Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 9341073, 10 pages https://doi.org/10.1155/2017/9341073
Research Article Hybrid Adaptive Bionic Fuzzy Control Method Yan Li, Yimin Li, and Faxiang Zhang Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, China Correspondence should be addressed to Yimin Li;
[email protected] Received 10 April 2017; Revised 11 July 2017; Accepted 2 August 2017; Published 18 October 2017 Academic Editor: R. Aguilar-Lยดopez Copyright ยฉ 2017 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The bionic fuzzy system embeds the biologically active adaptive strategy into the traditional T-S fuzzy system, which increases the active adaptability. On the basis of the researches, an identification model is added to the system, and a hybrid bionic adaptive fuzzy control method is proposed in this paper, which makes the system have biological adaptability and strong anti-interference ability. The adaptive law contains two items: the first one is the general term for adjusting system parameters by using the current state and the second one is a compensation item for the adjustment of system parameters based on the development trend. Lyapunov synthesis method is used to analyze the stability and convergence of system. The design method of fuzzy controller, adaptive laws, and parameter constraints are given. Finally, the effectiveness of the method is verified by simulation of inverted pendulum model.
1. Introduction Due to the high complexity of dynamic environment and system structure, the research of nonlinear systems is difficult to achieve accurate description. At the same time, higher requirements on the stability and effectiveness of the controlled system needed to meet certain performance index. By combining the adaptive control strategy and fuzzy control method, the stability and anti-interference of the system can be improved due to the active adaptability of the organism [1, 2]. The niche of individual organism is introduced into the design of fuzzy systems, and adaptive behavior and individual feedback are used to establish the fuzzy control model based on ecological niche [3]. The design method of genetic algorithm and double nested fuzzy control method are given to make optimized controllable niche structure. A tracking feedback control method based on optimum niche is proposed, which is applied in the intelligent greenhouse system to realize the fuzzy control design for optimal ecological system [4]. In [5, 6], the self-organization and selflearning of niche are added to the fuzzy system, and a new fuzzy control method based on niche model is given. At the same time, the universal approximation of system was demonstrated, which achieved good results by using the system function as approximation. In [7], the T-S adaptive fuzzy control method is established by using the niche proximity
with normal distribution characteristics as the consequent of fuzzy rules. The research [8] gives ๐ปโ tracking performance designs in both indirect and direct adaptive fuzzy systems. On the basis of the study, in this paper, combining the identification model [9, 10] with bionic fuzzy system and mixing the model error with tracking error, the hybrid bionic fuzzy control method is built. Stability and convergence analyzed by Lyapunov synthesis method [11โ13], adaptive law, and constraints of the system parameters are given. The two items of bionic adaptive law, respectively, represent the current state and development trend of systems, which makes the system have good active adaptability. Finally, the strong anti-interference and better stability of highly complexity nonlinear system are verified by the simulation [14โ18].
2. Basic Theory of Fuzzy System 2.1. Hybrid Adaptive Fuzzy System. Consider the following nonlinear systems: ๐ฅ(๐) = ๐ (๐ฅ, ๐ฅ,ฬ . . . , ๐ฅ(๐โ1) ) + ๐ (๐ฅ, ๐ฅ,ฬ . . . , ๐ฅ(๐โ1) ) ๐ข ๐ฆ = ๐ฅ.
(1)
๐(๐ฅ) and ๐(๐ฅ) are continuous functions; ๐ข, ๐ฆ โ ๐
are the input and output of the system. ๐ฅ = (๐ฅ1 , ๐ฅ2 , . . . , ๐ฅ๐ )๐ = (๐ฅ, ๐ฅ,ฬ . . . , ๐ฅ(๐โ1) )๐ โ ๐
๐ is obtained by measuring the state
2
Mathematical Problems in Engineering
vector. In order to control the system, when ๐ฅ belongs to a controllable interval ๐๐ โ ๐
๐ , ๐(๐ฅ) =ฬธ 0 might as well set ๐(๐ฅ) > 0. The ideal controllers in the form ๐ขโ =
1 (๐) + ๐๐ ๐] [โ๐ (๐ฅ) + ๐ฆ๐ ๐ (๐ฅ)
(2)
set ๐ = ๐ฆ๐ โ ๐ฆ = ๐ฆ๐ โ ๐ฅ, ๐ = (๐, ๐,ฬ . . . , ๐(๐โ1) )๐ , ๐ = (๐๐ , ๐๐โ1 , . . . , ๐1 )๐ and make the real part of all the roots of polynomial ๐ ๐ + ๐1 ๐ ๐โ1 + โ
โ
โ
+ ๐๐ negative. When ๐ก โ โ, ๐(๐ก) โ 0. That is, the output of the system converges ๐ฆ asymptotically to the ideal output ๐ฆ๐ . A hybrid adaptive controller is constructed as follows [12]: ๐ข = ๐ผ๐ข๐ + (1 โ ๐ผ) ๐ข๐ท + ๐ข๐ + ๐ข๐ผ .
(3)
of change of the ๐ biological unit, ๐ = 1, 2, . . . , ๐. If the biological individual has a good state and good development trend, then the niche of the biological individual is relatively large, ๐๐ โ [0, 1]. When the niche ๐๐ of the ๐ biological unit is greater, it indicates the greater niche role relatively in the biological unit in the system in study. 2.2.2. Bionic Fuzzy System Rules. Considering system (1), ๐(๐ฅ) and ๐(๐ฅ) are unknown functions, and the fuzzy system is constructed by a series of โif-thenโ fuzzy rules: ๐
๐๐ : if ๐ฅ1 is ๐ด๐1 and ๐ฅ2 is ๐ด๐2 . . . and ๐ฅ๐ is ๐ด๐๐ , then ๐๐ (๐ฅ) = ๐๐๐ , ๐ = 1, 2, . . . , ๐๐ .
๐ข๐ is equivalent controller, ๐ข๐ท is output controller, ๐ข๐ is supervisory controller, ๐ข๐ผ is adaptive compensation controller, and ๐ผ โ [0, 1] is weighted factor.
๐
๐๐ : if ๐ฅ1 is ๐ต1๐ and ๐ฅ2 is ๐ต2๐ . . . and ๐ฅ๐ is ๐ต๐๐ , then
2.2. Bionic Fuzzy System
๐ = 1, 2, . . . , ๐, ๐
๐ represents ๐ fuzzy rule, and ๐ด๐๐ and ๐ต๐๐ are the fuzzy sets of state vector ๐ฅ๐ , determined by the Ecostate ๐ ๐๐ and the Ecorole ๐๐๐ of the ๐ biological ๐ ๐ unit. ๐๐๐ = (๐ ๐๐ +๐ถ๐ ๐๐๐ )/(โ๐๐=1 ๐ ๐ +๐ถ๐ ๐๐ ) is the output of the ๐ rule.
