d

X0

s CD

CD CD CM Y ­

Y—

x. CD

LP

|d­~

k_

co

to X

S CD

0 Lt­: Y­

3

X. CD

< ro co CO Z i­ÇD Y­



co

X. O

CD L O CM Y ­

£ 0 1

CD

x. CD

CD ­ s t CM Y ­ J» 0

d

x. CD

CD CO CN 7 ­

X. CD

CD ( N CM Y ­

i £ d

G O O

CD Y ­ CN Y ­

ro

o o

S3

CD Y ­ O CD 7"

CM

o

d d co

in

CD

— , O

co

in

P m Y — Y— o T " d d tf d

d d

o

d d d

Y—

O

d

d d

CM CT) P o 3 d

o o

o

o

in

Y ­

o o

Y­T

CM

d

Y ­

— ,

CD t f O

— " d Y—

CO

d

Y—

d d

CM

m

P m Y— Y­T d d

o CT) o O

Tt

d

m m

CM CD

d d

00

o

o

d d d

d

d

d d

O) O T ­

CD 0 0 CD o

d d

Y ­

œ

P

o o o o d d Tf d d

00

o co o

r~

CO

CT)

œ 0 0 co o m o

3

CM

7 ­

ro

d d Tf d d

p T

­

3

m Y—

d d

ra co o Y ­

Tf m CM CD

o

Tf

d

d d d d d

CM CÛ

Y—

O

Y—

O

Y—

O

3

d

CM CM

d

r~

Y—

Y ­

Y—

CM

O

Y ­

O

d

d

Cei d

in

o o

CM O

d

œ

Y ­

Tt

Y ­

d d

d d 00

CO CM

o o

o o

P 7 "

m

m to o

CM

o 3 CT) o o

CM

S

in

Y—

Y ­

Y "

O

t f CM

d

d

Tf'

d

d d

O

o o

CM

ro oo

o

d d d

CD

CL

I— CD

co

X

o o

Y—

r^

d

m Y" d d

o o Cei d

o o

m œ

d

d d

CO CD

CM

d

o o

co m

Y­T

CM

CO CM Y ­ Y­­

Y ­

m o d d 00

r^ o CD o

in

r^

d

CD

o o

o o

d d tf d d

O)

CD

m m

P m Y*.

d

Y "

Y—

d

Tt

d

m d

d

d d

o

d

p

tr"

2

CL

o

d

c—

to X P

co

d

CM

Tf

Y ­

r^ o CD o

CM CT) tCT) t o

O) CM

Y ­

d d

ra CT)

d d

CD CM 00 o

CM

o o r­­ o

O

co

CD Y ­

Tf

o o

o o

m m m CM Y ­ P m Y " Y— o Y ­ d d tf d

CM

o o

CD CD

o

o o

o o

d d

t f m CM t D

CD

o

o o

CM

o

d d d d d

tit.

2 CL o m

d

L.

to X

00

Y ­

o

d

CM

d

t r CM

d d

Y ­ Y ­

Y­T

d d co

CT) ra CT)

m

d d

Tf

Y ­

m

CO

Y ­

P m Y" o o d d Y ­ d d "tf d

m CM

o 3 CT) o o

CM

m O) o co o o

CN

d d

o

d d d

0

il

Q. Tf

CO

X0

3

3

d



00

CO

P

co o o o

3

d

d

CM CD

o o

o o

m ro

r­ CM CT) co o

Y ­

Y ­

CT) P

co o

O tn

co

d d

P

d d

CT) œ 3

o

co o r­ o

CD CM O

d d

7 "

r­ co

Y ­

00

Y—

d oo

d

CD

Y ­

d d

CN Tf

d d

r^ m

P m Y— 1— d d

ra o Tf

Y ­

•et CM

d

d d

d d d

o

Li­:

2

CL

CT) d d

k_

co X

00

Y­T

CM

d

d

CM

d d

YJ

œ r^

CM

o r­ o CM

co

in

CD

CM CO o CM Tf

P m Y" d d f— d d

CN

o o

Tf in CN t o

O

Tt

d

d d

d d d

m

CO

Y ­

Y "

o

t f CM CD

o o



o o

in

Y ­

o CT) O

CN

o

0 LC"

o

fc: CL

— , oo CO

d

co X 0

co

d

tn

o

CT)od YT

CM

o o

d

CM

d d

Y—

d d co

CO

d CD

d d

Tf Y—

Tf

o o

o o

d d

P Y "

3

Y

­

d d

Tf

d

m

d d

o CT) o o

CM

o

d d d

il

CD O CM Y ­ CL

o

à?



C O

CJ

g.

X)

b to



co o

d d

il



CD

CD

2

r~

i £ d

4—1

o

d

o.

X0

CD

■ CO

d

co o o



k_ 1

ÇD

o o

2 i—

j* 0

3 3

d

CL

0 k_ ■ CD

co r^

•g (U

co Y— o P

00

i

^—v

3

r^ o

0

CD CO CM Y ­

x. o

P

CL

co X

CM

Y ­

o

!

i £ d

CM

CD

d

0

Q

co cn

ce

ce

O O O O CD O O O CD CY

CN

CN

OTp


0 ■

co

k_

co X

>S

P

ro co

2 CL

:>



O

CM CM

0

co i n

il

1

co

x. CD

eo T t CM CM

A £ d

x.

CD

■et

O Cei CM

in

d

in

o d

o o d

d d

r^ T t

YJ

CD t f O

Y ­

d d

T ­

CO

o d d oo

o CT) m o

CD 00

tt

d d ra CO

o o d d

CD

S oo

Y—

CD CD

ro CT)

d d

Y—

Tjf

o o oo co m o o p m Y— d d YT d d

Y—

CM O Tf d

o o d

CD

P 7 ­

m

T t

tn

d d

t f

T f

LO Y ­ T t

o d

o o d

d d

o d

m o CM co CT) o o o d d d d d T t

CM

CT)

o o d

S

LO CO YJ

o r~ o d d

CD CO

d d

d

CD O) tf CO

in

Y—

o d

P

o o d

o o d

o

o

Y ­

CO in

00

r^ o d d

Y—

m o o o Cei d

o o d

o i n o CO o m o Y ­ r~ o d d YJ d d

CM CO CD o

P

o o d

o o d

S r­ o

d

CO

P S d YJ

CN

Y­ Y­

CO

0

o o d d

CT)

o o co co co O o o o in m o d d Y­l d d t f d

d d

o CN o o o d d d

o o d

m in CM CD

o ra o o

CN

o m o o m CM m Y ­ o o o o m t n Y " Y— o d d T f d d Y­^ d d t f d

Tt m CN t D

co o o o d d

CM

o co o d d

m in CM t D

CM f~

CO Y

­

Tf

1

m m

CM CD

00

CL

j>

0

CN

o o d

3

d

CM CM

Y ­

cr­

co X

2 CD

CD

X0

Y

­

CM

CO

CD

o d d

Y—

Y—

ro od d CO

m Y ­ r^ o o co o o o d d Tf d d

ra CD

co CT) LO m Y—'

m

d d

CO tf

d d

o d d d

2

o. k_ CD

CO

X0

CN

CO

CM CM

CM r^

d

CT)

d d

o d

LÇ"

2

CO CO CM CM CL

CJ



3

0 k_

d x. CD CD CM CM

k_ CO

3

X

d

OJ

d d

CN Y— 7 "

o r­ Y— Tt o o d d ra 00

CD

ra oo Y—

Tf

o œ CO Ym o m — d d 7P" d d

CN CM Y— O tf d

d d

o CN o o o d d d 00

CD

0

1 O­

0)

C O Q.

efl

{j

CQ

o o co co t^­ o o tf m d d T~ d d

Q.

k_ CD

CN CM

ro

CN tf

1

0

S

CJ

ro

Y ­

2 CD.

x. CD

O

3 O

3

o o d d

00 CD

tn

0

i £ d

^­^ T3

CN

m o 3 d

CO

X0

cb X

X.

