Hybrid Adaptive Bionic Fuzzy Control Method

3 downloads 0 Views 2MB Size Report
Aug 2, 2017 - The bionic fuzzy system embeds the biologically active adaptive strategy into the traditional T-S fuzzy system, which increases the.
Hindawi Mathematical Problems in Engineering Volume 2017, Article ID 9341073, 10 pages https://doi.org/10.1155/2017/9341073

Research Article Hybrid Adaptive Bionic Fuzzy Control Method Yan Li, Yimin Li, and Faxiang Zhang Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, China Correspondence should be addressed to Yimin Li; [email protected] Received 10 April 2017; Revised 11 July 2017; Accepted 2 August 2017; Published 18 October 2017 Academic Editor: R. Aguilar-Lยดopez Copyright ยฉ 2017 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The bionic fuzzy system embeds the biologically active adaptive strategy into the traditional T-S fuzzy system, which increases the active adaptability. On the basis of the researches, an identification model is added to the system, and a hybrid bionic adaptive fuzzy control method is proposed in this paper, which makes the system have biological adaptability and strong anti-interference ability. The adaptive law contains two items: the first one is the general term for adjusting system parameters by using the current state and the second one is a compensation item for the adjustment of system parameters based on the development trend. Lyapunov synthesis method is used to analyze the stability and convergence of system. The design method of fuzzy controller, adaptive laws, and parameter constraints are given. Finally, the effectiveness of the method is verified by simulation of inverted pendulum model.

1. Introduction Due to the high complexity of dynamic environment and system structure, the research of nonlinear systems is difficult to achieve accurate description. At the same time, higher requirements on the stability and effectiveness of the controlled system needed to meet certain performance index. By combining the adaptive control strategy and fuzzy control method, the stability and anti-interference of the system can be improved due to the active adaptability of the organism [1, 2]. The niche of individual organism is introduced into the design of fuzzy systems, and adaptive behavior and individual feedback are used to establish the fuzzy control model based on ecological niche [3]. The design method of genetic algorithm and double nested fuzzy control method are given to make optimized controllable niche structure. A tracking feedback control method based on optimum niche is proposed, which is applied in the intelligent greenhouse system to realize the fuzzy control design for optimal ecological system [4]. In [5, 6], the self-organization and selflearning of niche are added to the fuzzy system, and a new fuzzy control method based on niche model is given. At the same time, the universal approximation of system was demonstrated, which achieved good results by using the system function as approximation. In [7], the T-S adaptive fuzzy control method is established by using the niche proximity

with normal distribution characteristics as the consequent of fuzzy rules. The research [8] gives ๐ปโˆž tracking performance designs in both indirect and direct adaptive fuzzy systems. On the basis of the study, in this paper, combining the identification model [9, 10] with bionic fuzzy system and mixing the model error with tracking error, the hybrid bionic fuzzy control method is built. Stability and convergence analyzed by Lyapunov synthesis method [11โ€“13], adaptive law, and constraints of the system parameters are given. The two items of bionic adaptive law, respectively, represent the current state and development trend of systems, which makes the system have good active adaptability. Finally, the strong anti-interference and better stability of highly complexity nonlinear system are verified by the simulation [14โ€“18].

2. Basic Theory of Fuzzy System 2.1. Hybrid Adaptive Fuzzy System. Consider the following nonlinear systems: ๐‘ฅ(๐‘›) = ๐‘“ (๐‘ฅ, ๐‘ฅ,ฬ‡ . . . , ๐‘ฅ(๐‘›โˆ’1) ) + ๐‘” (๐‘ฅ, ๐‘ฅ,ฬ‡ . . . , ๐‘ฅ(๐‘›โˆ’1) ) ๐‘ข ๐‘ฆ = ๐‘ฅ.

(1)

๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are continuous functions; ๐‘ข, ๐‘ฆ โˆˆ ๐‘… are the input and output of the system. ๐‘ฅ = (๐‘ฅ1 , ๐‘ฅ2 , . . . , ๐‘ฅ๐‘› )๐‘‡ = (๐‘ฅ, ๐‘ฅ,ฬ‡ . . . , ๐‘ฅ(๐‘›โˆ’1) )๐‘‡ โˆˆ ๐‘…๐‘› is obtained by measuring the state

2

Mathematical Problems in Engineering

vector. In order to control the system, when ๐‘ฅ belongs to a controllable interval ๐‘ˆ๐‘ โŠ‚ ๐‘…๐‘› , ๐‘”(๐‘ฅ) =ฬธ 0 might as well set ๐‘”(๐‘ฅ) > 0. The ideal controllers in the form ๐‘ขโˆ— =

1 (๐‘›) + ๐‘˜๐‘‡ ๐‘’] [โˆ’๐‘“ (๐‘ฅ) + ๐‘ฆ๐‘š ๐‘” (๐‘ฅ)

(2)

set ๐‘’ = ๐‘ฆ๐‘š โˆ’ ๐‘ฆ = ๐‘ฆ๐‘š โˆ’ ๐‘ฅ, ๐‘’ = (๐‘’, ๐‘’,ฬ‡ . . . , ๐‘’(๐‘›โˆ’1) )๐‘‡ , ๐‘˜ = (๐‘˜๐‘› , ๐‘˜๐‘›โˆ’1 , . . . , ๐‘˜1 )๐‘‡ and make the real part of all the roots of polynomial ๐‘ ๐‘› + ๐‘˜1 ๐‘ ๐‘›โˆ’1 + โ‹… โ‹… โ‹… + ๐‘˜๐‘› negative. When ๐‘ก โ†’ โˆž, ๐‘’(๐‘ก) โ†’ 0. That is, the output of the system converges ๐‘ฆ asymptotically to the ideal output ๐‘ฆ๐‘š . A hybrid adaptive controller is constructed as follows [12]: ๐‘ข = ๐›ผ๐‘ข๐‘ + (1 โˆ’ ๐›ผ) ๐‘ข๐ท + ๐‘ข๐‘  + ๐‘ข๐ผ .

(3)

of change of the ๐‘— biological unit, ๐‘— = 1, 2, . . . , ๐‘›. If the biological individual has a good state and good development trend, then the niche of the biological individual is relatively large, ๐‘๐‘˜ โˆˆ [0, 1]. When the niche ๐‘๐‘˜ of the ๐‘˜ biological unit is greater, it indicates the greater niche role relatively in the biological unit in the system in study. 2.2.2. Bionic Fuzzy System Rules. Considering system (1), ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are unknown functions, and the fuzzy system is constructed by a series of โ€œif-thenโ€ fuzzy rules: ๐‘…๐‘“๐‘– : if ๐‘ฅ1 is ๐ด๐‘–1 and ๐‘ฅ2 is ๐ด๐‘–2 . . . and ๐‘ฅ๐‘› is ๐ด๐‘–๐‘› , then ๐‘“๐‘– (๐‘ฅ) = ๐‘๐‘˜๐‘– , ๐‘– = 1, 2, . . . , ๐‘€๐‘“ .