2.2.1. Niche Ecostate-Ecorole Theory Function. Considering the ecosystem with ๐ biological unit, the size of the niche of the ๐ biological unit is defined as ๐ ๐ + ๐ถ๐ ๐๐ . ๐ โ๐=1 ๐ ๐ + ๐ถ๐ ๐๐
๐๐ =
(4)
๐ ๐ indicates the state of the ๐ biological unit, ๐ถ๐ is the dimensional conversion coefficient, and ๐๐ indicates the rate
๐๐ (๐ฅ) = ๐๐๐ , ๐ = 1, 2, . . . , ๐๐ .
Using the center-average defuzzifier, product inference engine, singleton fuzzifier, and Gauss membership function, Adaptive fuzzy system based on biological adaptive strategy is as follows: 2
๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ โ๐ ๐=1 ((๐ ๐ + ๐ถ๐ ๐๐ ) / (โ๐=1 ๐ ๐ + ๐ถ๐ ๐๐ )) โ๐=1 exp [โ ((๐ฅ๐ โ ๐ฅ๐ ) /๐ฟ๐ ) ]
๐ฬ (๐ฅ๐1๐ , ๐2๐ ) =
2
๐ ๐ ๐ โ๐ ๐=1 โ๐=1 exp [โ ((๐ฅ๐ โ ๐ฅ๐ ) /๐ฟ๐ ) ]
๐ ๐ = ๐1๐ ๐ (๐ฅ) + ๐ถ๐ ๐2๐ ๐ (๐ฅ) ,
(5)
Similarly,
where ๐
1 2 ๐ ๐1๐ = (๐1๐ , ๐1๐ , . . . , ๐1๐ ) , ๐ ๐1๐ =
โ๐๐=1
๐ ๐ (๐ ๐๐
+
๐ถ๐ ๐๐๐ ) ๐
,
๐๐๐ , ๐ + ๐ถ ๐๐ ) โ๐๐=1 (๐ ๐ ๐ ๐
A nonlinear system is introduced in parallel with system (1): 2
โ๐๐=1 exp [โ ((๐ฅ๐ โ ๐ฅ๐๐ ) /๐ฟ๐๐ ) ] โ๐ ๐=1
โ๐๐=1
exp [โ ((๐ฅ๐ โ
(8)
3. Bionic Hybrid Controller
๐ (๐ฅ) = (๐1 (๐ฅ) , ๐2 (๐ฅ) , . . . , ๐๐ (๐ฅ)) , ๐ (๐ฅ) =
๐ ๐ ๐ (๐ฅ) + ๐ถ๐ ๐2๐ท ๐ (๐ฅ) , ๐ข๐ท (๐ฅ | ๐1๐ท, ๐2๐ท) = ๐1๐ท
(6) ๐
๐
(7)
where ๐1๐ , ๐1๐ , ๐1๐ท are on behalf of the current state of the biological individuals and ๐2๐ , ๐2๐ , ๐2๐ท represent development trend of the biological individuals in the future.
๐
1 2 ๐2๐ = (๐2๐ , ๐2๐ , . . . , ๐2๐๐ ) , ๐ = ๐2๐
๐ ๐ ๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) = ๐1๐ ๐ (๐ฅ) + ๐ถ๐ ๐2๐ ๐ (๐ฅ) ,
2 ๐ฅ๐๐ ) /๐ฟ๐๐ ) ]
.
ฬฬ 1 = ๐ฅ2 , ๐ฅ ฬฬ 2 = ๐ฅ3 ๐ฅ
Mathematical Problems in Engineering
3
.. .
Choose the compensation controller as ๐ข๐ผ = ๐0 sgn (๐๐ ๐๐๐ ) .
ฬฬ ๐ = ๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) + ๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) ๐ข. ๐ฅ (9) Define model error as ฬฬ ๐ (๐ก) โ ๐ฅ๐ฬ (๐ก) . ๐=๐ฅ
(10)
๐0 is positive number; then the fuzzy controller of the closed loop system is ๐ข=๐ผ
From system 3 and system (1), it can be obtained that ๐ = [๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ)] + [๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ)] ๐ข.
(11)
The model error of the original system and the identification model combined as
๐2๐ = ๐2๐ โ
(12)
โ ๐2๐ = ๐2๐ โ ๐2๐
โ โ , ๐2๐ ) โ ๐ (๐ฅ) ๐ = ๐ผ [๐ฬ (๐ฅ | ๐1๐ โ โ , ๐2๐ ) โ ๐ (๐ฅ)) ๐ข๐ ] + (1 โ ๐ผ) ๐ (๐ฅ) (๐ขโ (13) + (๐ฬ (๐ฅ | ๐1๐
โ ๐ข๐ท (๐ฅ | ๐1๐ท, ๐2๐ท)) . Tracking error can be written as ๐ ฬ = ฮ ๐ ๐ + ๐๐ {๐ผ (๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ) (14)
โ
(๐ขโ โ ๐ข๐ท (๐ฅ | ๐1๐ท, ๐2๐ท)) โ ๐๐ ๐ (๐ฅ) (๐ข๐ + ๐ข๐ผ ) . Following design ๐ข๐ satisfies ๐ฬ โค 0, and design supervision controller as ๐ ๐ ๐ผ ๓ตจ๓ตจ ฬ ๓ตจ ๓ตจ๓ตจ๐ (๐ฅ | ๐1๐ , ๐2๐ )๓ตจ๓ตจ๓ตจ ๐ข๐ = ( ) sgn (๐๐ ๐๐๐ ) [ ๓ตจ ๓ตจ ๐1 (๐ฅ) ๐ ๓ตจ ๓ตจ ๓ตจ ๓ตจ + ๐1 (๐ฅ) (๓ตจ๓ตจ๓ตจ๓ตจ๐ฬ (๐ฅ๐1๐ , ๐2๐ )๓ตจ๓ตจ๓ตจ๓ตจ + ๐2 (๐ฅ) ๓ตจ๓ตจ๓ตจ๐ข๐ ๓ตจ๓ตจ๓ตจ) ๐ ๐ ๓ตจ (๐) ๓ตจ๓ตจ ๓ตจ๓ตจ + ๐๐ ๐)] + ( ) sgn (๐๐ ๐๐๐ ) (1 (15) + (๐1 (๐ฅ) + ๓ตจ๓ตจ๓ตจ๓ตจ๐ฆ๐ ๓ตจ ๐ ๓ตจ (๐) ๓ตจ๓ตจ ๓ตจ๓ตจ ๐ ๓ตจ๓ตจ ๓ตจ๓ตจ + ๓ตจ๓ตจ๐ ๐๓ตจ๓ตจ) + ๐2 (๐ฅ) ๓ตจ๓ตจ๓ตจ๓ตจ๐ข๐ผ ๓ตจ๓ตจ๓ตจ๓ตจ] . + ๐1 (๐ฅ) (๐1 (๐ฅ) + ๓ตจ๓ตจ๓ตจ๓ตจ๐ฆ๐ ๓ตจ ๓ตจ ๓ตจ
(17)
If ๐ โค ๐, the supervisory controller is 0; if the system tends to separate, ๐ โฅ ๐, using ๐ข๐ to ensure ๐ โค ๐.
