Supporting Information
Highly Efficient Oxygen Reduction Catalysts by Rational Synthesis of Nanoconfined Maghemite in a Nitrogen-Doped Graphene Framework Kaipei Qiu,*,† Guoliang Chai,† Chaoran Jiang,‡ Min Ling,† Junwang Tang,‡ and Zhengxiao Guo*,†
† Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK ‡ Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK KEYWORDS Oxygen Reduction Reaction, Hierarchical Graphene Framework, Nitrogen Doping, Maghemite, Alkaline Electrolyte Corresponding Author * (K.Q.) Email:
[email protected] * (Z.G.) Email:
[email protected]
1
a
b
c
d
Figure S1. (a) Raman spectra of GO, GF_800, GF+N1_800, GF+N2_800, and GF+N5_800. XPS (b) C1s spectra for GF, GF+N2, GF_800 and GF+N2_800; and (c) N1s spectra for GF+N+Fe_800. (d) SEM image and Fe mapping of GF+N1+Fe1_800,.
Table S1. BET SSA and total PV of GF+N+Fe_800.
Samples GF+N2+Fe1_800 GF+N2+Fe3_800 GF+N2+Fe5_800 GF+N1+Fe1_800
BET SSA (m2 g-1) 450.1 357.6 217.0 352.0
Total PV (cc g-1) 1.435 1.055 0.657 1.198
2
a
b
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
c
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
d
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
e
f
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
g
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
h
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
3
j
i
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
400 RPM 800 RPM 1200 RPM 1600 RPM 2000 RPM
Figure S2. LSV plots of (a) GF_800, (b) GF+N1_800, (c) GF+N2_800, (d) GF+N5_800, (e) GF+N2+Fe1_800, (f) GF+N2+Fe3_800, (g) GF+N2+Fe5_800, (h) GF+N1+Fe1+800, (i) PtC and (j) GF+N2+Pt1_800.
a
b
c
d
4
e
f
g
h
Figure S3. K-L plots between 0.4 to 0.65 V vs. RHE for (a) GF+N1_800, (b) GF+N2_800, (dc) GF+N5_800, (d) GF+N2+Fe1_800, (e) GF+N2+Fe3_800, (f) GF+N1+Fe1+800, (g) PtC and (h) GF+N2+Pt1_800.
Figure S4. Comparison of K-L plots at 0.65V vs. RHE.
5
Figure S5. RRDE measurement of GF+N2_800, GF+N2+Fe1_800, GF+N2+Pt1_800 and PtC.
Figure S6. Tafel plots of GF+N2+Pt1_800 and GF+N2+Fe1_800
6
Table S2. Summary of the electro-catalytic ORR activities for GF+N_800, GF+N+Fe_800, GF+N2+Pt1_800 and PtC.
Sample
P @ -0.5 mA cm-2 (V vs. RHE)
P @ -3 mA cm-2 (V vs. RHE)
ETN @ 0.65 V (n)
GF_800
0.743
0.513
2.43
8.31
GF+N1_800
0.830
0.745
4.04
31.65
GF+N2_800
0.834
0.785
4.00
60.24
GF+N5_800
0.796
0.702
3.83
17.21
GF+N2+Fe1_800
0.907
0.846
4.05
454.55
GF+N2+Fe3_800
0.822
0.796
3.98
94.34
GF+N2+Fe5_800
0.837
0.740
4.51
N/A
GF+N1+Fe1_800
0.880
0.795
3.99
99.90
GF+N1+Fe1_800_W
0.824
0.732
4.06
23.64
GF+N2+Pt1_800
0.903
0.852
4.00
PtC
0.917
0.819
4.03
JK @ 0.65 V (mA cm-2)
H2O2 % @ 0.8V (%)
JK @ 0.8 V (mA cm-2)
Tafel Slope (mV dec-1)
0.7
3.24
47.9
0.31
34.3
66.3
331.81
0.57
46.4
68.1
71.43
4/57
10.96
83.5
Figure S7. LSV of GF+N2+Fe1_800 before and after 5000 scans at 1600 RPM.