๐‘ข๐‘ is equivalent controller, ๐‘ข๐ท is output controller, ๐‘ข๐‘  is supervisory controller, ๐‘ข๐ผ is adaptive compensation controller, and ๐›ผ โˆˆ [0, 1] is weighted factor.

๐‘…๐‘”๐‘– : if ๐‘ฅ1 is ๐ต1๐‘– and ๐‘ฅ2 is ๐ต2๐‘– . . . and ๐‘ฅ๐‘› is ๐ต๐‘›๐‘– , then

2.2. Bionic Fuzzy System

๐‘˜ = 1, 2, . . . , ๐‘›, ๐‘…๐‘– represents ๐‘– fuzzy rule, and ๐ด๐‘–๐‘˜ and ๐ต๐‘˜๐‘– are the fuzzy sets of state vector ๐‘ฅ๐‘˜ , determined by the Ecostate ๐‘ ๐‘˜๐‘– and the Ecorole ๐‘๐‘˜๐‘– of the ๐‘˜ biological ๐‘– ๐‘– unit. ๐‘๐‘˜๐‘– = (๐‘ ๐‘˜๐‘– +๐ถ๐‘˜ ๐‘๐‘˜๐‘– )/(โˆ‘๐‘›๐‘š=1 ๐‘ ๐‘š +๐ถ๐‘š ๐‘๐‘š ) is the output of the ๐‘– rule.

2.2.1. Niche Ecostate-Ecorole Theory Function. Considering the ecosystem with ๐‘› biological unit, the size of the niche of the ๐‘˜ biological unit is defined as ๐‘ ๐‘˜ + ๐ถ๐‘˜ ๐‘๐‘˜ . ๐‘› โˆ‘๐‘—=1 ๐‘ ๐‘— + ๐ถ๐‘— ๐‘๐‘—

๐‘๐‘˜ =

(4)

๐‘ ๐‘— indicates the state of the ๐‘— biological unit, ๐ถ๐‘— is the dimensional conversion coefficient, and ๐‘๐‘— indicates the rate

๐‘”๐‘– (๐‘ฅ) = ๐‘๐‘˜๐‘– , ๐‘– = 1, 2, . . . , ๐‘€๐‘” .

Using the center-average defuzzifier, product inference engine, singleton fuzzifier, and Gauss membership function, Adaptive fuzzy system based on biological adaptive strategy is as follows: 2

๐‘› ๐‘› ๐‘– ๐‘– ๐‘– ๐‘– ๐‘– ๐‘– โˆ‘๐‘€ ๐‘–=1 ((๐‘ ๐‘˜ + ๐ถ๐‘˜ ๐‘๐‘˜ ) / (โˆ‘๐‘—=1 ๐‘ ๐‘— + ๐ถ๐‘— ๐‘๐‘— )) โˆ๐‘—=1 exp [โˆ’ ((๐‘ฅ๐‘— โˆ’ ๐‘ฅ๐‘— ) /๐›ฟ๐‘— ) ]

๐‘“ฬ‚ (๐‘ฅ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) =

2

๐‘› ๐‘– ๐‘– โˆ‘๐‘€ ๐‘–=1 โˆ๐‘—=1 exp [โˆ’ ((๐‘ฅ๐‘— โˆ’ ๐‘ฅ๐‘— ) /๐›ฟ๐‘— ) ]

๐‘‡ ๐‘‡ = ๐œƒ1๐‘“ ๐œ‰ (๐‘ฅ) + ๐ถ๐‘˜ ๐œƒ2๐‘“ ๐œ‰ (๐‘ฅ) ,

(5)

Similarly,

where ๐‘‡

1 2 ๐‘€ ๐œƒ1๐‘“ = (๐œƒ1๐‘“ , ๐œƒ1๐‘“ , . . . , ๐œƒ1๐‘“ ) , ๐‘– ๐œƒ1๐‘“ =

โˆ‘๐‘›๐‘—=1

๐‘ ๐‘˜ (๐‘ ๐‘—๐‘–

+

๐ถ๐‘— ๐‘๐‘—๐‘– ) ๐‘€

,

๐‘๐‘˜๐‘– , ๐‘– + ๐ถ ๐‘๐‘– ) โˆ‘๐‘›๐‘š=1 (๐‘ ๐‘š ๐‘š ๐‘š

A nonlinear system is introduced in parallel with system (1): 2

โˆ๐‘›๐‘—=1 exp [โˆ’ ((๐‘ฅ๐‘— โˆ’ ๐‘ฅ๐‘–๐‘— ) /๐›ฟ๐‘—๐‘– ) ] โˆ‘๐‘€ ๐‘–=1

โˆ๐‘›๐‘—=1

exp [โˆ’ ((๐‘ฅ๐‘— โˆ’

(8)

3. Bionic Hybrid Controller

๐œ‰ (๐‘ฅ) = (๐œ‰1 (๐‘ฅ) , ๐œ‰2 (๐‘ฅ) , . . . , ๐œ‰๐‘€ (๐‘ฅ)) , ๐œ‰ (๐‘ฅ) =

๐‘‡ ๐‘‡ ๐œ‘ (๐‘ฅ) + ๐ถ๐‘˜ ๐œƒ2๐ท ๐œ‘ (๐‘ฅ) , ๐‘ข๐ท (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท) = ๐œƒ1๐ท

(6) ๐‘‡

๐‘–

(7)

where ๐œƒ1๐‘“ , ๐œƒ1๐‘” , ๐œƒ1๐ท are on behalf of the current state of the biological individuals and ๐œƒ2๐‘“ , ๐œƒ2๐‘” , ๐œƒ2๐ท represent development trend of the biological individuals in the future.

๐‘‡

1 2 ๐œƒ2๐‘“ = (๐œƒ2๐‘“ , ๐œƒ2๐‘“ , . . . , ๐œƒ2๐‘“๐‘“ ) , ๐‘– = ๐œƒ2๐‘“

๐‘‡ ๐‘‡ ๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) = ๐œƒ1๐‘” ๐œ‚ (๐‘ฅ) + ๐ถ๐‘˜ ๐œƒ2๐‘” ๐œ‚ (๐‘ฅ) ,

2 ๐‘ฅ๐‘–๐‘— ) /๐›ฟ๐‘—๐‘– ) ]

.