โ โ (๐1๐ , ๐2๐ )
min
๓ตจ ๓ตจ [sup ๓ตจ๓ตจ๓ตจ๓ตจ๐ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ)๓ตจ๓ตจ๓ตจ๓ตจ] ,
min
๓ตจ ๓ตจ [sup ๓ตจ๓ตจ๓ตจ๓ตจ๐ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ)๓ตจ๓ตจ๓ตจ๓ตจ] ,
min
๓ตจ ๓ตจ [sup ๓ตจ๓ตจ๓ตจ๐ข (๐ฅ | ๐1๐ท, ๐2๐ท) โ ๐ข (๐ฅ)๓ตจ๓ตจ๓ตจ]
๐1๐ โฮฉ1๐ ,๐2๐ โฮฉ2๐
๐ฅโ๐ข๐ผ
โ โ , ๐2๐ ) (๐1๐
ฬ | ๐ , ๐ ), ๐(๐ฅ ฬ using ๐(๐ฅ | ๐1๐ , ๐2๐ ), ๐ข๐ท(๐ฅ | ๐1๐ท, ๐2๐ท) 1๐ 2๐ ฬ ฬ replace ๐(๐ฅ), ๐(๐ฅ), and ๐ข๐ท(๐ฅ); the minimum approximation error is
๓ตจ ๓ตจ โ ๐ผ) [๓ตจ๓ตจ๓ตจ๐ข๐ท (๐ฅ | ๐1๐ท, ๐2๐ท)๓ตจ๓ตจ๓ตจ
๓ตจ ๓ตจ + ๓ตจ๓ตจ๓ตจ๓ตจ๐0๐ ๐๓ตจ๓ตจ๓ตจ๓ตจ] + (1 โ ๐ผ) ๐ข๐ท (๐ฅ | ๐1๐ท, ๐2๐ท) + ๐ข๐ + ๐ข๐ผ .
= arg
โ , ๐1๐ = ๐1๐ โ ๐1๐
+ [๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) โ ๐ (๐ฅ)] ๐ข๐ )} + ๐๐ (1 โ ๐ผ) ๐ (๐ฅ)
๐ฬ (๐ฅ | ๐1๐ , ๐2๐ )
๓ตจ (๐) ๓ตจ๓ตจ ๓ตจ๓ตจ [โ๐ฬ (๐ฅ | ๐1๐ , ๐2๐ ) + ๓ตจ๓ตจ๓ตจ๓ตจ๐ฆ๐ ๓ตจ
Adjusting optimal parameters of hybrid fuzzy system based โ โ โ โ โ โ , ๐2๐ , ๐1๐ , ๐2๐ , ๐1๐ท , ๐2๐ท on Bionic ๐1๐
๐ ๐ถ๐ (๐ฅ) ๐ข + ๐, + ๐2๐
โ ๐2๐ ,
1
4. The Design of Adaptive Laws
๐ ๐ ๐ ๐ = ๐1๐ ๐ (๐ฅ) + ๐ถ๐2๐ ๐ (๐ฅ) + ๐1๐ ๐ (๐ฅ) ๐ข
โ , ๐1๐ = ๐1๐ โ ๐1๐
(16)
= arg
๐1๐ โฮฉ1๐ ,๐2๐ โฮฉ2๐
(18)
๐ฅโ๐ข๐ผ
โ โ , ๐2๐ท ) (๐1๐ท
= arg
๐1๐ท โฮฉ1๐ท ,๐2๐ท โฮฉ2๐ท
๐ฅโ๐ข๐ผ
๓ตฉ ๐ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ โค ๐1๐ } , : ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ฮฉ1๐ = {๐1๐ ๓ตฉ ๓ตฉ ๐ ๐ ๓ตฉ ๓ตฉ๓ตฉ โค ๐ } , ฮฉ2๐ = {๐2๐ : ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ 2๐ ๓ตฉ ๓ตฉ ๐ ๐ ๓ตฉ ๓ตฉ๓ตฉ โค ๐1๐ } , ฮฉ1๐ = {๐1๐ : ๐ฟ โค ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ ๐ ฮฉ2๐ = {๐2๐ : ๐ฟ โค ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ โค ๐2๐ } , ๓ตฉ ๐ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ โค ๐1๐ท} , ฮฉ1๐ท = {๐1๐ท : ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ท ๓ตฉ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ ๐ ฮฉ2๐ท = {๐2๐ท : ๓ตฉ๓ตฉ๓ตฉ๐2๐ท๓ตฉ๓ตฉ๓ตฉ โค ๐2๐ท} .