3

d d

CL

0 t_ 1 CD

i

o d

1



CO CD CN CM

CM

p

0

j »

£ d

CO

CL in

> d

o o d

0 Q

è?

o

1

es

CO

ce

en

O o o o o p < o LL 0 CM

CO

CN

CM

1 ^

CN

O O o O O rô CD c 0 CO o CN

"2

ro " 2 CJ

LL

z

H

N

ce CO O ­c= cc

+

cr "2


CM

o CO CN r^ CO o CN 8 p LO d d Y-T d d t f d

o CD.

CO

CD

CT)

Tt

LT

0 C

x.

tn

X

o o

d

p

3

d

d

CT)

co Y— r- CO co œ P r~ O d csi 7 " d d co

3

d

P

o o o o

o

O

CM

O

t

d d

O CM

o o

Y—

d d

d d d

O)

N=

2

CD.

m r~

k— CO

X

Y—

O

3

d

3 3

m o

m

P

3

o o

d

o o

d

r^ m Tt œ d csi

LO Y 7 "

00

v—

O ro d d

co

3 oo

S

o o

d d tf d d

ra

7 -

d d tf d

d d

o

d d d

CD

0 tt-:

ra ra £CL

CM CM

A 0 k_

cb

A

0

3

< CQ

O

10 r CM CM

A x.

ro co

A 0 c i

co

x.

CD

ro m

CM CM

A

CD CO CM CN

A 0 1

eo

x.

3 3

3 O O

en CÛ CJ

JO cfl

P-

CD

CD CM CM CM

A 0

A x. CD

ro CM YCM

3

d

Tf

CM

3

d

o

L_

00

co

CM

o CM œ o

ro d Cei 7 " d d Y—

00

in

CT) P

o o

o o

CM Y— CD O

CM CM

d d

Tt

d d

CO CN

o o

œ o co P m Y—

CD

Y-

o

7 "

d d tf d

T -

tn m CN t o

d d

d d

o

d

CD

CM

d

r^ œ 8 CT) m œ o CT) d d d d in

CM

Y—

Cei

7 "

co

r~

— ,

8

CD

1^ in

p

d d tf d d

O

m m

o

in

CD 0 0 CN

7 "

d

d tf d

o

o

CD O )

m m

00

CM t o

d d

o

7 "

Tf

d

d d

d d d

Y—

ra CÛ

CM CM

m m

d d

o o

Y—

Tf

d

d d

m

CD

Y—

P

Y -

o

CM t o

d

d

00

o

d d d

CT)

X

o

co o p o

3

d

o o

d

3 co œ

d

CM

co Y Y—

3

00

o

d d CO

m o

O) tn

o o

d d

P

Tf CN Tf

o o

o o

d d

CD i n

Y -

o

o

CD

0 az O Q.

o

00

il

X CD

CM tn

O-

CD

A £ A

d

il

£ A

ro -et CM CM

-o

Y— Y—

d d

o Y ­

o o

CM

o

0 LÇ­

ro 2CL

CM

o CM r^ co o Y "

œ

­

X

3

d

Y—

8

Y—

o o

co

ra œ

CD CN

Y ­

CM t n

ra

CM

o

CN

co o CT) CD o P d d d d d d d d co d

tf

o

csi

Y "

Tf CN

o o

CM CM CM CM P CD

d d *" d d

CO

Y ­

CT)

0 HZ

Y ­

o

Tf

tf

o Y~

o o

CM

o

S2 CD co CM

T3 CJ

3 C 4—'

G O CJ

CL



CD

i Y— Y—

d d

X

Y

­

CN

Y ­

o o

d d

CO

to t CM T f d

r­ co i^

ro ra d d ra

CN

o d

|e­

o

"il

o o

d d

CO CD CM O T f m Y— Y—

d d

tf

o

d

CD

o

8

CM

o

d d d d d

o kT CL

CM

O

crN

ro CÛ

o Tt

CT)

0 x. CD t c ­

ro

CM o CT) •et o d d d

P

1

co

Q. C

g Û0

CO

ce

CO

O

lit

s CD

rô 3

d O OCM OL­? O0CN OCD O Oc O COCN o mZ H OTp < CJ L L "2 Oro CM

1

"2 + L­

cô P
ro

CL

CM

CO CM CM

X

d P CO

CM

r~

r~

g

p

CM 0

CM

CT) P

Tf

d d

Tf

CM 0 r­ 0

O CD

Y­^

Y^

ro ro d d

Y— T ­

Cei Y T

0 0

00 to

3

d

d csi

CM

O Y—

d d

ra d ra

CM

ra

O CD

to t t

d

Cei

d d

CO 0 0 0

0 0

Tt

00 T—

ra

0 tt­:

52

CD

ro

CM

CL

p CM

CM

0 0

00 Tt

0 CO CM Y —

O O

CN CM CD

tf

d d

Y—

d

O

d

O

O t f

0 0 Y ­ CO CM CM CM

0 0

CO CN CD

CT)i0n

0 0

CO 0

Y­T

d

O

t f

0

d d d

0

0

ra

Y—

to CN t f

0 0

CM CT) r^

CD 0 0 0

0

d

0

Y—

0 0 CN t ^ .

CN 0

P

d

CM tn

0 0

O

0 0

0 0

Tf CT) 0 0 CD

CO CD Y ­ LO O

d

0

CM CM

d

d

d

Y­^

Y­^

r­.

0 0

Y ­

0 0

0 0

r^

Y ­

00

LO CM Y ­ CM LO CM O

d

d

*J

d

d

Tf

CM'

Tf

ra

0 0

3

0 0

0 0

0



t n CO T f CO CM 0

CN 0 CO 0

d

d

— ,CN

d

d

d

Cei

d d tf d d

CM

3

CM 0

0 0

CD 0 0 CN

O CO i n

ra

t f 0

O

Y—

d

d

Y­T

Y­>

d

CT) CT)

00

d

d

d d

ra

0 0

0 CM 0 0 CM

Y—

00

Y ­

r^

r^

O

d

d

d

ra p ra

CM 0

CN

0

YJ

d

d

d d

ra

0 0

0

0

00 Tt

ra 3

0 0

N. CO

1^

d

d

Y­T

d

d

d d

0 0

0 0

CM 0

0 CD

00 h­

d

0

d

d

d d

is.