7
Table S3. Comparison of ORR activities with the existing Fe based catalysts. (1-2) Onset and half-wave potentials are defined as the potential when current density reaches 0.5 or 3 mA cm-2, respectively; and (3) the value of shift is calculated based on the catalyst loading ratio. Catalyst Raw Data (Commercial PtC) Name of Catalyst
Type of Fe species
Catalyst Adjusted Data
Loading (mg cm-2)
Onset (V vs. RHE)
Half-wave (V vs. RHE)
Shift (V)
Onset (V vs. RHE)
Half-wave (V vs. RHE)
Ref
1
2
3
g-FePc
FePc
0.04 (0.1)
0.942 (0.921)
0.875 (0.826)
-0.013
0.929
0.862
6a
FePc-Py-CNT
FePc
0.318 (0.318)
0.956 (0.987)
0.908 (0.866)
-0.084
0.872
0.824
6b
(G-dye 50 wt%-FeP)n
FeN4
0.159
0.817
0.382
-0.021
0.796
0.361
6c
CNTs@Fe-N-C-700
FeN4
0.38 (0.05)
0.895 (0.905)
0.793 (0.803)
-0.029
0.866
0.764
6d
HNCS71
FeN4
0.5 (0.5)
0.890 (0.914)
0.819 (0.831)
-0.011
0.879
0.808
6e
Fe-N/C-800
Fe-Nx
0.1 (0.1)
0.902 (0.928)
0.809 (0.809)
-0.025
0.877
0.784
4c
Carbon nanoshell
Fe-Nx
0.1 (0.1)
0.915 (0.904)
0.836 (0.804)
0.084
0.888
0.788
4a
Fe-N-GC-900
Fe-Nx
0.2 (0.1)
0.935 (0.905)
0.846 (0.809)
-0.010
0.925
0.836
4b
Fe/N/GR-50-(0.10)
Fe-N
0.21 (0.21)
0.994 (0.982)
0.882 (0.900)
-0.079
0.915
0.803
6f
rGFe-800a
Fe-N
0.6 (0.24)
0.848 (0.848)
0.685 (0.767)
0.026
0.874
0.711
6g
Fe/N/CNT@PCF
Fe-N
?
0.856
0.732
N/A
0.856
0.732
4d
FexN/NGA
FexN
0.05 (0.05)
0.906 (0.887)
0.822 (0.816)
0.016
0.922
0.838
7a
FeN/Fe2N
0.6 (0.1)
0.916 (0.922)
0.836 (0.843)
-0.060
0.856
0.776
7b
Fe3C@NG-800
Fe3C
0.4 (0.1)
0.929 (0.929)
0.856 (0.830)
-0.050
0.879
0.806
8a
Fe-N-CNFs
Fe3C
0.6 (0.1)
0.896 (0.938)
0.814 (0.830)
-0.076
0.820
0.738
8b
PMF-800
Fe3C
1.2 (0.125)
0.950 (0.895)
0.858 (0.806)
-0.080
0.870
0.778
8c
N_Fe27
Fe3C
0.8 (0.05)
0.949 (0.911)
0.869 (0.826)
-0.070
0.879
0.799
8d
Fe3C-GNR
Fe3C
0.141 (0.141)
0.852 (0.942)
0.708 (0.832
-0.039
0.813
0.669
8e
Fe/N/G
Fe3C
0.6 (0.6)
0.959 (0.972)
0.842 (0.876)
-0.069
0.890
0.773
8f
Fe3C/NCNTs/OBP-900
Fe3C
0.4 (0.2)
0.947 (0.941)
0.869 (0.844)
-0.054
0.893
0.815
8g
MF50-E
Fe3C
?
0.871
0.776
N/A
0.765
0.760
8h
BP-NFe
Fe3O4
0.39 (0.15)
0.992 (0.939)
0.909 (0.842)
-0.056
0.936
0.853
9a
r-Fe2O3
0.5 (0.5)
0.892 (0.880)
0.809 (0.774)
0.023
0.915
0.832
9b
Fe3O4
?