(19)
ฮฉ1๐ , ฮฉ2๐ , ฮฉ1๐ , ฮฉ2๐ , ฮฉ1๐ท, ฮฉ2๐ท are, respectively, the constraint set of ๐1๐ , ๐2๐ , ๐1๐ , ๐2๐ , ๐1๐ท, ๐2๐ท and ๐1๐ , ๐2๐ , ๐1๐ , ๐2๐ , ๐1๐ท, ๐2๐ท, ๐ฟ are given constant. Consider the followed Lyapunov function: 1 ๐ผ โ ๐ โ ๐ = ๐๐ ๐๐ + (๐1๐ โ ๐1๐ ) (๐1๐ โ ๐1๐ ) 2 2๐พ1๐ +
๐ผ โ ๐ โ (๐2๐ โ ๐2๐ ) (๐2๐ โ ๐2๐ ) 2๐พ2๐
4
Mathematical Problems in Engineering +
๐ผ โ ๐ โ (๐1๐ โ ๐1๐ ) (๐1๐ โ ๐1๐ ) 2๐พ1๐
๐ฬ 2๐ = โ๐พ2๐ [๐พ๐ + ๐๐ ๐๐๐ ๐ถ] ๐ (๐ฅ) ๐ข, ๐ฬ 1๐ท = โ๐พ1๐ท [๐พ๐ + ๐ (๐ฅ) ๐๐ ๐๐๐ ] ๐ (๐ฅ) ,
๐ผ โ ๐ โ (๐2๐ โ ๐2๐ ) (๐2๐ โ ๐2๐ ) + 2๐พ2๐ +
(1 โ ๐ผ) โ ๐ โ (๐1๐ท โ ๐1๐ท ) (๐1๐ท โ ๐1๐ท ) 2๐พ1๐ท
+
๐ผ โ ๐ โ (๐ โ ๐2๐ท ) (๐2๐ท โ ๐2๐ท ). 2๐พ2๐ท 2๐ท
๐ฬ 2๐ท = โ๐พ2๐ท [๐พ๐ + ๐ (๐ฅ) ๐๐ ๐๐๐ ๐ถ] ๐ (๐ฅ) , (21) where ๐1๐ , ๐1๐ , ๐1๐ท represent the current state and ๐2๐ , ๐2๐ , ๐2๐ท represent the development trend of systems, which makes the systems have good active adaptability. (20)
๐ is a positive definite matrix and satisfies the Lyapunov equation, and ๐ is an arbitrary positive definite matrix. The bionic adaptive laws of the identification system are as follows: ๐ฬ 1๐ = โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ) , ๐ฬ 2๐ = โ๐พ2๐ [๐พ๐ + ๐๐ ๐๐๐ ๐ถ] ๐ (๐ฅ) , ๐ฬ 1๐ = โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ) ๐ข,
ฬ ๐1๐
ฬ ๐2๐
= โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ) ๐ ๐1๐ ๐1๐ ๐ (๐ฅ) + ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๓ตจ ๓ตจ2 . ๓ตจ๓ตจ๓ตจ๐1๐ ๓ตจ๓ตจ๓ตจ ๓ตจ ๓ตจ
(22)
๐ ๐ ๐ ๐ {โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ) ๐ข (๐พ๐ + ๐ ๐๐๐ ) ๐ (๐ฅ) ๐ข < 0 ๐ฬ ={ ๐1๐ (๐พ๐ + ๐๐ ๐๐๐ ) ๐๐ (๐ฅ) ๐ข โฅ 0 {0
๐ {โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ)}
๐ฬ ๐2๐
(23)
ฬ | ๐1๐ , ๐2๐ ), if one element of ๐1๐ , ๐2๐ satisfies In terms of ๐(๐ฅ ๐ ๐ ๐1๐ = ๐ฟ, ๐2๐ = ๐ฟ, then
ฬ ๐2๐
It will affect the stability when the system is disturbed. In this paper, a hybrid adaptive fuzzy controller is designed, and the adaptive law is given. The following analysis is conducted for the performance of fuzzy controller. To ensure ๐1๐ โ ฮฉ1๐ , ๐2๐ โ ฮฉ2๐ , ๐1๐ โ ฮฉ1๐ , ๐2๐ โ ฮฉ2๐ , ๐1๐ท โ ฮฉ1๐ท, ๐2๐ท โ ฮฉ2๐ท, parametric projection method is designed to satisfy the parameter vector. ฬ | ๐ , ๐ ), In terms of ๐(๐ฅ 1๐ 2๐
๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ < ๐1๐ or ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ = ๐1๐ , ๐๐ ๐๐๐ ๐ (๐ฅ) ๐1๐ โฅ 0) {โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ = ๐1๐ , ๐ ๐๐๐ ๐ (๐ฅ) ๐1๐ < 0) ๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ < ๐2๐ or ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ = ๐2๐ , ๐๐ ๐๐๐ ๐ (๐ฅ) ๐2๐ โฅ 0) {โ๐พ2๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ2๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ = ๐2๐ , ๐ ๐๐๐ ๐ถ๐ (๐ฅ) ๐2๐ < 0)
which satisfies the projection operator
ฬ ๐1๐
5. Analysis of System Stability and Convergence
๐ ๐ {โ๐พ2๐ [๐พ๐ + ๐ ๐๐๐ ๐ถ] ๐ (๐ฅ) ๐ข ={ {0
(24) (๐พ๐ + ๐๐ ๐๐๐ ๐ถ) ๐๐ (๐ฅ) ๐ข โค 0 (๐พ๐ + ๐๐ ๐๐๐ ๐ถ) ๐๐ (๐ฅ) ๐ข > 0.
Otherwise,
๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ < ๐1๐ or ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ = ๐1๐ , ๐๐ ๐๐๐ ๐ (๐ฅ) ๐1๐ โฅ 0) {โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ๓ตฉ = ๐1๐ , ๐ ๐๐๐ ๐ (๐ฅ) ๐1๐ < 0) ๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ < ๐2๐ or ๓ตฉ๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ๓ตฉ = ๐2๐ , ๐๐ ๐๐๐ ๐ถ๐ (๐ฅ) ๐2๐ โฅ 0) {โ๐พ2๐ [๐พ๐ + ๐ ๐๐๐ ๐ถ] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ2๐ [๐พ๐ + ๐ ๐๐๐ ๐ถ] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ๓ตฉ = ๐2๐ , ๐ ๐๐๐ ๐ถ๐ (๐ฅ) ๐2๐ < 0)