Y—

Y ­

P

tn 00

r­­ r^

CO

X

r~

CM

ra Y­T

CM

CO

d

d 0

P

t f

0 0

d d d d

S2

CD

0 HZ

CM

ro

CL

77

CM

CM

X

CO

Cei CO

d

in 00

Y—

0 0

Tf

00

0 0

d

d

0

Tf

d d

r^

0 00

0 0

CN 0 0

d

0

Tf

CD

0 0

0 to­:

S2 CD

ro

CM

CL

r~ Y

f

­

ro

X

S

0

CM

CL

ra CM

ra d

YJ

ra

ra d

CT)

0 0

d d

CD Y ­

00

Y—'

d d

Y ­

0 CT) t f CT)

tf

ra

d d d

d

CD

ro 1

CD T "

< CQ



JX S ro 2 CD

CM

ra r^ Tf

Tf T

­

d

CM

CD 0

00

Y—

d

d

T­'

ra

X

5ro

d

ra

X

x. t 0r ­ CD ro 2 CM CL t

Cei

ra

ra r­ CT) d d CT)

CM 0 0

0 0

P

O

ra d

ro 0

ra

0 0

0

Y—

d d

m p

t t to

CO

Y—

Y—

Y—

CN

O

0 CN CD

0

0 0

00 0

Y—

0

d

Tf'

d

d d

0

d

0

r^

Tf CM

e— O

0 CO CM CD

0

tf

d

d d d d

r^

O CM

0 0

0 CN CD

0

t f

d

d d d d

d

Y ­

t f

d d d d

d

CL

7—

1—

Y—

0 N=

in

f

ra

Y—

CM

ra CM

ra

CO

Y ­

p

ra

CT)

CM CM 0 0 0

0 0

Tt

d d

CM

Y ­

O Tt'

0 0

d d

T f r^ CSj t n Y­"

d d

ro CT)

0 CT) ra 0 0

d

0

CD H0z CM

Q.

m

CO

0 7 "

t

d d CO

X

S

CD

ro

CM

Y­T

CM

ra d

ra

CM

Y ­

ra

ra

CT)

0 0

Tf

Y ­

O

g

r^ CD CM i n

Tf

d d

Y­T

d

ra

0 0



t f

d d

Y­T

d

r^

ro CT) ra 0 0

0

0

il

CD.

r­ Y— T­

f

CN CD

0

CM T—

ra 0

X

ra 0

d 00

P

0

Y ­

tn 00

CO 0

d

d

CN

3 CT)P Y ­

Tf

d

ra

Y­T

Y—

Tf Y­T

CO

CD

0 0

Y—

0 0

0 r^ CM t o

0

O

0 0

CO 0

Tf'

d

d d

d

0

d

CM CD to Y"

r^

0 0

0 CM CO

0

Y—

0 0

0

d

Tt

0

d d

d d

d



Y—

Y—

O

r^ 0 CM t o

0

ra

Tf

d

d

d d

d

rr

ra

ro a É 2­ £ < Q­ < CD

0 CD O CM CO Y ­ CN O

Y ­

S p2 0

ro

CM Y

HZ CL

­

7 "

JX 5ro 2 CD

CM

ra

3 G 'Z2 3 O

­—'

ro



ju JO cfl

H

0

S CD

Y ­ 0 in CO CD Y ­

0 0

d

d

Y­T

0 0

00

CO 0

0 0

0 0 0 0 LO CN CO Y ­

d

YJ

d

d

d

ra

Y^

00

O

d

tn

0 0

ra CT)

d d

0 0

Tf

d d

0 0

r«­

CD 0 r^ 0



0 0

Tf

d d

p Y—

O

r~

Y

­

ra

CD.

0

t

0 0

d

0 tr:

s**s

­a CJ

O

r CM

T

ra d

­

00

X p

P

CN

ra

Y—

Y ­

CM 0 ,J 0 CO

p

CT) ra CT)

d d

0 0

r~

CO t û CM t o Y­^

0

d

0

0

7 ­ 0

0

IC 0

ro b.

CM

à? rr P D­ *k_ O to 0

Q

0

S

§

M

ce

ce

O O OCN CO P
T­ a>

00 CD O CD Y ­

O

Y— Y­

O CD OJ

CO CM Y ­ o CD o O O CM T ^ d d

00 Y ­ o CD o o d d tri



CD CM Y ­ CT) I­­ Y ­ CM o

CM o œ o



00



o OJ o o d d

t o o fe 3 f i ­S

13­2 PX stitial

r i CDS

m r^ csi CD

ra Y ­ r^ T t m m r^ m Y ­ t f t o r^ csi t f d d d d CM CD



o r^ oo o C D Y ­ m CM o œ o t n

co o

CD o (N S O

Cei P d d d d tri

o d d

CO Y " Y" o Y" O CM O) o o o o o o CM ■^ d d ­r^ d tri



t o o fe 3 JS ­e

r i CDS

S13­1 CPX îrstitial

o>

œ

P d d d P d CD Y "

c 3 si ­5 n r i CJ S c

OJ

eo Y­ o t t CM ra m iai­ d œ dn ido ­^ o i do sd

12­8 PX stitial

'(5 m



d

o ra o o1 o o

1 ^ CM Y­ CM Y­

o o CT) CM y­ d 1

O

oo CD



O

CD CD

d

tri

o d d

CD CD CO t t CD CO CD

CD CM CO CM Y ­ o

00

T­ a> tr>tr> o> o

o o CT) CM ^ d

CM

CD Y ­

o



d

­r

o o

o d d

o o

Y—

ÇOO fe 3 « ­2

12­7 PX stitial

r i CD S 00 CD O CD Y ­

O

o

O Y— Y­ O



o o o o d ­r1 d tri

O

r­ o

CD

o

o d d

Y—

t o o fe 3 f i ­S

r i CD S 12­6 PX stitial

CM CO t t O CD t t CN Y ­ CD CM t t CD o r^

CO

ra Y­ CM ra o i^ o

O

O

CD O CD



CT) csi r^ d d d d *é

O

ra CD o Y­ eo ra ra Y" Y" Y" Y" CD o tn d d d d P d YJ

00 CM O o o

O O



CM Y­ CD o o Sm p p O CD o o csi P d d d d d

ai d d d d d d eo Y­ Y­ OJ

CD o CD O

o d d

co o fe 12­5 PX stitial

3sf

CD CM



o

CO l O

S

O o

O O

O o

Y­ O

CT) csi T^ d d P d tri

CD O CD O

o d d

t o o fe 3 M ­S

r i CD S 12­4 PX stitial

d

■C

C C

CJ

03 CJ

X> Cfl

H

« V

O

CN

CD CM

o



CM 1 ^ O O CD O

o d d

CD

_j 5 I Analy sis LUS 12­3 Rock Type Gt­C PX Desci iption Inter stitial

73 O 3



m eo m CM t t p ra ai d d d T^ d ­r^

oo CD t t ra tn CM o LO r~ CM CM CD p

œ

d d d d P d

d

co Y"



œ

o

g

Y" Y" Y ­ Y ­ o

p p CT) csi ^ d

CM

o o o o d r^ d tri



O

CD O CD O

o d d

g A Ô O O °NO S S Ç=c! ­ L 7 CO ( f i

1 ­ èj CO ÇJ

d

d d

C

Y ­

a!

eo ra

00 Tjf Y­

3 O

CO

2 r?

P

d tf P d P d

cn CD

Q

Yf



Y ­

p ra p p eo o O csi P d d d d d

Y ­

ra eo p o d d

o

i

co

ci

j?doo°NO s 0 . ro

CD

x c

cl csi

O

OO CM

Y ­

q o o Y­T d d

Y—

O

d d

CT) Tf

d d

d

S CD ra d Y ­

CD

o d d Y—

o o d

k

Y—

UJ UJ p 00

ra ,­.

CT) *"

Y ­

00 o CT) CD o o CM d d d d

C0 OJ tf

Y—



Y ­ CD o o 8 CN r ­ d d d d

00 OJ TT

o 7 ­ 00 o CN f ­ d d d

Y ­

CD O Cei

P

CD

o ra ra o o ra œ r­­ d csi CM ra

S CT)

Cei

7 "

O

OJ o CM is.

d d

d

CD

CM o t r CM

eu•

CL

S

x

c

Y— Y—

E



m m

tu

CD UJ

0­ «J JZ ■*; cB £t 7= S < 0­



tu

Q­ a,

S

ra

?