ฬ‚ฬ‡ 1 = ๐‘ฅ2 , ๐‘ฅ ฬ‚ฬ‡ 2 = ๐‘ฅ3 ๐‘ฅ

Mathematical Problems in Engineering

3

.. .

Choose the compensation controller as ๐‘ข๐ผ = ๐‘0 sgn (๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ) .

ฬ‚ฬ‡ ๐‘› = ๐‘“ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) + ๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘” , ๐œƒ2๐‘” ) ๐‘ข. ๐‘ฅ (9) Define model error as ฬ‚ฬ‡ ๐‘› (๐‘ก) โˆ’ ๐‘ฅ๐‘›ฬ‡ (๐‘ก) . ๐œ€=๐‘ฅ

(10)

๐‘0 is positive number; then the fuzzy controller of the closed loop system is ๐‘ข=๐›ผ

From system 3 and system (1), it can be obtained that ๐œ€ = [๐‘“ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) โˆ’ ๐‘“ (๐‘ฅ)] + [๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘” , ๐œƒ2๐‘” ) โˆ’ ๐‘” (๐‘ฅ)] ๐‘ข.

(11)

The model error of the original system and the identification model combined as

๐œ™2๐‘“ = ๐œƒ2๐‘“ โˆ’

(12)

โˆ— ๐œ™2๐‘” = ๐œƒ2๐‘” โˆ’ ๐œƒ2๐‘”

โˆ— โˆ— , ๐œƒ2๐‘“ ) โˆ’ ๐‘“ (๐‘ฅ) ๐œ” = ๐›ผ [๐‘“ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ โˆ— โˆ— , ๐œƒ2๐‘” ) โˆ’ ๐‘” (๐‘ฅ)) ๐‘ข๐‘ ] + (1 โˆ’ ๐›ผ) ๐‘” (๐‘ฅ) (๐‘ขโˆ— (13) + (๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘”

โˆ’ ๐‘ข๐ท (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท)) . Tracking error can be written as ๐‘’ ฬ‡ = ฮ› ๐‘ ๐‘’ + ๐‘๐‘ {๐›ผ (๐‘“ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) โˆ’ ๐‘“ (๐‘ฅ) (14)

โ‹… (๐‘ขโˆ— โˆ’ ๐‘ข๐ท (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท)) โˆ’ ๐‘๐‘ ๐‘” (๐‘ฅ) (๐‘ข๐‘  + ๐‘ข๐ผ ) . Following design ๐‘ข๐‘  satisfies ๐‘‰ฬ‡ โ‰ค 0, and design supervision controller as ๐‘‰ ๐‘ ๐›ผ ๓ต„จ๓ต„จ ฬ‚ ๓ต„จ ๓ต„จ๓ต„จ๐‘“ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ )๓ต„จ๓ต„จ๓ต„จ ๐‘ข๐‘  = ( ) sgn (๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ) [ ๓ต„จ ๓ต„จ ๐‘”1 (๐‘ฅ) ๐‘‰ ๓ต„จ ๓ต„จ ๓ต„จ ๓ต„จ + ๐‘“1 (๐‘ฅ) (๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘”ฬ‚ (๐‘ฅ๐œƒ1๐‘” , ๐œƒ2๐‘” )๓ต„จ๓ต„จ๓ต„จ๓ต„จ + ๐‘”2 (๐‘ฅ) ๓ต„จ๓ต„จ๓ต„จ๐‘ข๐‘ ๓ต„จ๓ต„จ๓ต„จ) ๐‘‰ ๐‘ ๓ต„จ (๐‘›) ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ + ๐‘˜๐‘‡ ๐‘’)] + ( ) sgn (๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ) (1 (15) + (๐‘“1 (๐‘ฅ) + ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘ฆ๐‘š ๓ต„จ ๐‘‰ ๓ต„จ (๐‘›) ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ ๐‘‡ ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ + ๓ต„จ๓ต„จ๐‘˜ ๐‘’๓ต„จ๓ต„จ) + ๐‘”2 (๐‘ฅ) ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘ข๐ผ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ] . + ๐‘”1 (๐‘ฅ) (๐‘“1 (๐‘ฅ) + ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘ฆ๐‘š ๓ต„จ ๓ต„จ ๓ต„จ

(17)

If ๐‘‰ โ‰ค ๐‘‰, the supervisory controller is 0; if the system tends to separate, ๐‘‰ โ‰ฅ ๐‘‰, using ๐‘ข๐‘  to ensure ๐‘‰ โ‰ค ๐‘‰.

โˆ— โˆ— (๐œƒ1๐‘“ , ๐œƒ2๐‘“ )

min

๓ต„จ ๓ต„จ [sup ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘“ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) โˆ’ ๐‘“ (๐‘ฅ)๓ต„จ๓ต„จ๓ต„จ๓ต„จ] ,

min

๓ต„จ ๓ต„จ [sup ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘” (๐‘ฅ | ๐œƒ1๐‘” , ๐œƒ2๐‘” ) โˆ’ ๐‘” (๐‘ฅ)๓ต„จ๓ต„จ๓ต„จ๓ต„จ] ,

min

๓ต„จ ๓ต„จ [sup ๓ต„จ๓ต„จ๓ต„จ๐‘ข (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท) โˆ’ ๐‘ข (๐‘ฅ)๓ต„จ๓ต„จ๓ต„จ]

๐œƒ1๐‘“ โˆˆฮฉ1๐‘“ ,๐œƒ2๐‘“ โˆˆฮฉ2๐‘“

๐‘ฅโˆˆ๐‘ข๐ผ

โˆ— โˆ— , ๐œƒ2๐‘” ) (๐œƒ1๐‘”

ฬ‚ | ๐œƒ , ๐œƒ ), ๐‘”(๐‘ฅ ฬ‚ using ๐‘“(๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ), ๐‘ข๐ท(๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท) 1๐‘“ 2๐‘“ ฬ‚ ฬ‚ replace ๐‘“(๐‘ฅ), ๐‘”(๐‘ฅ), and ๐‘ข๐ท(๐‘ฅ); the minimum approximation error is

๓ต„จ ๓ต„จ โˆ’ ๐›ผ) [๓ต„จ๓ต„จ๓ต„จ๐‘ข๐ท (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท)๓ต„จ๓ต„จ๓ต„จ

๓ต„จ ๓ต„จ + ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘˜0๐‘‡ ๐‘’๓ต„จ๓ต„จ๓ต„จ๓ต„จ] + (1 โˆ’ ๐›ผ) ๐‘ข๐ท (๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท) + ๐‘ข๐‘  + ๐‘ข๐ผ .