(25)
Mathematical Problems in Engineering
5 ๐ ๐1๐ ๐1๐ ๐ (๐ฅ) + ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๓ตจ ๓ตจ2 . ๓ตจ๓ตจ๐ ๓ตจ๓ตจ ๓ตจ๓ตจ 1๐ ๓ตจ๓ตจ
which satisfies the projection operator
๐
๐ {โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ)}
(26)
๐
= โ๐พ1๐ [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ)
ฬ ๐1๐ท
ฬ ๐2๐ท
In terms of ๐ข๐ท(๐ฅ | ๐1๐ท, ๐2๐ท),
๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๐1๐ท๓ตฉ๓ตฉ๓ตฉ < ๐1๐ท or ๓ตฉ๓ตฉ๓ตฉ๐1๐ท๓ตฉ๓ตฉ๓ตฉ = ๐1๐ท, ๐๐ ๐๐๐ ๐ (๐ฅ) ๐ (๐ฅ) ๐1๐ท โฅ 0) {โ๐พ1๐ท [๐พ๐ + ๐ ๐๐๐ ๐ (๐ฅ)] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ1๐ท [๐พ๐ + ๐ ๐๐๐ ๐ (๐ฅ)] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๐1๐ท๓ตฉ๓ตฉ = ๐1๐ท or ๐ ๐๐๐ ๐ (๐ฅ) ๐ (๐ฅ) ๐1๐ท < 0) ๓ตฉ ๓ตฉ ๓ตฉ ๓ตฉ ๐ ๐ when (๓ตฉ๓ตฉ๓ตฉ๐2๐ท๓ตฉ๓ตฉ๓ตฉ < ๐2๐ท or ๓ตฉ๓ตฉ๓ตฉ๐2๐ท๓ตฉ๓ตฉ๓ตฉ = ๐2๐ท, ๐๐ ๐๐๐ ๐ (๐ฅ) ๐ (๐ฅ) ๐2๐ท โฅ 0) {โ๐พ2๐ท [๐พ๐ + ๐ ๐๐๐ ๐ (๐ฅ)] ๐ (๐ฅ) ={ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ ๐ ๐ ๐ {๐ {โ๐พ2๐ท [๐พ๐ + ๐ ๐๐๐ ๐ (๐ฅ)] ๐ (๐ฅ)} when (๓ตฉ๓ตฉ๐2๐ท๓ตฉ๓ตฉ = ๐2๐ท, ๐ ๐๐๐ ๐ (๐ฅ) ๐ (๐ฅ) ๐2๐ท < 0)
which satisfies the projection operator
(1) All parameters and state variables are bounded: ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ โค ๐1๐ , ๓ตฉ ๓ตฉ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ๐2๐ ๓ตฉ๓ตฉ โค ๐2๐ , ๓ตฉ ๓ตฉ ๓ตฉ๓ตฉ ๐ ๓ตฉ๓ตฉ ๓ตฉ๓ตฉ๐1๐ ๓ตฉ๓ตฉ โค ๐1๐ , ๓ตฉ ๓ตฉ ๓ตฉ๓ตฉ๓ตฉ๐๐ ๓ตฉ๓ตฉ๓ตฉ โค ๐ ๓ตฉ๓ตฉ๓ตฉ๐๐ ๓ตฉ๓ตฉ๓ตฉ โค ๐ , ๓ตฉ๓ตฉ 2๐ ๓ตฉ๓ตฉ 2๐ ๓ตฉ 1๐ท ๓ตฉ 1๐ท๓ตฉ๓ตฉ ๓ตฉ๓ตฉ๓ตฉ๐๐ ๓ตฉ๓ตฉ๓ตฉ โค ๐ , ๓ตฉ๓ตฉ 2๐ท๓ตฉ๓ตฉ 2๐ท
๐
๐ {โ๐พ1๐ท [๐พ๐ + ๐ ๐๐๐ ] ๐ (๐ฅ)} = โ๐พ1๐ท [๐พ๐ + ๐๐ ๐๐๐ ] ๐ (๐ฅ)
(27)
(28)
๐๐ ๐ ๐ (๐ฅ) + ๐พ1๐ท [๐พ๐ + ๐๐ ๐๐๐ ๐ (๐ฅ)] 1๐ท๓ตจ 1๐ท ๓ตจ2 . ๓ตจ๓ตจ๐1๐ท๓ตจ๓ตจ ๓ตจ ๓ตจ Theorem 1. Set the constraints set of ฮฉ1๐ , ฮฉ2๐ , ฮฉ1๐ , ฮฉ2๐ , ฮฉ1๐ท, ฮฉ2๐ท which are given by (19); if the initial value of the parameter satisfies ๐1๐ (0) โ ฮฉ1๐ , ๐2๐ (0) โ ฮฉ2๐ , ๐1๐ (0) โ ฮฉ1๐ , ๐2๐ (0) โ ฮฉ2๐ , ๐1๐ท(0) โ ฮฉ1๐ท, ๐2๐ท(0) โ ฮฉ2๐ท, to any ๐ก โฅ 0, adaptive laws can ensure ๐1๐ (๐ก) โ ฮฉ1๐ , ๐2๐ (๐ก) โ ฮฉ2๐ , ๐1๐ (๐ก) โ ฮฉ1๐ , ๐2๐ (๐ก) โ ฮฉ2๐ , ๐1๐ท(๐ก) โ ฮฉ1๐ท, ๐2๐ท(๐ก) โ ฮฉ2๐ท. ๐ Proof. Set ๐1๐ = (1/2)๐1๐ ๐1๐ , if formula (24) satisfies the first condition, when |๐1๐ | = ๐1๐ , |๐1๐ | โค ๐1๐ . Otherwise, ฬ = โ๐พ1๐ (๐พ๐ + ๐๐ ๐๐๐ ๐๐ )๐(๐ฅ) โค 0, and |๐1๐ | โค ๐1๐ ; ๐1๐ 1๐ if formula (24) satisfies the second condition, then |๐1๐ | = ๐ ฬ ๐1๐ , and ๐1๐ = โ๐พ1๐ [๐พ๐ + ๐๐ ๐๐๐ ]๐1๐ ๐(๐ฅ) + ๐พ1๐ [๐พ๐ + ๐ ๐ ๐1๐ ๐(๐ฅ)/|๐1๐ |2 )๐1๐ ๐(๐ฅ) = 0; therefore, in this case, ๐๐ ๐๐๐ ](๐1๐ |๐1๐ | โค ๐1๐ , due to the initial conditions ๐1๐ (0) โค ๐1๐ , to any ๐ก โฅ 0, ๐1๐ (๐ก) โค ๐1๐ . Similarly, it can be proved that ๐2๐ (๐ก) โค ๐2๐ , ๐1๐ (๐ก) โค ๐1๐ , ๐2๐ (๐ก) โค ๐2๐ , ๐1๐ท(๐ก) โค ๐1๐ท, and ๐2๐ท(๐ก) โค ๐2๐ท. ๐ ๐ฬ = ๐ฟ, ๐1๐ โฅ 0, It can be obtained by formula (24) that if ๐1๐
(29)
|๐ฅ (๐ก)| โค ๐๐ฅ and ๐1๐ , ๐2๐ , ๐1๐ , ๐2๐ , ๐1๐ท, ๐2๐ท, ๐๐ฅ are given positive constant. (2) The boundary of tracking error and the model error is given by the minimum approximation error set ๐ = (๐๐ + ๐๐ ๐ข)๐ ๐(๐ฅ); then ๐ก
๐ก
๐ก
๓ตจ ๓ตจ2 โซ |๐ (๐)|2 ๐๐ + โซ ๓ตจ๓ตจ๓ตจ๐ (๐)๓ตจ๓ตจ๓ตจ ๐๐ โค ๐ + ๐ โซ |๐ (๐)|2 ๐๐, 0 0 0 โ๐ก โฅ 0, ๐ก
2
๐ก
2
๐ก
(30)
2
โซ |๐ (๐)| ๐๐ + โซ |๐ (๐)| ๐๐ โค ๐ + ๐ โซ |๐ (๐)| ๐๐, 0
0
0
โ๐ก โฅ 0.
๐ then there is ๐1๐ โฅ ๐ฟ, |๐1๐ | โฅ ๐ฟ. Similarly, ๐2๐ โฅ ๐ฟ.