Tf

II i

— , oUJ " f» O UJ S CT) csi ra ra CT) |N­

d d d Y ­

S rô


d

CQ CM JO

O Z

O

■k­

■ CO

m CM

­Q

o

Z

x •LT

O

S CN

­O

3 ■

s

x \

­

m

O co

o

rs. CD co UJ rs­ r­­ U J o oo O O d O

53

Y—



o d d ra d

d

tD o rs­ O YT O

O

3

IN­ O rs. o

O Y­ CM O

csi

d

7 "

d

9 9

— , CM 8 csi

— ,

00 Y ­ CM o CM O CJ d

LO UJ

UJ

O 00

1

Y—

P tt

­

r o r­­ UJ co o Cei d Y ­

d

œ CO t t UJ Y " o m CT) d d d d d d

ra CD o

Y—

Y—

ra

CM rs. UJ rs­ t f o Tf

O) CD UJ CM CN UJ

ra d d ra

d d



o ra d

œ CM Y ­ Tf o o CM d d

ra d

d Tf

CT)

ci5 E Y—

rs. Tf

CD

ra d ra

d

co

Y—

00 o CD CD UJ o CM CD o UJ co r~ Y ­ t f 00 00 o rs­ o ra o d d d d d d d ra d d d Y— Y ­

ra 8 8 3 co d d

ra d

o o

Tf t f

CD CM

d d

ra d

CT)

CM Y— Y ­ tf O o CM d d

O

UJ O

Cei

o d

CN CM Tt O CM d

CM CD LO O rs. CM d 7 ­

8 ra YT d

CD

Y ­

o

3

9

d d 1 7­

8

00 CM

Y ­

d

9 9

00 tt

d

tf

rô E o 00 UJ o co 00 CD o CD co CD UJ UJ o 00 Y ­ o OO CM Y ­ rs.

3

UJ

Y—

o

CD

d ra ra d d d d d d d ra d d co

CM

00

OJ

rô E

x i CO cr

O Z

Y—

Y

CM

CD

CT) 0 0

Y—

CM

O

co o

O OJ CM CM o o UJ d ra d d d d d d d d 00

CM

x

g

Y ­

o

Y ­

o d

o

00 CM

d

co CD

d

tt

■TZ

rô < 03 o z E CM J O

Z

CN

r^

O 1

S CN

O

d

ra d

d d d d d T

­O

rô E

d ra d d ra

o

Y—

­

5

ra d

co T f o CM

co UJ CM Y ­ CM eo UJ o

d d

d d d d

CT)

x

Y—

Y— Y ­

CD CT) OJ

o

|N­

Y ­

r~ UJ r ­ CD CO CM co O CM

d d d d d Y—

CO œ co U) , cors­ U)co CD UJ o o CM — o CN d d d d d d d d ra d d d

Tf

S o

CM ­O

1 •JO

E

o ­C

Z

ra O S ra O

z5

Ë

O

d

­*'— C*

S

Y ­

O

CM

o

Z

3 H

ra

CD

>. Q . ro E c ro co




ro

CD Li­ Z

X

J . O L O

rô *5



~Q)

LL

332 CO

d

d

co

tn o CJ

m o Z c CM

jO,

00

n O Z CM

CM

o en rj

Z

o ç

CN

c o

LO

CI o CÛ d CM

O 5 z CM Tf

m o CM

O

CT) — , 0 0 CD oo CM i n o d d ra d CO

CM 0 0 0 0 0 0 CD U J

d

en rj

c o

j O

Z

ç.

o Y—

UJ 00

d

CM

d

CM

o X ■c m d rô CM < Z CQ o E

CM

j d

o

Z

3 d co

X ■[_­

UJ Y "

d

CQ CN j n

O Z

d

x

UJ

CT) 3

UJ c o t f co

o œ

m CM

Y— Y ­

rs. O

Y ­

co o d d d

o

UJ Y­7

UJ

CM | s ­ CM CD tf

d

77"

UJ co

O ) CD CD ( s .

p eo

Cei

d

X ■cr

.O

rô E cr

'en rj

3 CT) Cei d CM

c O o

O

CJ s—'

t f Y— CN O

Y ­

o ra d csi d d

|s­ O)

Csi

d

CM CM CM

UJ

o

d

o o o (s­

7 ­

co ­

Y

Y ­

o

ra Y ­

d 9 9 d

tf

CT) d CD

CD U J

Y—

ra

Y ­

Y ­

CD Y

­

Cei

3

Y—

d

7 ­

rs­

o o

Y ­

Y ­

CM

o

CT) ­

Y

d d d d

e o Y— CM O

d d d d

o

— , O O

CD CM

3

Cei

d d

Cei

d

Tf

Y—

o o |s­ o •^ d

O)

p Tt

o

CM CO

d d

œ

CD Y — CM O O

|s­

CM

tt

t f

CM U J co co

d d

o o

ra d

CT) O ra CM d

Y—

CM CM

3

|s­

O

d

Cei

d

7 ^

Y—

UJ T t Y— U J c o CM O

Y—

Y ­

CO

d d d d

CM

o O d d

Y—

00

UJ

Y ­

o d

Cei

rs.

O rs. 7 ­

Y ­

Y ­

CT) ra co t f o ra d d

00 eo

o

00 ra o o CT)

Y ­

7 "

Y—

Y ­

Tt

CD Tf

o

00 UJ CD

d d d d d P d d csi

o | s ­ t t ra CD U J CM o UJ o r^ CM t f d d d d d d d d

UJ O

o o

3d

Y— Y

CO

d d

3

CD CM CD CD rs­ LO

Y—

­

Y— Y—

CD



Y—

o

Y—

UJ

o rs.

oo Cei

rs. ra CM t f ra

Y­T

rs. co

Tf

co

rs.

Y ­

UJ

CD

rs. Tf

o o

UJ t t

Y—

Y—

O

O

CM

d d

Cei

Y ­

CD O

O Tf Csi

Y—

o O d d

Y ­

Cei

CD CM Y— Tf O

Y—

Cei

Y ­

o

ra d

co CM

Y ­

o

CM Tf CM

Y ­

Y ­

o O d d

UJ

o o d

ra d csi d d

CD CN

CM 0 0 T f CM

d d

Y—

3 Cei

— , — , — , CD

UJ

o d

o rs. — , Y— o Y O CN d d q d

CM UJ

­

eo 3 d d

CN

o O d d

CD

o o CM o o Tf o o ra d csi d d

CN

co

CN rs.

|s­

o d

CT)

CD CM UJ tsj

ra d

Y ­

o o

œ Tt

ra Tt

o o Y— o ra O

CM

Y—

Y—

Y ­

d 9 9 d

d tt

o o o CM

CM

Y—

O

ra Y

­

d d d d 1

|s­

Y—

d d

Y­T

O

Tf

CM CD CD 00 Tf O

tD CD



O

o

|s­

d P d d ra d d P

7 "

o d

Y—

Cei

tf (s.

CM

i

7 ­

ra d t t

U J CD o o CM CT> co o q o o O eo r­ d d 7" d d 9 d tr

o Tt O O Y ­ Y " d d d d csi d d csi d

d

Y—

rs. t t

d d

UJ eo

o

o o ra d |s­

Cel o d d d d

CD Y ­ t t O CM O

CD t D CD

Tf

UJ c o Tt t f

in

o d o

|s­

CD T f Tf

o

d d

0 0 O ) T f | s ­ 0 0 oo U J en o ra CM CT> q o 3 d d d d ra Y — d d Y— o

Y—

o

i

CD CO

rs.