= arg

โˆ— , ๐œ™1๐‘” = ๐œƒ1๐‘” โˆ’ ๐œƒ1๐‘”

+ [๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘” , ๐œƒ2๐‘” ) โˆ’ ๐‘” (๐‘ฅ)] ๐‘ข๐‘ )} + ๐‘๐‘ (1 โˆ’ ๐›ผ) ๐‘” (๐‘ฅ)

๐‘”ฬ‚ (๐‘ฅ | ๐œƒ1๐‘” , ๐œƒ2๐‘” )

๓ต„จ (๐‘›) ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ [โˆ’๐‘“ฬ‚ (๐‘ฅ | ๐œƒ1๐‘“ , ๐œƒ2๐‘“ ) + ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๐‘ฆ๐‘š ๓ต„จ

Adjusting optimal parameters of hybrid fuzzy system based โˆ— โˆ— โˆ— โˆ— โˆ— โˆ— , ๐œƒ2๐‘“ , ๐œƒ1๐‘” , ๐œƒ2๐‘” , ๐œƒ1๐ท , ๐œƒ2๐ท on Bionic ๐œƒ1๐‘“

๐‘‡ ๐ถ๐œ‚ (๐‘ฅ) ๐‘ข + ๐œ”, + ๐œ™2๐‘”

โˆ— ๐œƒ2๐‘“ ,

1

4. The Design of Adaptive Laws

๐‘‡ ๐‘‡ ๐‘‡ ๐œ€ = ๐œ™1๐‘“ ๐œ‰ (๐‘ฅ) + ๐ถ๐œ™2๐‘“ ๐œ‰ (๐‘ฅ) + ๐œ™1๐‘” ๐œ‚ (๐‘ฅ) ๐‘ข

โˆ— , ๐œ™1๐‘“ = ๐œƒ1๐‘“ โˆ’ ๐œƒ1๐‘“

(16)

= arg

๐œƒ1๐‘” โˆˆฮฉ1๐‘” ,๐œƒ2๐‘” โˆˆฮฉ2๐‘”

(18)

๐‘ฅโˆˆ๐‘ข๐ผ

โˆ— โˆ— , ๐œƒ2๐ท ) (๐œƒ1๐ท

= arg

๐œƒ1๐ท โˆˆฮฉ1๐ท ,๐œƒ2๐ท โˆˆฮฉ2๐ท

๐‘ฅโˆˆ๐‘ข๐ผ

๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€1๐‘“ } , : ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘“ ฮฉ1๐‘“ = {๐œƒ1๐‘“ ๓ต„ฉ ๓ต„ฉ ๐‘™ ๐‘™ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€ } , ฮฉ2๐‘“ = {๐œƒ2๐‘“ : ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘“ ๓ต„ฉ๓ต„ฉ 2๐‘“ ๓ต„ฉ ๓ต„ฉ ๐‘™ ๐‘™ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€1๐‘” } , ฮฉ1๐‘” = {๐œƒ1๐‘” : ๐›ฟ โ‰ค ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘” ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๐‘™ ฮฉ2๐‘” = {๐œƒ2๐‘” : ๐›ฟ โ‰ค ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€2๐‘” } , ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€1๐ท} , ฮฉ1๐ท = {๐œƒ1๐ท : ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐ท ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๐‘™ ฮฉ2๐ท = {๐œƒ2๐ท : ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐ท๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€2๐ท} .

(19)

ฮฉ1๐‘“ , ฮฉ2๐‘“ , ฮฉ1๐‘” , ฮฉ2๐‘” , ฮฉ1๐ท, ฮฉ2๐ท are, respectively, the constraint set of ๐œƒ1๐‘“ , ๐œƒ2๐‘“ , ๐œƒ1๐‘” , ๐œƒ2๐‘” , ๐œƒ1๐ท, ๐œƒ2๐ท and ๐‘€1๐‘“ , ๐‘€2๐‘“ , ๐‘€1๐‘” , ๐‘€2๐‘” , ๐‘€1๐ท, ๐‘€2๐ท, ๐›ฟ are given constant. Consider the followed Lyapunov function: 1 ๐›ผ โˆ— ๐‘‡ โˆ— ๐‘‰ = ๐‘’๐‘‡ ๐‘ƒ๐‘’ + (๐œƒ1๐‘“ โˆ’ ๐œƒ1๐‘“ ) (๐œƒ1๐‘“ โˆ’ ๐œƒ1๐‘“ ) 2 2๐›พ1๐‘“ +

๐›ผ โˆ— ๐‘‡ โˆ— (๐œƒ2๐‘“ โˆ’ ๐œƒ2๐‘“ ) (๐œƒ2๐‘“ โˆ’ ๐œƒ2๐‘“ ) 2๐›พ2๐‘“

4

Mathematical Problems in Engineering +

๐›ผ โˆ— ๐‘‡ โˆ— (๐œƒ1๐‘” โˆ’ ๐œƒ1๐‘” ) (๐œƒ1๐‘” โˆ’ ๐œƒ1๐‘” ) 2๐›พ1๐‘”

๐œƒฬ‡ 2๐‘” = โˆ’๐›พ2๐‘” [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‚ (๐‘ฅ) ๐‘ข, ๐œƒฬ‡ 1๐ท = โˆ’๐›พ1๐ท [๐›พ๐œ€ + ๐‘” (๐‘ฅ) ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‘ (๐‘ฅ) ,

๐›ผ โˆ— ๐‘‡ โˆ— (๐œƒ2๐‘” โˆ’ ๐œƒ2๐‘” ) (๐œƒ2๐‘” โˆ’ ๐œƒ2๐‘” ) + 2๐›พ2๐‘” +

(1 โˆ’ ๐›ผ) โˆ— ๐‘‡ โˆ— (๐œƒ1๐ท โˆ’ ๐œƒ1๐ท ) (๐œƒ1๐ท โˆ’ ๐œƒ1๐ท ) 2๐›พ1๐ท

+

๐›ผ โˆ— ๐‘‡ โˆ— (๐œƒ โˆ’ ๐œƒ2๐ท ) (๐œƒ2๐ท โˆ’ ๐œƒ2๐ท ). 2๐›พ2๐ท 2๐ท

๐œƒฬ‡ 2๐ท = โˆ’๐›พ2๐ท [๐›พ๐œ€ + ๐‘” (๐‘ฅ) ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‘ (๐‘ฅ) , (21) where ๐œƒ1๐‘“ , ๐œƒ1๐‘” , ๐œƒ1๐ท represent the current state and ๐œƒ2๐‘“ , ๐œƒ2๐‘” , ๐œƒ2๐ท represent the development trend of systems, which makes the systems have good active adaptability. (20)