Theorem 2. Hybrid adaptive fuzzy systems form (1), where ๐(๐ฅ) and ๐(๐ฅ) are all unknown functions, and the equivalent controller ๐ข๐ , the output controller ๐ข๐ท, the supervisory controller ๐ข๐ , and the adaptive compensation controller ๐ข๐ผ are, respectively, designed according to formulas (3), (8), (15), and (16). The adaptive law is given by (21), and adaptive fuzzy control system must have the following characteristics:
(3) If square of ๐ is integrable, it means that โ โซ0 |๐(๐)|2 ๐๐ก < โ; then lim๐กโโ |๐(๐ก)| = 0, lim๐กโโ |๐(๐ก)| = 0. ๐ ๐ ๐ ๐ โ โค ๐1๐ , โ๐2๐ โ โค ๐2๐ , โ๐1๐ โ โค ๐1๐ , โ๐2๐ โ โค Proof. โ๐1๐
๐ ๐ โ โค ๐1๐ท, and โ๐2๐ท โ โค ๐2๐ท have been proved in ๐2๐ , โ๐1๐ท Theorem 1, and the following is to prove that |๐ฅ| โค ๐๐ฅ .
6
Mathematical Problems in Engineering
While designing the controller ๐ข๐ , set ๐ < ๐, ๐ is a given constant, set ๐ ๐min is the minimum eigenvalue of ๐, and due to ๐ = (1/2)๐๐ ๐๐, it can be obtained that ๐1/2 โฅ (
1/2 ๐ ๐min 1/2 ๐ ๓ตจ ๓ตจ ) |๐| โฅ ( ๐min ) (|๐ฅ| โ ๓ตจ๓ตจ๓ตจ๐ฆ๐ ๓ตจ๓ตจ๓ตจ) . 2 2
due to that, ๐
โ ๐1๐ [โ๐พ๐๐๐ (๐ฅ) ๐ข] ๐
๐
Therefore, ๐ โค ๐ equals |๐ฅ| โค |๐ฆ๐ | + (2๐/๐ ๐min )1/2 , and to satisfy |๐ฅ| โค ๐๐ฅ , it can choose ๐ ๐min ๓ตจ ๓ตจ (๐๐ฅ โ sup ๓ตจ๓ตจ๓ตจ๐ฆ๐ ๓ตจ๓ตจ๓ตจ) . 2 ๐กโฅ0
๐=1
๐
โ ๐2๐ [โ๐พ๐๐ถ๐๐ (๐ฅ) ๐ข] ๐
2
๐=
๐
๐
๐ + โ ๐1๐ [โ๐พ๐๐๐ (๐ฅ) ๐ข] = โ ๐1๐ [โ๐พ๐๐๐ (๐ฅ) ๐ข] ,
(31)
(35) ๐
๐
๐ + โ ๐2๐ [โ๐พ๐๐ถ๐๐ (๐ฅ) ๐ข] = โ ๐2๐ [โ๐พ๐๐ถ๐๐ (๐ฅ) ๐ข] ,
(32)
๐
๐=1
๐ ๐ ๐ ๐1๐ [โ๐พ๐๐ (๐ฅ)] + ๐1๐ [โ๐พ๐๐ (๐ฅ) ๐ข] + ๐2๐ [โ๐พ๐๐ถ๐ (๐ฅ)]
Proof. Combine the adaptive laws (21), (22), (24), (25), and (26) into the following Lyapunov function: 1 ๐ฬ = โ ๐๐ ๐๐ + ๐๐ ๐๐๐ ๐ 2 +
๐ + ๐2๐ [โ๐พ๐๐ถ๐ (๐ฅ) ๐ข] = โ๐พ๐2 โ ๐๐๐,
and there is ๐ ๐ ๐ ๐ ๐ = ๐1๐ ๐ (๐ฅ) + ๐ถ๐2๐ ๐ (๐ฅ) + ๐1๐ ๐ (๐ฅ) ๐ข + ๐2๐ ๐ถ๐ (๐ฅ) ๐ข
(36) = ๐ โ ๐.
๐ผ ๐ ฬ ๐ [๐ + ๐พ1๐ ๐๐ ๐๐๐ ๐ (๐ฅ)] ๐พ1๐ 1๐ 1๐
Set ๐ ๐ฬ = [ ] , ๐
๐ผ ๐ ฬ ๐ [๐ + ๐พ2๐ ๐๐ ๐๐๐ ๐ถ๐ (๐ฅ)] + ๐พ2๐ 2๐ 2๐ +
๐ผ ๐ ฬ ๐ [๐ + ๐พ1๐ ๐๐ ๐๐๐ ๐ (๐ฅ) ๐ข] ๐พ1๐ 1๐ 1๐
+
๐ผ ๐ ฬ ๐ [๐ + ๐พ2๐ ๐๐ ๐๐๐ ๐ถ๐ (๐ฅ) ๐ข] ๐พ2๐ 2๐ 2๐
+
1โ๐ผ ๐ ๐ [๐ฬ + ๐พ ๐๐ ๐๐๐ ๐ (๐ฅ) ๐ (๐ฅ)] ๐พ1๐ท 1๐ท 1๐ท 1๐ท
+
1โ๐ผ ๐ ๐ [๐ฬ + ๐พ ๐๐ ๐๐๐ ๐ (๐ฅ) ๐ถ๐ (๐ฅ)] . ๐พ2๐ท 2๐ท 2๐ท 2๐ท
ฬ=[ ๐
(33)
1 ฬ ๐ + ๐ฬ๐ ๐ฬ๐ ๐ = โ ๐ฬ๐๐ฬ 2 1 1 2 1 ๓ตจ๓ตจ ฬ ๓ตจ๓ตจ2 โค โ ๐ ๐min ๐|2 + |ฬ ๐| + ๓ตจ๓ตจ๓ตจ๐๐ ๐๓ตจ๓ตจ๓ตจ |ฬ ฬ 2 2 2 =โ
๐
to any ๐ก โฅ 0,
๐ [โ๐พ๐๐ถ๐ (๐ฅ)] + โ ๐1๐ [๐๐ ๐๐๐ ๐๐ (๐ฅ) ๐ข] + ๐2๐ ๐
๐ ๐min โ1 ฬ 2
๐ก
๐ (๐)|2 ๐๐ โค โซ |ฬ 0
๐
+ โ ๐1๐ [โ๐พ๐๐๐ (๐ฅ) ๐ข] ๐
+ โ ๐2๐ [๐๐ ๐๐๐ ๐ถ๐๐ (๐ฅ) ๐ข] ๐
๐
๐ + ๐2๐ท [โ๐พ๐๐ถ๐ (๐ฅ)]
๐|2 + |ฬ
(37)
โค
(38)
1 ๓ตจ๓ตจ ฬ ๓ตจ๓ตจ2 ๓ตจ๓ตจ๐ ๐๓ตจ๓ตจ 2๓ตจ ๐ ๓ตจ
2 [๐ (0) โ ๐ (๐ก)] ๐ ๐min โ1 ฬ ๓ตจ๓ตจ ฬ ๓ตจ๓ตจ2 ๐ก ๓ตจ๓ตจ๐๐ ๓ตจ๓ตจ + ๓ตจ ๓ตจ โซ |๐ (๐)|2 ๐๐ ๐ ๐min โ1 0 ฬ
(34)
๐
],
so it can be obtained that 1 ๐ฬ โค โ ๐๐ ๐๐ + (๐๐ ๐๐๐ โ ๐พ๐) ๐ โ ๐พ๐2 2
1 ๐ [โ๐พ๐๐ (๐ฅ)] ๐ฬ = โ ๐๐ ๐๐ + ๐๐ ๐๐๐ ๐ + ๐1๐ 2
๐ + โ ๐2๐ [โ๐พ๐๐ถ๐๐ (๐ฅ) ๐ข] + ๐1๐ท [โ๐พ๐๐ (๐ฅ)]
0 2๐พ
๐๐๐ ๐ฬ๐ = [ ] โ๐พ
Then
๐
๐ 0
2 ๐ ๐min โ1 ฬ
[๐ (0)]
๓ตจ๓ตจ ฬ ๓ตจ๓ตจ2 ๐ก ๓ตจ๓ตจ๐๐ ๓ตจ๓ตจ + ๓ตจ ๓ตจ โซ |๐ (๐)|2 ๐๐ ๐ ๐min โ1 0 ฬ
(39)
Mathematical Problems in Engineering
7 0.1
0.3
0.05
0.25
0 0.2
โ0.05
0.15
โ0.1
0.1
โ0.15 โ0.2
0.05 โ0.25 0 โ0.05
โ0.3 0
10
20
30
40
50
60
x1 with disturbance x1 without disturbance
โ0.35
0
10
20
30
40
50
60
x2 with disturbance x2 without disturbance
Figure 1: ๐ฅ1 and ๐ฅ2 with internal disturbance.