Y — CM o co o Y — O ra d 9 9 d

CM U J CM Y—

d d csi d

YT

o 0 0 Y— o tf o d d d1

ro

Y—

CT) Tt

|s­

o o o CM

CO CN

*

Y ^

d

3 ood Y ­

CO rs. Y ­

YJ

CM CD

Y ­

O

q

Y ­

o dt dT

Y

­

"tf

d

t f

ra CM p

7~

tf

CT)

|s­

CD t f

o CM Y ­ CD o t f o CN d d■ di Yd—

o p tf

CM UJ

d tf

5 c O z

CQ CN ­ O

tn 3 O

O z

ç.

d



o

d ra ra ra d

c O o CN

LO

Y—

CD CM c o

­

Y o CD Y — d d d P d Y—

83 ra d

Y ­

Tf

3

CM CN ■et Y — T f t f CM O

|s­

00

d d d o

d d

ra d

ra CM ra O

Y—

00

O

Y ­

3

csi d d csi d

O rs.

8

7 ^

d q d d

fs­

Y—

Y—

O

CM CM

Y—

rs.

ra P Tf

eS?

en

03 o

rs. ra CT)

0) 3 O

CL»

­^ G

00

UJ co

Y—

CM

3 G

|s­

T f o rs­ o CD Y— 0 0 o o o CT) CD 00 o O O o 0Y —0 o o O d d p d Y— ra t f d d do Y ­

|s­

o O S z ç.

T3

o

d d

00

d

CD

0 0 CM CD 00

O

O o

CQ CM

CM U ) CD

CM | s ­ r s ­ O o o ra q d d d d d d d d o

rô E

7—

CD

Tf CT) |s­

O CD œ — , o| s ­ CO |s­ o CD d d d d d œ d d ra Y— 7 ­ 00

Tf

d

Y—

CD 0 0 co

UJ CD ra CT) ra OJ T f o ra o d d d d ra ra co

x

rs­

CÛ CM

Tf

UJ

Y ­

Tf

CM CT) o CM

CM

Y—

o

CM

O Z

Y ­

o o

m m |os ­ o | s ­ Y ­ t f o o Y— o CM d 7­ d 9 9 d

CM

1

o

i "C CO CQ CM ­ O

CO

rs.

CM O o o d ra d d d ra csi d d

UJ o — co CD U J T f o CN , CM 0 0 T f 3 Y— o |s­ 3 o | s ­ œ d d d d P d d ra d d d o Y—

rô E |s­

O Z

Y ­

O

Tf

CD CD

00

■TZ

CM

CT) O

Y—

Y—

rô E

CM

o O

rs. co

d d

rs­ t t

00

CM

5 d m

d o

CT) d d d d d d d ra d d d o

CD CM rs­ Tf CO

O

UJ 00

O)

en rj CJ

CN

^F

CM

rs­ Y— U J t o ra r~­ o U J Ora rs­ CT) UJ o 00 r­ o o ( s . d d d P d d ra d d d o Y—

m o 5 z ç. CM

3

Y—

|s­ 00 CO Y ­ o U J CM CT) o o o 3 Y — CD co t f o c o d ra d d d d d P d d d d d d co Y—

rs. 00

c O o

d

ra

Cei

ra

CM co

rs­

o o

o ç.

en 3 O

CO

o

00 co 8 CT) ra ra d d rs.

CD CM

Y—

cr

VJ

o

CM CM co

p

rs. ro

o d d d d csi d d Tt

o er

CD

o ra m CM J O

m

s

ra Y — U J CD o CD m o Y ­ o o 00 P ra ra d d d d P d

8

c O o d 3en CM

|s­

r­ o co CD o r s . c o CN CO r o Y— O O) œ t f o m o tD ra ra d d d d ra d d ra d d d o

CO CD CD CN U J

cr O o

en 10

CD

a

X) efl

>. E ro eo

H


Oro •> LL

O es CO

O O CN

Z sc_ I

CN

LL

Ô

rô rô r­

i_

O

COir­


Uro 5 L L z St? X CN

CN

LL

CJ

rô rô f­



N tu LL

eo Z

X Iji

O

LL

rô o

CJ H

LL

"S LL

336

Elemental mapping

337

Fig. Bl : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite. A) BSE image. B) Ti mapping, biotite is blue. C). Fe mapping, biotite is green, spinel is yellow D) Mg mapping, biotite is red, spinel is green. E) Na mapping, plagioclase is yellow, K-feldspar is blue. F) Ca mapping, Plagioclase is orange and yellow, K-Feldspar is deep blue.

338

Fig. B2 : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite. A) BSE image. B) Ti mapping, biotite is blue. C) Fe mapping, biotite is green, garnet is orange. D) Mg mapping, biotite is red, spinel is green E) Na mapping, plagioclase is yellow, K-feldspar is blue. F) Ca mapping, Plagioclase is orange and yellow, K-Feldspar is deep blue, garnet is blue to green.

339

Fig. B3 : Elemental mapping of a kyanite grain surrounded by matrix in Al-rich pelite. A) BSE image. B) Ti mapping, biotite is blue. C). Fe mapping, biotite is green, spinel is yellow D) Mg mapping, biotite is red, spinel is green. E) Na mapping, plagioclase is yellow, K-feldspar is blue. F) Ca mapping, Plagioclase is orange and yellow, K-Feldspar is deep blue.

340

^^^^B^^

•*■"*"

@

,v '

r

-V- * 41 1

/

I^YL

3

Fig. B4 : Compositional mapping of a garnet porphyroblast in sample NB-13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

341

Inl.' _^fl

Ifc^Ak.

^^r

\

• ■



r9MA>l.cljiWA'

;AA

vr

*

* •

r

• ­ ^

» ■#

>

J

Fig. B5 : Compositional mapping of a garnet porphyroblast in sample NB-13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

342



Hfec

I

@ "¥*'

Ç

!'^LYl^^miY))>Jl^^^^^^B^

f

..•; ■



'

Nk "■

••

•. r

* .

"ejl!

••

­3

«'fid

— ■

^ ^ ^

W ? V ­­^> idfl

Fig. B6 : Compositional mapping of a garnet porphyroblast in sample NB-13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

343

Fig. B7 : Compositional mapping of a garnet porphyroblast in sample NB-13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

344

^r

^J

j,^É

1

#

*

Fig. B8 : Compositional mapping of a garnet porphyroblast next to a polymineralic inclusion in sample NB13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

345

Fig. B9 : Compositional mapping of a garnet porphyroblast containing a large polymineralic inclusion in sample NB-13b-2a. A) BSE image, red line indicates the emplacement of profile X3. B) Mn zoning. C) Mg zoning. D) Fe zoning. E) Ca zoning.