0.728
0.356
N/A
0.712
0.340
9c
N-CNT/N-G
Fe-CNT-PA Fe3O4@N-GA
8
Fe-N-CIG
Fe3O4
0.23
0.915
0.812
-0.027
0.888
0.785
9d
a-Fe2O3
0.17
0.783
0.555
-0.022
0.761
0.533
9e
Fe3O4
0.6 (0.3)
0.834 (0.883)
0.607 (0.774)
-0.004
0.830
0.603
9f
NG/Fe5.0
Fe
0.051 (0.51)
0.912 (0.888)
0.591 (0.272)
0.015
0.927
0.606
10a
N-graphene/CNTs
Fe
0.424 (0.424)
0.820 (0.837)
0.692 (0.636)
0.066
0.886
0.758
10b
O-NiCoFe LDH
0.12
0.714
0.601
-0.018
0.696
0.583
11a
CuFe
CuFe
0.389 (0.318)
0.976 (1.029)
0.898 (0.921)
-0.132
0.844
0.766
11b
FeCo/C_800
FeCo
0.2 (0.1)
0.927 (0.921)
0.804 (0.804)
-0.026
0.901
0.778
11c
Fe3Co-Rgo
Fe3Co
1.192 (0.1)
0.984 (0.979)
0.865 (0.898)
-0.166
0.818
0.699
11d
Fe/Fe3C-melamine/N-KB
Fe/Fe3C
0.286 (0.143)
0.864 (0.924)
0.756 (0.831)
-0.033
0.831
0.723
12a
CNPs
Fe/Fe3C
0.385 (0.385)
0.982 (0.976)
0.884 (0.856)
-0.073
0.909
0.811
12b
Fe2O3/Fe3O4/FeNx
0.25 (0.25)
0.959 (0.990)
0.867 (0.897)
-0.087
0.872
0.780
12c
Fe3C/C-700
Fe/Fe3C
0.6 (0.25)
0.784 (0.902)
0.665 (0.816)
-0.028
0.756
0.637
12d
N-Fe/Fe3C@C/RGO
Fe/Fe3C
0.707 (0.707)
1.012 (1.012)
0.948 (0.950)
-0.109
0.903
0.839
12e
Fe3N/Fe3O4/CFe15.1@C
0.51 (0.061)
0.954 (0.937)
0.877 (0.850)
-0.071
0.883
0.806
12f
Fe3C/Fe-Nx
0.1 (0.1)
0.861 (0.861)
0.726 (0.770)
0.042
0.903
0.768
12g
Fe/Fe2O3
0.39 (0.39)
0.904 (0.885)
0.768 (0.806)
0.018
0.922
0.786
12h
FeNx/Fe3C/Fe
0.6 (0.15)
0.928 (0.972)
0.822 (0.875)
-0.106
0.822
0.716
12i
Fe/Fe3O4
0.4 (0.1)
0.915 (0.915)
0.831 (0.821)
-0.036
0.879
0.795
12j
PANI-4.5Fe-HT2
Fe/Fe3C/Fe1-xS
0.61 (0.102)
0.903 (0.903)
0.809 (0.809)
-0.042
0.861
0.767
12k
Fe-Mel-CPS
Fe/Fe3C/Fe3O4
0.5 (0.5)
0.902 (0.886)
0.832 (0.810)
0.017
0.886
0.816
12l
Fe/Co-Nx
0.1 (0.1)
0.895 (0.923)
0.772 (0.829)
-0.020
0.875
0.752
12m
Fe-P
0.0395 (0.0395)
0.794 (0.912)
0.492 (0.804)
-0.009
0.785
0.483
13a
Fe-Nx
0.0796 (0.904)
0.929 (0.904)
0.836 (0.768)
0.064
0.888
0.742
13b
No
0.6 (0.0326)
0.934 (0.934)
0.857 (0.830)
-0.078
0.856
0.779
13c
?
?
0.739
0.428
N/A
0.723
0.412
13d
Fe3(PO4)2
0.1 (0.14)
0.712 (0.928)
0.528 (0.851)
-0.021
0.691
0.507
13e
r-Fe2O3
0.1 (0.1)
0.907 (0.903)
0.846 (0.819)
0.000
0.907
0.846
this work
a-Fe2O3/CNT Fe3O4
O-NiCoFe LDH
Fe10@NOMC
Fe-PANI/C-Mela FP-Fe-TA-N OxBP-Fe Fe/N/G-0.3 Fe-N-Graphene
FeCoN Fe-P-900 Fe-N/C-800 FePhen@MOF-ArNH3 rGO-N-Fe FPO GF+N2+Fe1_800
9