๐‘ƒ is a positive definite matrix and satisfies the Lyapunov equation, and ๐‘„ is an arbitrary positive definite matrix. The bionic adaptive laws of the identification system are as follows: ๐œƒฬ‡ 1๐‘“ = โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ) , ๐œƒฬ‡ 2๐‘“ = โˆ’๐›พ2๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‰ (๐‘ฅ) , ๐œƒฬ‡ 1๐‘” = โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ) ๐‘ข,

ฬ‡ ๐œƒ1๐‘“

ฬ‡ ๐œƒ2๐‘“

= โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ) ๐‘‡ ๐œƒ1๐‘“ ๐œƒ1๐‘“ ๐œ‰ (๐‘ฅ) + ๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๓ต„จ ๓ต„จ2 . ๓ต„จ๓ต„จ๓ต„จ๐œƒ1๐‘“ ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ ๓ต„จ

(22)

๐‘‡ ๐‘™ ๐‘‡ ๐‘™ {โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ) ๐‘ข (๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ) ๐œ‚ (๐‘ฅ) ๐‘ข < 0 ๐‘™ฬ‡ ={ ๐œƒ1๐‘” (๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ) ๐œ‚๐‘™ (๐‘ฅ) ๐‘ข โ‰ฅ 0 {0

๐‘ƒ {โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ)}

๐‘™ฬ‡ ๐œƒ2๐‘”

(23)

ฬ‚ | ๐œƒ1๐‘” , ๐œƒ2๐‘” ), if one element of ๐œƒ1๐‘” , ๐œƒ2๐‘” satisfies In terms of ๐‘”(๐‘ฅ ๐‘– ๐‘– ๐œƒ1๐‘” = ๐›ฟ, ๐œƒ2๐‘” = ๐›ฟ, then

ฬ‡ ๐œƒ2๐‘”

It will affect the stability when the system is disturbed. In this paper, a hybrid adaptive fuzzy controller is designed, and the adaptive law is given. The following analysis is conducted for the performance of fuzzy controller. To ensure ๐œƒ1๐‘“ โˆˆ ฮฉ1๐‘“ , ๐œƒ2๐‘“ โˆˆ ฮฉ2๐‘“ , ๐œƒ1๐‘” โˆˆ ฮฉ1๐‘” , ๐œƒ2๐‘” โˆˆ ฮฉ2๐‘” , ๐œƒ1๐ท โˆˆ ฮฉ1๐ท, ๐œƒ2๐ท โˆˆ ฮฉ2๐ท, parametric projection method is designed to satisfy the parameter vector. ฬ‚ | ๐œƒ , ๐œƒ ), In terms of ๐‘“(๐‘ฅ 1๐‘“ 2๐‘“

๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€1๐‘“ or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€1๐‘“ , ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‰ (๐‘ฅ) ๐œƒ1๐‘“ โ‰ฅ 0) {โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€1๐‘“ , ๐‘’ ๐‘ƒ๐‘๐‘ ๐œ‰ (๐‘ฅ) ๐œƒ1๐‘“ < 0) ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€2๐‘“ or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€2๐‘“ , ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‰ (๐‘ฅ) ๐œƒ2๐‘“ โ‰ฅ 0) {โˆ’๐›พ2๐‘“ [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ2๐‘“ [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‰ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘“ ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€2๐‘“ , ๐‘’ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‰ (๐‘ฅ) ๐œƒ2๐‘“ < 0)

which satisfies the projection operator

ฬ‡ ๐œƒ1๐‘”

5. Analysis of System Stability and Convergence

๐‘‡ ๐‘™ {โˆ’๐›พ2๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‚ (๐‘ฅ) ๐‘ข ={ {0

(24) (๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ) ๐œ‚๐‘™ (๐‘ฅ) ๐‘ข โ‰ค 0 (๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ) ๐œ‚๐‘™ (๐‘ฅ) ๐‘ข > 0.

Otherwise,

๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€1๐‘” or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€1๐‘” , ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‚ (๐‘ฅ) ๐œƒ1๐‘” โ‰ฅ 0) {โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€1๐‘” , ๐‘’ ๐‘ƒ๐‘๐‘ ๐œ‚ (๐‘ฅ) ๐œƒ1๐‘” < 0) ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€2๐‘” or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€2๐‘” , ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‚ (๐‘ฅ) ๐œƒ2๐‘” โ‰ฅ 0) {โˆ’๐›พ2๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‚ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ2๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐ถ] ๐œ‚ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘” ๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€2๐‘” , ๐‘’ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‚ (๐‘ฅ) ๐œƒ2๐‘” < 0)

(25)

Mathematical Problems in Engineering

5 ๐‘‡ ๐œƒ1๐‘” ๐œƒ1๐‘” ๐œ‚ (๐‘ฅ) + ๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๓ต„จ ๓ต„จ2 . ๓ต„จ๓ต„จ๐œƒ ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ 1๐‘” ๓ต„จ๓ต„จ

which satisfies the projection operator

๐‘‡

๐‘ƒ {โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ)}

(26)

๐‘‡

= โˆ’๐›พ1๐‘” [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‚ (๐‘ฅ)

ฬ‡ ๐œƒ1๐ท

ฬ‡ ๐œƒ2๐ท

In terms of ๐‘ข๐ท(๐‘ฅ | ๐œƒ1๐ท, ๐œƒ2๐ท),

๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐ท๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€1๐ท or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ1๐ท๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€1๐ท, ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐œ‘ (๐‘ฅ) ๐œƒ1๐ท โ‰ฅ 0) {โˆ’๐›พ1๐ท [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ)] ๐œ‘ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ1๐ท [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ)] ๐œ‘ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๐œƒ1๐ท๓ต„ฉ๓ต„ฉ = ๐‘€1๐ท or ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐œ‘ (๐‘ฅ) ๐œƒ1๐ท < 0) ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ ๐‘‡ ๐‘‡ when (๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐ท๓ต„ฉ๓ต„ฉ๓ต„ฉ < ๐‘€2๐ท or ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ2๐ท๓ต„ฉ๓ต„ฉ๓ต„ฉ = ๐‘€2๐ท, ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐œ‘ (๐‘ฅ) ๐œƒ2๐ท โ‰ฅ 0) {โˆ’๐›พ2๐ท [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ)] ๐œ‘ (๐‘ฅ) ={ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘‡ ๐‘‡ ๐‘‡ {๐‘ƒ {โˆ’๐›พ2๐ท [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ)] ๐œ‘ (๐‘ฅ)} when (๓ต„ฉ๓ต„ฉ๐œƒ2๐ท๓ต„ฉ๓ต„ฉ = ๐‘€2๐ท, ๐‘’ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐œ‘ (๐‘ฅ) ๐œƒ2๐ท < 0)