346

Appendix C Geochemistry

347 Table Cl : Geochemistry of the Bainang amphibolites Bainang Type

intrusion common

Sample

LUS-02

BAI-18

LUS-05

garnet-bearing

ba nded LUS-08 LUS-11

LUS-16

LUS-07

LUS-12

LUS-14

LUS-17

Oxides (wt%)* SiO:

55.09

43.33

49.61

54.26

52.27

47.78

46.54

46.26

50.06

TiOj

1.24

1.84

1.18

1.01 16.23

1.06

13.46

1.00 9.74

1.13

16.58 11.27

1.43 14.24

1.32

AI2O3 Fe 2 0 3 MnO

15.71

10.31 0.21

10.20 0.17

10.65 0.17

15.56 9.49

0.14

16.11 0.22

1.78 15.05 12.33

15.70 9.26 0.17

MgO

5.09

CaO Na 2 0

3.85

K2O P2O5

6.39 0.27

0.20

13.62 ! 10.12 8.24 0.17 0.15

10.46

6.38

4.03

7.48

14.51

9.95

10.81

12.06 1.92

9.55

9.91 4.06

14.90 1.51

13.32 2.35

0.34

0.31 0.14

0.19 0.12

0.05 0.02

0.16 0.09

12.19 2.66 0.14

10.27

3.78

15.43 2.64

0.10

0.12

0.08

99.98 69.39 2.19

99.99 69.29

1.62 6.34

0.16 9.14 3.89 0.14

0.11 100.02 51.51

0.25

1.12 0.18

100.00 60.44

100.00 54.90

100.01 53.47

100.00 63.49

100.02 76.81

100.02 69.65

100.01 70.48

LOI*" REE (ppm)

2.30

1.62

1.35

1.17

1.30

1.42

2.68

2.36

La Ce Pr

1.89 7.58 1.25

4.06 15.74 2.64

4.22 12.74

2.20 7.04

1.76 6.36 1.03

1.94

6.93 1.20

7.43 1.24

Nd Sm Eu Gd

7.03

15.19

12.54

1.23 7.08

0.65 3.05 0.64

1.87

2.21

2.50 9.41 1.56 8.98

4.24

5.92

7.06

2.56 0.84

5.45 2.00 8.13

4.36 1.71 6.21

2.65 1.12 3.74

3.27 1.31 4.76

1.77 0.81 3.24

2.29 1.04 3.42

7.11 2.64

1.58

1.17

0.74 5.04

0.94 5.94

0.66 4.32

1.02

1.30

0.93

0.68 4.34 0.95

3.20 0.50

3.81 0.57

2.74 0.40

2.81

0.69

3.12 0.49

3.58 0.55

2.48 0.36

2.56 0.40 260.31 26.02

Total Mg#"

Tb

3.65 0.74

45.63

1.19 3.77 0.74

2.55 1.04 3.67

8.88 17.87 1.28 0.06

2.53

1.06 6.18 2.32 1.00 3.40 0.67

0.73 4.64 1.00

4.35 0.93

2.92 0.44

2.69 0.41

2.72 0.42

2.52 0.39

250.29

255.97

237.58

26.53

24.65

52.32

28.28 55.74

62.21

52.09

1.74 1.59 0.04

1.58 1.12 0.01

1.49 12.04

3.20

Dy Ho Er Tm

4.71 1.02

10.03 2.17

7.52 1.63

2.96 0.47

6.10 0.92

Yb Lu

2.89 0.45

5.45 0.84

4.68 0.71 4.41

332.39 26.87

371.59

298.04

225.30

285.19

363.70

Y

56.26

44.20

Zr

77.39

141.51

105.23

26.95 64.04

33.87 81.44

23.68 23.64

Hf Nb

2.19 0.97

3.90 1.34

2.96 1.05

1.84 0.99

2.42 0.90

0.93 1.16

1.47 0.88

1.64 0.89

Ta

0.06

0.08

0.05

0.03

0.03

0.04

0.02

0.03

0.43

4.79 1.01 3.05 0.46 2.85 0.44

HFSE (ppm) V

LILE (ppm) Rb

6.19

2.30

13.08

3.05

4.99

N/A

4.83

N/A

Ba

34.41

7.08

30.75

8.07

30.09

5.00

6.72

10.84

Pb Th

N/A

N/A 0.14

N/A

N/A

N/A N/A N/A

N/A 0.06 0.02

N/A N/A

N/A

0.12

N/A 0.09 0.04

0.01

101.81

29.32

70.41

79.13

0.02 104.97

U Sr

0.13 0.07 48.73

0.12

0.40

0.06 0.40

24.44

108.21

173.17

•Oxide (wt%) on an anhydrous b •■"

U



t>

M

­m



3

Ol

vil

—1

e/)

g

ɧ I 00 CJ

IA

.

O

­ '

M

^ '



O rut

O*

o

ri

—j

ol

Tl

3 S S 2 3

ool

v\J oo

3 3 1 2

Ol

d

O

tjfl

• ^ ■ f N < Y r j r ^ o o < N o o « Y n Q m r j ­r — — r^ — (N m o m M

U



t> ^r

"fr

­«o —

— —

"*1 oC en o —



o"

r* r­

vi

o (S

— r>

ool eol

enl r­}

r­­ (N

«■"

©'

"• o

o*

ai

m

iii CO

U

7

^

"rt S .o

Vi

TT

~—

YJ­1

fNl

ol

r ­ o r ­ * < T O v ) v i r ­ T ­ o ^ r ^ i r ­ ^ ^ r r i e N O — O od o* ""­ o — —' o ■^t — o — —

­

CI PM

eo UTe

c­il —1 ° . —1 O

en O

o" j

o"

­ o o c » o ^v o " o

Û z û

i*

Z UJ Q U

s

C o *Ô

•o

«N

v­ï

S

c 6

M

3 x>

­5

h­ 95

o "eS

(*> YJ r r e7e Z ec

•fl a X

•73 C

i

ro O -C CTJ

P

r­­|

UTe

oo|

ool

(N

YH

en x

© eO

­1 H ©1 ©~. o' O

^

r

"n o" —

,

'

e

vo "1 o

l

­

i

r

i

r

,

Y

O

X

'

T —

**1 °°.. c * OÎ —" en —

o

e­) eC 3­' N­,

f> a i

v­> r­­

n

v N­, eo

i n I N c^1. O

e s

o

fN

f „

r

n c c i h c * ! ­ " . r i 7 * Y / Y / "". O

f **\ o

W

a a a a a s i a a ­Ol ©1 (Ni

ool

YJ­1



ed

.C

©1

■y.

­L. ­J 0.

2 ^ '­> < e/)



g

>• cm

>w

,

«s m —

—1

C/)

oo U

r

roi ool r­J ©J —1 —1 ©1 o l

O f )

CT­

si

'



a

1

vil

en, — 1 — 1 ed

O

o c

iii z cj

ol

S SI 1 ­1 S 1 3 si ? H

Bt.

CN

£ ©2i —a —2

*» M

■t H

a

*n|

00

T3

^" m

— CJ

O

s& £ H

g 2

6 d q § o ° 9, Q, o ô 3

3

o*

O

en

>"

fN*

k.

BL)

O

X

>N

Q

f2 BU BU Cei

c­,

X>

E H

•o O 3 HJ

*

en ri en

3

m o'

«1

*v

q ri ■*r

o'

o

V

n n

ri

o

*

o*

r­ o

oo

n o N



tJ>

c

_) J

j= 0.

CO

J=

­X

'3

oa

.* H

i_

•­2 c3 ' — —

V,

rJ

VI

O

O

o_

VI

*

JS

cr, Tj­

o"

en

©'

* *­» — o'

c­,

*os

*

©

S!

©

DC O^

en en eo ©"

*

ON ir, ©

•le

Tf



c­,

■f

ri

fN

­C

CCT­

"i eje

* i

O Tt

o" r­ ri

* n

■et ™



ri

fN*

eC ©_

O­ ­f

en*

oc

cr,

Tf

CTe

©*

© "

©

­

— en — . ,

Tf

O Cl 00

o" r^

r­; CI

en

— oc kn en

r i

n

o^

­c

00

©'

od"

O

^~­

o*

— oc

*

r j

o"

TJ­

tri

fN

es

eSN

* — * eO Tt

fN

00

o

*

n

o o*

eC

fN eC

oc en

*os

C3e

©

Y ­

yaj ©

o

*

"■

so

ri

r­;

■*

»N

rj

c".