and because of |ฬ ๐(๐ก)|2 = |๐(๐ก)|2 + [๐(๐ก)]2 , |๐ฬ๐ |2 = |๐๐๐ |2 + |๐พ|2 , it can be proved by ๐= ๐=
2๐ (0) , (min {๐ ๐min , 2๐พ} โ 1) ๓ตจ๓ตจ ๓ตจ๓ตจ2 ๓ตจ๓ตจ๐๐๐ ๓ตจ๓ตจ + ๐พ2 (min {๐ ๐min , 2๐พ} โ 1)
(40)
noting that {๐ ๐min , 2๐พ} โ 1 > 0. Proof. If ๐ โ ๐ฟ 2 , we can obtain ๐ โ ๐ฟ 2 by Theory 2, because the variables are bounded; then ๐ ฬ โ ๐ฟ โ , by Barbalat lemma (if ๐ โ ๐ฟ 2 โฉ ๐ฟ โ and ๐ ฬ โ ๐ฟ โ , then lim๐กโโ |๐(๐ก)| = 0); we can get lim๐กโโ |๐(๐ก)| = 0.
6. Simulation Example 1. The inverted pendulum problem is studied by the hybrid adaptive fuzzy control method: ๐ฅ1ฬ = ๐ฅ2 , ๐ฅ2ฬ =
๐ sin ๐ฅ1 โ ๐๐๐ฅ22 sin ๐ฅ1 / (๐๐ + ๐) ๐ (4/3 โ ๐ cos2 ๐ฅ1 / (๐๐ + ๐)) +
(41)
cos ๐ฅ1 / (๐๐ + ๐) ๐ข ๐ (4/3 โ ๐ cos2 ๐ฅ1 / (๐๐ + ๐))
and ๐ = 9.8 m/s2 , ๐๐ = 1 kg, ๐ = 0.1 kg, ๐ = 0.5 m. Choosing ๐พ๐ = (๐1 ๐2 ) = (1 2) , ๐ถ๐ = 1, ๐ = diag (10 10), by solv5 ing equation ฮ๐๐ ๐ = ๐ฮ ๐ = โ๐, then ๐ = ( 15 5 5 ).
The membership function is ๐๐11 (๐ฅ1 ) = exp [โ (
๐ฅ1 + (๐/6) 2 ) ], ๐/10
๐๐12 (๐ฅ1 ) = exp [โ (
๐ฅ1 2 ) ], ๐/10
๐๐13 (๐ฅ1 ) = exp [โ (
๐ฅ1 โ (๐/6) 2 ) ], ๐/10
๐ฅ + (๐/6) 2 ๐๐21 (๐ฅ2 ) = exp [โ ( 2 ) ], ๐/10 ๐๐22 (๐ฅ2 ) = exp [โ (
๐ฅ2 2 ) ], ๐/10
๐๐23 (๐ฅ2 ) = exp [โ (
๐ฅ2 โ (๐/6) 2 ) ]. ๐/10
(42)
Set the initial conditions ๐ฅ(0) = (โ๐/9, ๐/12)๐ , the original system, and control system with internal disturbance (system state input ๐ฅ is substituted by (1 + ๐ฟ1 )๐ฅ, ๐ฟ1 = 0.5) and external disturbance (๐ฟ2 = 0.01). From Figures 1โ3, when the system is disturbed, the hybrid bionic adaptive controller proposed in this paper makes the system have more anti-interference and good convergence. In addition, this paper makes a comparison when the output trajectory has both internal and external disturbances; it can be seen that the fuzzy system has achieved good results. From Figure 4(a), when ๐ถ๐ = 1, the system has good convergence and biological adaptability than system controlled by traditional method. From Figure 4(b),
8
Mathematical Problems in Engineering 0.3
0.1 0.05
0.25
0 0.2
โ0.05
0.15
โ0.1
0.1
โ0.15 โ0.2
0.05 โ0.25 0 โ0.05
โ0.3 0
10
20
30
40
50
60
โ0.35
0
x1 with disturbance x1 without disturbance
10
20
30
40
50
60
40
50
60
x2 with disturbance x2 without disturbance
Figure 2: ๐ฅ1 and ๐ฅ2 with external disturbance.