which satisfies the projection operator

(1) All parameters and state variables are bounded: ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘“ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€1๐‘“ , ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐œƒ2๐‘“ ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€2๐‘“ , ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ ๐‘™ ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๐œƒ1๐‘” ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€1๐‘” , ๓ต„ฉ ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ๐‘™ ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ๐‘™ ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€ , ๓ต„ฉ๓ต„ฉ 2๐‘” ๓ต„ฉ๓ต„ฉ 2๐‘” ๓ต„ฉ 1๐ท ๓ต„ฉ 1๐ท๓ต„ฉ๓ต„ฉ ๓ต„ฉ๓ต„ฉ๓ต„ฉ๐œƒ๐‘™ ๓ต„ฉ๓ต„ฉ๓ต„ฉ โ‰ค ๐‘€ , ๓ต„ฉ๓ต„ฉ 2๐ท๓ต„ฉ๓ต„ฉ 2๐ท

๐‘‡

๐‘ƒ {โˆ’๐›พ1๐ท [๐›พ๐œ€ + ๐‘’ ๐‘ƒ๐‘๐‘ ] ๐œ‘ (๐‘ฅ)} = โˆ’๐›พ1๐ท [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ] ๐œ‘ (๐‘ฅ)

(27)

(28)

๐œƒ๐‘‡ ๐œƒ ๐œ‘ (๐‘ฅ) + ๐›พ1๐ท [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ)] 1๐ท๓ต„จ 1๐ท ๓ต„จ2 . ๓ต„จ๓ต„จ๐œƒ1๐ท๓ต„จ๓ต„จ ๓ต„จ ๓ต„จ Theorem 1. Set the constraints set of ฮฉ1๐‘“ , ฮฉ2๐‘“ , ฮฉ1๐‘” , ฮฉ2๐‘” , ฮฉ1๐ท, ฮฉ2๐ท which are given by (19); if the initial value of the parameter satisfies ๐œƒ1๐‘“ (0) โˆˆ ฮฉ1๐‘“ , ๐œƒ2๐‘“ (0) โˆˆ ฮฉ2๐‘“ , ๐œƒ1๐‘” (0) โˆˆ ฮฉ1๐‘” , ๐œƒ2๐‘” (0) โˆˆ ฮฉ2๐‘” , ๐œƒ1๐ท(0) โˆˆ ฮฉ1๐ท, ๐œƒ2๐ท(0) โˆˆ ฮฉ2๐ท, to any ๐‘ก โ‰ฅ 0, adaptive laws can ensure ๐œƒ1๐‘“ (๐‘ก) โˆˆ ฮฉ1๐‘“ , ๐œƒ2๐‘“ (๐‘ก) โˆˆ ฮฉ2๐‘“ , ๐œƒ1๐‘” (๐‘ก) โˆˆ ฮฉ1๐‘” , ๐œƒ2๐‘” (๐‘ก) โˆˆ ฮฉ2๐‘” , ๐œƒ1๐ท(๐‘ก) โˆˆ ฮฉ1๐ท, ๐œƒ2๐ท(๐‘ก) โˆˆ ฮฉ2๐ท. ๐‘‡ Proof. Set ๐‘‰1๐‘“ = (1/2)๐œƒ1๐‘“ ๐œƒ1๐‘“ , if formula (24) satisfies the first condition, when |๐œƒ1๐‘“ | = ๐‘€1๐‘“ , |๐œƒ1๐‘“ | โ‰ค ๐‘€1๐‘“ . Otherwise, ฬ‡ = โˆ’๐›พ1๐‘“ (๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œƒ๐‘‡ )๐œ‰(๐‘ฅ) โ‰ค 0, and |๐œƒ1๐‘“ | โ‰ค ๐‘€1๐‘“ ; ๐‘‰1๐‘“ 1๐‘“ if formula (24) satisfies the second condition, then |๐œƒ1๐‘“ | = ๐‘‡ ฬ‡ ๐‘€1๐‘“ , and ๐‘‰1๐‘“ = โˆ’๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ]๐œƒ1๐‘“ ๐œ‰(๐‘ฅ) + ๐›พ1๐‘“ [๐›พ๐œ€ + ๐‘‡ ๐‘‡ ๐œƒ1๐‘“ ๐œ‰(๐‘ฅ)/|๐œƒ1๐‘“ |2 )๐œƒ1๐‘“ ๐œ‰(๐‘ฅ) = 0; therefore, in this case, ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ](๐œƒ1๐‘“ |๐œƒ1๐‘“ | โ‰ค ๐‘€1๐‘“ , due to the initial conditions ๐œƒ1๐‘“ (0) โ‰ค ๐‘€1๐‘“ , to any ๐‘ก โ‰ฅ 0, ๐œƒ1๐‘“ (๐‘ก) โ‰ค ๐‘€1๐‘“ . Similarly, it can be proved that ๐œƒ2๐‘“ (๐‘ก) โ‰ค ๐‘€2๐‘“ , ๐œƒ1๐‘” (๐‘ก) โ‰ค ๐‘€1๐‘” , ๐œƒ2๐‘” (๐‘ก) โ‰ค ๐‘€2๐‘” , ๐œƒ1๐ท(๐‘ก) โ‰ค ๐‘€1๐ท, and ๐œƒ2๐ท(๐‘ก) โ‰ค ๐‘€2๐ท. ๐‘™ ๐‘™ฬ‡ = ๐›ฟ, ๐œƒ1๐‘” โ‰ฅ 0, It can be obtained by formula (24) that if ๐œƒ1๐‘”

(29)

|๐‘ฅ (๐‘ก)| โ‰ค ๐‘€๐‘ฅ and ๐‘€1๐‘“ , ๐‘€2๐‘“ , ๐‘€1๐‘” , ๐‘€2๐‘” , ๐‘€1๐ท, ๐‘€2๐ท, ๐‘€๐‘ฅ are given positive constant. (2) The boundary of tracking error and the model error is given by the minimum approximation error set ๐œ™ = (๐œ™๐‘“ + ๐œ™๐‘” ๐‘ข)๐‘‡ ๐œ‰(๐‘ฅ); then ๐‘ก

๐‘ก

๐‘ก

๓ต„จ ๓ต„จ2 โˆซ |๐‘’ (๐œ)|2 ๐‘‘๐œ + โˆซ ๓ต„จ๓ต„จ๓ต„จ๐œ™ (๐œ)๓ต„จ๓ต„จ๓ต„จ ๐‘‘๐œ โ‰ค ๐‘Ž + ๐‘ โˆซ |๐œ” (๐œ)|2 ๐‘‘๐œ, 0 0 0 โˆ€๐‘ก โ‰ฅ 0, ๐‘ก

2

๐‘ก

2

๐‘ก

(30)

2

โˆซ |๐‘’ (๐œ)| ๐‘‘๐œ + โˆซ |๐œ€ (๐œ)| ๐‘‘๐œ โ‰ค ๐‘Ž + ๐‘ โˆซ |๐œ” (๐œ)| ๐‘‘๐œ, 0

0

0

โˆ€๐‘ก โ‰ฅ 0.