©

en

er

DC

O*

*r­ d

_ m *

or r­

*o

k .

N

r­ o

ri

* % o

>­ r*i * ri

>

o o

ri

«M

*

n roi

ci

— ■—>

* •S — " *

m o

* X

m

©'

O*

en

fN, CN

fN

_« '

t** T

*



* """

ejx

oo

^ a

o o

~

YJ"

o



* •n Oe fN X

*

­r>

Tf

Tt

t r j

V ci

o o'

m r­ ©

Tt

V n

•Je O

* *



o_ CN O

oc

V, VI

Vi V;

00 CI

„_

§

ri

©

VI

­O

__T oc

* en fN fN

* ©

en

o" O X ■AI

fN fN

*

© Tf

­C V,

en

*

fN ©

Tt O

o

*

1 en

*

en en © ir,

Tf

Tt c­,

fN

m

o"

o

*

o Vi ri

Tf

©'

*

o*

Tf ©

ir,

*

Tf Tf

* CT * ri r i m *§ O V

©^

OS

Tf

F

*

Ci

X

* ^* __ *o r­ r­"

en ©

o" eC

o

fN © ©'

_ ©'

O* er,

f

en

ir,

Tt

o

o

Vi

o es

o"

*

fN

o*

o

VI

r­'

X

o

O O > ° : i ­ i ­ CM 1 ­ T­ lf) O) T ­ T ­

3

o.^o

CM

a

er)

CM

CO

co

,_:

77­

•r1



r*­.'

co

co



Tf

C O N r t ( D c 0 7 f N O ) C O C O t O C O m

d 0 J c 3 i N • C M N : N : c O T f d i O C M i O c d c o

r

r

^

o

^




,

ifiifi

NC NJ

U f­

O

d

r r c o r s r o o o

d

o

­g

O

o

C O C O C M Q N ­ C J S O O

>N

u JS u

d

(O

_3

u ­ç

O

o

"73

e 3 < co

Q

c

m

u e 83 U O eU "T") C/3

û, eu i­

u"§N .tt

8

m s

~ P n 0 i00 ■H Tf 9

a •Sr CO

CN cb CO +i co 77

YO r­­ ­H CD m co

s

«

CO in ­H co oo (.j

CO p r». r­i ­H ­H Tf m LO 7­

eo

IN" | N J CD CM CM CM CN

Y i - r

T f CD M O Ol d Y " d cei i n

r S

in

J3

rit*

i:.f

«u S

S

CO Y ^ ­H ­H ­H +1 CD 1 ^ 00 O CM CN CD CD CD CO CO Y­

Y ­H Tf Cel LO

CO CO T f T f Y f 0 0 T* iri CM od Y" cd

Y

Y-

o o I­ iri CM d

CN

CD O Tf Tt

r­ co eo

3

LO CM

d

d

co eo O) s eb Ni " I ri 06 s CD eo CN CN CN CN CN CM

CN

CN

CN

CN

O

o

o

O

O

d d d d d

Tt

in

rel LO CO CD

co eo

Y—

U)

CD

U)

Y—

co eo Y ­

CO CM

Tt ­H CO

LO ■H

o

o

o

■H in

­H

­H CO 00

O ■H

r­­ CN T t U) o o o Tt o Tt CD oo m r­ Tt co Y ­ Y ­ CN

i

d

­H ­H ­H ■H ­H +1 CO T f CN 0 0 LO 00 m Y ­ ­et CD CM r - CD Y­

o

CM

T}

CN Y ­ CN CN CN CN

00 Tf 0 0 ■H CO CN Cel

CO Y ­ CN CN

r ­H CO ­et

**"! iri tn iri iri in

Tf N i - r r - r O O O O O O o o o O o o ­ H ­H ­ H ■H OO LO CN eo CNC±! i n m CM T f m o Y "

CD r ~

r^ co eo o CD

g.J­1

eo n CN s t o o 7­ m Y ­ 00 eo o r^ Tt C M i n Tt

O) S

CD CD

.9-6 5 eo * J . eu eu U ­O eu tyj

On

ION

CN T t CN CD CO

tu



­H O

■H

S O) Tf N O) eo O S O) O) O) O LO Y- O O Y-

S o y 5i ­s P



­H O CD

■H CN LO

CM Y ­

5 .



Lf) ­H C) Tt

0

a

eo a

»™ ej)­­

3

CD CD CO CD Y ­

oo co eo r^ r^ m CO CD T t T t en

Y ­ CN CN T f CN Y ­ Y ­ Y ­ 0 0 0 0 0 0 0 0 0 ­H ­H ­H ­H ­H Y M O O N CN CO CN CN O Cel CO CO CO CO

d

CO CO O CO Cel CD Cel 00 00 O CN CD CD CD CM CN CO CN O O O O ■H ­H ­H ­H 00 CO O CD CD CD Y ­ O T * LO CN CD CD CO CD T f CD Tf

d

cei eb cd

CM CN CM CM

T S B 60

&

D

r» CN co CD LO CO O o O

eu S

".ag

e« eu

_ -— N



o

O

< A

d

J C o JJ " . eo? e o.

o

l e «3

É R « u *- £ « M U tu

sc ■ g aic a. ­o ce

* • 3e* ­—* < m c2, ri

c

DC

o CU

*§ H

2

r) II

(JL.

X) C/3

■H ­H ­H ­H 00 CN Y ­ co Y ) eo



o

o

o o o

o o o

o o o

CD CO CO Y ­ Cel CD OO 0 0 eo eo o oo

%% > ed u

co

CM Y - I O CO CD Y ­ lO Y- o

t i l OS

CN ­et CO T f O O O O

d d o d d

■H ­H

o

E­j

CO CO O O

0)

o Q_

o "5

d

d

eo o Tt eo d cb Y " 9

co CD co m m CN cb ­et i n cb T "

0 CN

CO

O Tt

Y ­

CD

lO

8 8O

"t O O e­)

Y—

+1 ■H CD CM 1 ^ C) O O

se:

O

0

O

O

O

0

en

CO

CO

Tf

Y ­

CN

Tt

en eo r^ r^ ce; ^ CD 17) a> tCM CD tt

CN O

0 ­H 00 CO C7)

O •H in



0

CO Tt

Y—

eo

0

Y—

CC)

S— " 0

O

O

O O ■H Y— Y—

O



0

Tt

Y—

Y ­

O

p

p

p

CM

cb Tf iri d

***

CO p

356

eu

" N

CD

< Fe

O "f

eu CL Œ


S N Y ­ T ­ 7,1 00 Y "

00 eo CN

s co eo

d cb cb

r­"

eb

Tf

S

N CN in

Q0 ^­
(N." fv­ s ( N CN CN Y" Y­ Y ­

eo co CD Y ­ d i N c b c o CD CD

CN O CD CO T ? CO Y ­ 00 0 Y­ r>­ Y ­ Y ­ ­H ­H ­H ■H (O CO N S i n co eo CD CO CD co p Tf Tt iri iri Y ­ CM CM CM

< a

* s



0 Os in NO

00 < ■ 0 tr. 0

< if «* LV_

s


0 CD O

d

in m m m ~ o O

in in o-

00 in

d

d eo o

9

CO 0 CD

r^ o o CM'

r^ o d

o o o o r^

CO CO

eo

p

5 7~

o

CL

c

­H CN

0

Ct

CO

O 1­

n

CO

CO

CD

CM

cvi csi c s i d

LO

CO


j

.^k.fl

/ HÉHH

850

900

950

374 Fig. E13 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for biotite proportions

IS

NCKFMASHTO (+q +ru

17

r

16

r

15 14 13

I

12

I

11

r

10 9

.V

7

'-

700

750

800

850

900

950

375 Fig. E14 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for x(bi)

IS

NCKFMASHTO (-t-q +ru)

17

I

16

7"

15

r

14

r

13 12 11

r-

10 9

:-

7

z-

700

750

800

850

900

950

376 Fig. El5 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for garnet proportions

IS

NCKFMASHTO (-t-q +ru) Si0 2 "HO, A I A FeO MgO CaO Na,0 K,0 H ; 0 O 65.58 0.64 11.78 6.47 3.25 1.17 2.23 2.66 6.21 0.01

17

16 15 14 13

12

11

10

i

700

.