0.3
0.1 0.05
0.25
0 0.2
โ0.05
0.15
โ0.1
0.1
โ0.15 โ0.2
0.05 โ0.25 0 โ0.05
โ0.3 0
10
20
30
40
50
60
x1 with disturbance x1 without disturbance
โ0.35
0
10
20
30
x2 with disturbance x2 without disturbance
Figure 3: ๐ฅ1 and ๐ฅ2 with both internal and external disturbances.
by comparing the output trajectories, it can be obtained that the bionic hybrid fuzzy control has better result. Example 2. Consider the following uncertain system:
where ๐ โ ๐
is the unmodelled dynamics of the system. ฮโ(๐) is the related uncertain item of the unmodelled dynamics ๐. Set
๐ฬ = โ๐ + ๐ฅ12 + ๐ฅ22 , ๐ฅ1ฬ = ๐ฅ2 , ๐ฅ2ฬ = โ๐ฅ โ 2๐ฅ2 + ฮ๐ (๐ฅ, V, ๐ก) + ฮโ (๐) + ๐ข,
ฮโ (๐) = 2๐, (43) ฮ๐ (๐ฅ, V, ๐ก) =
๐1 + ๐2 cos (2๐ก) ๐ฅ12 ๐ฅ22 . ๐1 + ๐2 sin (๐ก) + ๐3 ๐ฅ12 + ๐4 ๐ฅ22
(44)
Mathematical Problems in Engineering
9
0.35 0.3 4
0.25
3
0.2 0.15
2
0.1 1
x
0.05 0
0
โ0.05 โ1
โ0.1 โ0.15
0
10
20
30
x1 when (Ck = 0) x1 when (Ck = 0.2) x1 when (Ck = 0.5)
40
50
โ2
0
5
10
15
20
Time (s)
x1 when (Ck = 0.8) x1 when (Ck = 1)
x1 with control x2 with control
x1 without control x2 without controlโ location
(b) Sliding mode control output trajectories ๐ฅ1 , ๐ฅ2
(a) ๐ฅ1 with both internal and external disturbances (when ๐ถ๐ chooses different values)
Figure 4
0.6
0.2
0.5
0.1
0.4
0
0.3
โ0.1
0.2
โ0.2
0.1
โ0.3
0
โ0.4
โ0.1
0
5
10
15
20
โ0.5
0
5
10
15
20
x2 without disturbance x2 with disturbance
x1 without disturbance x1 with disturbance
Figure 5: ๐ฅ1 and ๐ฅ2 with internal disturbance.
๐, ๐ are unknown constants, satisfying the fact that ๐1 โฅ ๐2 + 1 > 0, ๐3 โฅ 1, ๐4 โฅ 1. In stimulation, set ๐1 = 2, ๐2 = 0.5, ๐3 = 1.5, ๐4 = 1.5, ๐1 = 1, ๐2 = 2.
From Figure 5, to the uncertain system with disturbance, the hybrid bionic adaptive controller proposed makes the system have more anti-interference and good convergence. From Figure 6, when ๐ถ๐ = 1, the system has good
10
Mathematical Problems in Engineering 0.7
article revision and made a great contribution to the language presentation and revision of first proof.
0.6
References
0.5 0.4 0.3 0.2 0.1 0
0
2
4
6
8
10
x1 when (Ck = 0) x1 when (Ck = 0.5) x1 when (Ck = 1)
Figure 6: ๐ฅ1 with both internal and external disturbances (when ๐ถ๐ chooses different values).
convergence and biological adaptability than system controlled by traditional method.
7. Conclusion In this paper, the hybrid fuzzy control method combined model error with tracking error to design the adaptive laws. Compared with traditional method, it has faster convergence rate. In addition, the biological characteristics are embedded in the bionic fuzzy system, which improved the condition that traditional adaptive law just considers the current state of system. The method proposed in this paper makes system have advantages of anti-interference and strong self-adaptability.
Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.
Authorsโ Contributions Yan Li was responsible for the overall revision of the paper and wrote the main manuscript text and put forward some new ideas in the research; Faxiang Zhang provided the dynamic model and the parameter values of a century application; Yimin Li provided the guidance of the paper and was responsible for correspondence.
Acknowledgments This research is supported by the National Natural Science Foundation of China: Bionic Intelligent Control Method of Chaotic Ecosystems under Slow Disturbance (11072090). The authors also thank Jing Hua who participated in the
[1] L. Wang, Fuzzy Systems and Fuzzy Control Course, Tsinghua University Press, Beijing, China, 2003. [2] M. Zhihong and X. H. Yu, โAn adaptive control using fuzzy basis function expansions for a class of nonlinear systems,โ Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 21, no. 3, pp. 257โ275, 1998. [3] Y. Li, S. Hu, and L. Li, โFuzzy control method based on niche technology,โ Systems Engineering Theory and Practice, vol. 24, no. 3, pp. 63โ68, 2004. [4] Y. Li, S. Hu, and L. Li, โNiche control method of intelligent greenhouse system,โ Journal of Agricultural Engineering, vol. 6, no. 18, pp. 103โ106, 2002. [5] X. Wang and Y. Li, โA new fuzzy control method for niche,โ Science Technology and Engineering, vol. 24, pp. 6318โ6321, 2007. [6] Y. Li and S. Hu, โFuzzy adaptive control method with biological,โ World Journal of Modeling and Simulation, vol. 2, pp. 81โ90, 2005. [7] Y. Li and Y. Hao, โIndirect T-S fuzzy adaptive control based on niche,โ Systems Engineering and Electronics, vol. 10, no. 33, pp. 2282โ2288, 2011. [8] M. Hojati and S. Gazor, โHybrid adaptive fuzzy identification and control of nonlinear systems,โ IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 198โ210, 2002. [9] B.-S. Chen, C.-H. Lee, and Y.-C. Chang, โHโ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,โ IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 32โ43, 1996. [10] S. K. Hong and R. Langari, โFuzzy modeling and control of a nonlinear magnetic bearing system,โ Journal of Intelligent and Fuzzy Systems, vol. 7, no. 4, pp. 335โ346, 1999. [11] W. Wen-June, V. V. Phong, C. Wei et al., โA synthesis of observer-based controller for stabilizing uncertain T-S fuzzy systems,โ Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 3451โ3463, 2016. [12] J.-M. Zhang, R.-H. Li, and P.-A. Zhang, โStability analysis and systematic design of fuzzy control systems,โ Fuzzy Sets and Systems, vol. 120, no. 1, pp. 65โ72, 2001. ห [13] I. Skrjanc, S. Blaหziหc, and D. Matko, โModel-reference fuzzy adaptive control as a framework for nonlinear system control,โ Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 36, no. 3, pp. 331โ347, 2003. [14] T. Zhao, โResearch on fuzzy control based on biological adaptive strategy,โ East China Normal University, vol. 43, no. 16, pp. 52โ 54, 2012. [15] C. Zhu, โEcological niche theory and extension hypothesis,โ Chinese Journal of Ecology, vol. 17, pp. 324โ332, 1997. [16] Z. H. Xiu and G. Ren, โStability analysis and systematic design of T-S fuzzy control systems,โ Acta Automatica Sinica. Zidonghua Xuebao, vol. 30, no. 5, pp. 731โ741, 2004. [17] Z. Lili, Adaptive Fuzzy Control of Nonlinear Systems and Its Performance, Liaoning University of Technology, Jinzhou, China, 2005. [18] G. Ying, Adaptive Fuzzy Control for A Class of Nonlinear Uncertain Systems, Liaoning University of Technology, Jinzhou, China, 2016.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at https://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
#HRBQDSDฤฎ,@SGDL@SHBR
Journal of
Volume 201
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014