๐‘™ then there is ๐œƒ1๐‘” โ‰ฅ ๐›ฟ, |๐œƒ1๐‘” | โ‰ฅ ๐›ฟ. Similarly, ๐œƒ2๐‘” โ‰ฅ ๐›ฟ.

Theorem 2. Hybrid adaptive fuzzy systems form (1), where ๐‘“(๐‘ฅ) and ๐‘”(๐‘ฅ) are all unknown functions, and the equivalent controller ๐‘ข๐‘ , the output controller ๐‘ข๐ท, the supervisory controller ๐‘ข๐‘  , and the adaptive compensation controller ๐‘ข๐ผ are, respectively, designed according to formulas (3), (8), (15), and (16). The adaptive law is given by (21), and adaptive fuzzy control system must have the following characteristics:

(3) If square of ๐œ” is integrable, it means that โˆž โˆซ0 |๐œ”(๐œ)|2 ๐‘‘๐‘ก < โˆž; then lim๐‘กโ†’โˆž |๐‘’(๐‘ก)| = 0, lim๐‘กโ†’โˆž |๐œ€(๐‘ก)| = 0. ๐‘™ ๐‘™ ๐‘™ ๐‘™ โ€– โ‰ค ๐‘€1๐‘“ , โ€–๐œƒ2๐‘“ โ€– โ‰ค ๐‘€2๐‘“ , โ€–๐œƒ1๐‘” โ€– โ‰ค ๐‘€1๐‘” , โ€–๐œƒ2๐‘” โ€– โ‰ค Proof. โ€–๐œƒ1๐‘“

๐‘™ ๐‘™ โ€– โ‰ค ๐‘€1๐ท, and โ€–๐œƒ2๐ท โ€– โ‰ค ๐‘€2๐ท have been proved in ๐‘€2๐‘” , โ€–๐œƒ1๐ท Theorem 1, and the following is to prove that |๐‘ฅ| โ‰ค ๐‘€๐‘ฅ .

6

Mathematical Problems in Engineering

While designing the controller ๐‘ข๐‘  , set ๐‘‰ < ๐‘‰, ๐‘‰ is a given constant, set ๐œ† ๐‘ƒmin is the minimum eigenvalue of ๐‘ƒ, and due to ๐‘‰ = (1/2)๐‘’๐‘‡ ๐‘ƒ๐‘’, it can be obtained that ๐‘‰1/2 โ‰ฅ (

1/2 ๐œ† ๐‘ƒmin 1/2 ๐œ† ๓ต„จ ๓ต„จ ) |๐‘’| โ‰ฅ ( ๐‘ƒmin ) (|๐‘ฅ| โˆ’ ๓ต„จ๓ต„จ๓ต„จ๐‘ฆ๐‘š ๓ต„จ๓ต„จ๓ต„จ) . 2 2

due to that, ๐‘

โˆ‘ ๐œ™1๐‘” [โˆ’๐›พ๐œ€๐œ‚๐‘ (๐‘ฅ) ๐‘ข] ๐‘

๐‘ž

Therefore, ๐‘‰ โ‰ค ๐‘‰ equals |๐‘ฅ| โ‰ค |๐‘ฆ๐‘š | + (2๐‘‰/๐œ† ๐‘ƒmin )1/2 , and to satisfy |๐‘ฅ| โ‰ค ๐‘€๐‘ฅ , it can choose ๐œ† ๐‘ƒmin ๓ต„จ ๓ต„จ (๐‘€๐‘ฅ โˆ’ sup ๓ต„จ๓ต„จ๓ต„จ๐‘ฆ๐‘š ๓ต„จ๓ต„จ๓ต„จ) . 2 ๐‘กโ‰ฅ0

๐‘™=1

๐‘

โˆ‘ ๐œ™2๐‘” [โˆ’๐›พ๐œ€๐ถ๐œ‚๐‘ (๐‘ฅ) ๐‘ข] ๐‘

2

๐‘‰=

๐‘€

๐‘ž

๐‘™ + โˆ‘ ๐œ™1๐‘” [โˆ’๐›พ๐œ€๐œ‚๐‘ž (๐‘ฅ) ๐‘ข] = โˆ‘ ๐œ™1๐‘” [โˆ’๐›พ๐œ€๐œ‚๐‘™ (๐‘ฅ) ๐‘ข] ,

(31)

(35) ๐‘€

๐‘ž

๐‘™ + โˆ‘ ๐œ™2๐‘” [โˆ’๐›พ๐œ€๐ถ๐œ‚๐‘ž (๐‘ฅ) ๐‘ข] = โˆ‘ ๐œ™2๐‘” [โˆ’๐›พ๐œ€๐ถ๐œ‚๐‘™ (๐‘ฅ) ๐‘ข] ,

(32)

๐‘ž

๐‘™=1

๐‘‡ ๐‘‡ ๐‘‡ ๐œ™1๐‘“ [โˆ’๐›พ๐œ€๐œ‰ (๐‘ฅ)] + ๐œ™1๐‘” [โˆ’๐›พ๐œ€๐œ‚ (๐‘ฅ) ๐‘ข] + ๐œ™2๐‘“ [โˆ’๐›พ๐œ€๐ถ๐œ‰ (๐‘ฅ)]

Proof. Combine the adaptive laws (21), (22), (24), (25), and (26) into the following Lyapunov function: 1 ๐‘‰ฬ‡ = โˆ’ ๐‘’๐‘‡ ๐‘„๐‘’ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ” 2 +

๐‘‡ + ๐œ™2๐‘” [โˆ’๐›พ๐œ€๐ถ๐œ‚ (๐‘ฅ) ๐‘ข] = โˆ’๐›พ๐œ™2 โˆ’ ๐œ†๐œ™๐œ”,

and there is ๐‘‡ ๐‘‡ ๐‘‡ ๐‘‡ ๐œ™ = ๐œ™1๐‘“ ๐œ‰ (๐‘ฅ) + ๐ถ๐œ™2๐‘“ ๐œ‰ (๐‘ฅ) + ๐œ™1๐‘” ๐œ‚ (๐‘ฅ) ๐‘ข + ๐œ™2๐‘” ๐ถ๐œ‚ (๐‘ฅ) ๐‘ข

(36) = ๐œ€ โˆ’ ๐œ”.