I

i

I

[

I

i

I

750

800

850

900

950

377 Fig. El 6 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for x(g)

IS

N C K F M A S H T O (-i-q -i-ru

17 16

15

I

14

I

13

I

12 II 10

700

750

800

850

900

950

378 Fig. E17 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for z(g)

IS 17

N C K F M A S H T O (-i-q +ru)

-

16 15

E-

14 13

11 10

700

750

800

850

900

950

379 Fig. E18 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for plagioclase proportions

IS 17

NCKFMASHTO (+q+ru)

I

16 15

I

14 13 12 11 10

8

T

7

'-

700

750

800

850

900

950

380 Fig. E19 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for Kfeldspar proportions

IS

NCKFMASHTO (+q +ru)

17 16

i-

15

'-

14 13 12 11 10

'-

700

750

800

850

900

950

381 Fig. E20 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for kyanite proportions

18

NCKFMASHTO (+q +ru) SiO. TiO. AI.O FeO MgO CaO Na O K O H O O 65.58 0.64 11.78 6.47 3.25 1.17 223 2.66 6 21 001

// /

///

17 g p liq hil ky 16

15

" r ? r — ^ ^

^ \

g pi liq bi mu

w

.

/ / / / *

14 /

* ;

/

_

\ lc

13



£

:

• ­y^yf f 4 y ^ W ïy^­fl *$& '

11

z

y^

T

10

9

8

y

6

\ /

1

\ pi liq bi ksp sill

\

­_i—_i i i i i i i 1 I_I i i_l

700

750

y y

g pi ksp liq hil sill

O"

1



Jc?

/

a.

1

o>

\

/

^y^

15

\

/

.'

•' ^ y ^ y vy^

e~J)

z

~y* ?y \\ ~^y^^/ ^y^/

^ ^

»y** •** ..* •• .•*

« / J K *y

■y

7

y*­$//

y ^

/

:

*? '

g pi ksp liq hil ky

l

:

­Q '

12

.

y

/ ill i i i i 1 L A _^LYS

soo

K­jlLfl

850

900

950

382 Fig. E21 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for liquid proportions

IS 17

N C K F M A S H T O (-i-q +ru)

I

16 15 14 13 12 11

I

10

9 S

700

750

800

850

900

950

383 Fig. E22 : Pseudosection for the model bulk of sample NB-13b-2a after melt-reintegration contoured for quartz proportions

IS

NCKFMASHTO (+q -i-ru)

17 16

E-

15

=-

14 13

-

12

E-

11

r

10

F

9

-zp-

1

'-

700

750

800

850

900

950

384

Pseudosections for sample NB-13-C2 Fig. E23 : Topology of the NB-13-C2 pseudosection.

18

N C K F M A S H T O (+q +g +ksp +ru) Si0 2 Ti0 2 A I A FeO MgO CaO Na20 K20 H20 0 79.26 0.65 6.92 4.09 2.74 1.50 1.35 1.97 1.54 0.01 — ^— A *>7 \ . pi bi mu /y N. j / pl ky bi mu >. //

' ^7

17

^7

liqky/ \ \ \ \

liq pl ky

16

15

14

/

ï

Jy tfy at­

f ­

12

­

y

y _——

11

__ —

L

*

*

^

%­ /t\­ i ­\

i

r

Hq pl ky bi / (Field 1) J

'

/

* • * .

^^­^­T

•¥

/

/

frM\

/

< \

&;K7

* / Q. .7 V ? / / • ­ • •*/ .' \

\

\

10

*

f

j0L$f y ^ y 13

j

pl ky bi

*

/ ^r/ ^ * ^ **\

\ f^yyy'' >^*^*:'*'** \

­ ^ y ^

\

i

* / =/ /­/

\

li(

1P | i l m b i

9

8

liq pl ilm

lU

­_^y^

Eatt] llikjjH

pl sill bi

7

6

■■

700

■ • • ■ ■ ■ ■ ■ '

725

• ■ ■

750

■ • • ■ ■ ■

775

■ ■

800

825

850

875

900

925

950

385 Fig. E24 : NB-13-C2 pseudosection contoured for biotite proportions

is

NCKFMASHTO (+q +g +ksp +ru) Si02 Ti02 Al203 FeO MgO CaO NajO «,0 H20 O 79.26 0.65 6.92 4.09 2.74 1.50 1.35 1.97 1.54 0.01

700

725

750

775

800

825

850

875

900

925

950

386 Fig. E25 : NB-13-C2 pseudosection contoured forx(bi)

IS

NCKFMASHTO (+q +g +ksp +ru) Si02 Ti02 Al203 FeO MgO CaO Na20 K20 H20 O 79.26 0.65 6.92 4.09 2.74 1.50 1.35 1.97 1.54 0.01

17 16

15

14

13

12

II

10

700

725

750

775

800

825

850

875

900

925

950

387 Fig. E26 : NB-13-C2 pseudosection contoured for garnet proportions

is

NCKFMASHTO (+q +g +ksp +ru) Si0 2 Ti02 Al203 FeO MgO CaO Na20 «,0 H20 O 79.26 0.65 6.92 4.09 2.74 1.50 1.35 1.97 1.54 0.01

^ 700



— 725



— 750



— 775



liq kyA

— 800

825

850

875

900

925

950

388 Fig. E27 : NB-13-C2 pseudosection contoured for x(g)

NCKFMASHTO (+q +g +ksp +ru)

18

Si0 2 Ti02 Al203 FeO MgO CaO Na20 K20 H20 0 / 79.26 0.65 6.92 4.09 2.74 1.50 1.35 1.97 1.54 0.01 A /

17

^ \

pl bi mu

pl ky bi mu

\ \ \

^\y

*~ jar

jfjy y ^ è /

13

^^

­ ­







'

/



* * * /

\

plkybi

­

\

* *

:

^ ^ C

­k­^ •

/ ** : / \ •*

■o •*/ y \ /* /V

­. ^y

/ .'if 1 .*^*T

1 Ml A? /

\

liq pl ilm \

liq Pl Um bi

^ y ^ \ » ' liq pl sill bi 1OT/

1* " /°­l

9

8

/ À

*

fygP

X&­

/


/sy

10

^ y

£\y':

■&//

11

^ y

jy^

/ $

/ Q

y*^

* \

\

I // g ksp pl liq bi hil \

9 f*£

g ksp pl liq bi sill

M

Ifà

8 7

^^Ê

­^

'­_

/

JVYA jj^H

/w

ksp pl liq bi sill

JJ^I

M

^k