๐›ผ ๐‘‡ ฬ‡ ๐œ™ [๐œƒ + ๐›พ1๐‘“ ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‰ (๐‘ฅ)] ๐›พ1๐‘“ 1๐‘“ 1๐‘“

Set ๐‘’ ๐‘’ฬƒ = [ ] , ๐œ™

๐›ผ ๐‘‡ ฬ‡ ๐œ™ [๐œƒ + ๐›พ2๐‘“ ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‰ (๐‘ฅ)] + ๐›พ2๐‘“ 2๐‘“ 2๐‘“ +

๐›ผ ๐‘‡ ฬ‡ ๐œ™ [๐œƒ + ๐›พ1๐‘” ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‚ (๐‘ฅ) ๐‘ข] ๐›พ1๐‘” 1๐‘” 1๐‘”

+

๐›ผ ๐‘‡ ฬ‡ ๐œ™ [๐œƒ + ๐›พ2๐‘” ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‚ (๐‘ฅ) ๐‘ข] ๐›พ2๐‘” 2๐‘” 2๐‘”

+

1โˆ’๐›ผ ๐‘‡ ๐œ™ [๐œƒฬ‡ + ๐›พ ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐œ‘ (๐‘ฅ)] ๐›พ1๐ท 1๐ท 1๐ท 1๐ท

+

1โˆ’๐›ผ ๐‘‡ ๐œ™ [๐œƒฬ‡ + ๐›พ ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐‘” (๐‘ฅ) ๐ถ๐œ‘ (๐‘ฅ)] . ๐›พ2๐ท 2๐ท 2๐ท 2๐ท

ฬƒ=[ ๐‘„

(33)

1 ฬƒ ๐‘’ + ๐‘’ฬƒ๐‘‡ ๐‘ƒฬƒ๐‘› ๐œ” = โˆ’ ๐‘’ฬƒ๐‘‡๐‘„ฬƒ 2 1 1 2 1 ๓ต„จ๓ต„จ ฬƒ ๓ต„จ๓ต„จ2 โ‰ค โˆ’ ๐œ† ๐‘„min ๐‘’|2 + |ฬƒ ๐‘’| + ๓ต„จ๓ต„จ๓ต„จ๐‘ƒ๐‘› ๐œ”๓ต„จ๓ต„จ๓ต„จ |ฬƒ ฬƒ 2 2 2 =โˆ’

๐‘

to any ๐‘ก โ‰ฅ 0,

๐‘‡ [โˆ’๐›พ๐œ€๐ถ๐œ‰ (๐‘ฅ)] + โˆ‘ ๐œ™1๐‘” [๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ‚๐‘ (๐‘ฅ) ๐‘ข] + ๐œ™2๐‘“ ๐‘

๐œ† ๐‘„min โˆ’1 ฬƒ 2

๐‘ก

๐‘’ (๐œ)|2 ๐‘‘๐œ โ‰ค โˆซ |ฬƒ 0

๐‘

+ โˆ‘ ๐œ™1๐‘” [โˆ’๐›พ๐œ€๐œ‚๐‘ (๐‘ฅ) ๐‘ข] ๐‘ž

+ โˆ‘ ๐œ™2๐‘” [๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐ถ๐œ‚๐‘ž (๐‘ฅ) ๐‘ข] ๐‘ž

๐‘ž

๐‘‡ + ๐œ™2๐ท [โˆ’๐›พ๐œ€๐ถ๐œ‘ (๐‘ฅ)]

๐‘’|2 + |ฬƒ

(37)

โ‰ค

(38)

1 ๓ต„จ๓ต„จ ฬƒ ๓ต„จ๓ต„จ2 ๓ต„จ๓ต„จ๐‘ƒ ๐œ”๓ต„จ๓ต„จ 2๓ต„จ ๐‘› ๓ต„จ

2 [๐‘‰ (0) โˆ’ ๐‘‰ (๐‘ก)] ๐œ† ๐‘„min โˆ’1 ฬƒ ๓ต„จ๓ต„จ ฬƒ ๓ต„จ๓ต„จ2 ๐‘ก ๓ต„จ๓ต„จ๐‘ƒ๐‘› ๓ต„จ๓ต„จ + ๓ต„จ ๓ต„จ โˆซ |๐œ” (๐œ)|2 ๐‘‘๐œ ๐œ† ๐‘„min โˆ’1 0 ฬƒ

(34)

๐‘ž

],

so it can be obtained that 1 ๐‘‰ฬ‡ โ‰ค โˆ’ ๐‘’๐‘‡ ๐‘„๐‘’ + (๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ โˆ’ ๐›พ๐œ™) ๐œ” โˆ’ ๐›พ๐œ™2 2

1 ๐‘‡ [โˆ’๐›พ๐œ€๐œ‰ (๐‘ฅ)] ๐‘‰ฬ‡ = โˆ’ ๐‘’๐‘‡ ๐‘„๐‘’ + ๐‘’๐‘‡ ๐‘ƒ๐‘๐‘ ๐œ” + ๐œ™1๐‘“ 2

๐‘‡ + โˆ‘ ๐œ™2๐‘” [โˆ’๐›พ๐œ€๐ถ๐œ‚๐‘ž (๐‘ฅ) ๐‘ข] + ๐œ™1๐ท [โˆ’๐›พ๐œ€๐œ‘ (๐‘ฅ)]

0 2๐›พ

๐‘ƒ๐‘๐‘ ๐‘ƒฬƒ๐‘› = [ ] โˆ’๐›พ

Then

๐‘

๐‘„ 0

2 ๐œ† ๐‘„min โˆ’1 ฬƒ

[๐‘‰ (0)]

๓ต„จ๓ต„จ ฬƒ ๓ต„จ๓ต„จ2 ๐‘ก ๓ต„จ๓ต„จ๐‘ƒ๐‘› ๓ต„จ๓ต„จ + ๓ต„จ ๓ต„จ โˆซ |๐œ” (๐œ)|2 ๐‘‘๐œ ๐œ† ๐‘„min โˆ’1 0 ฬƒ

(39)

Mathematical Problems in Engineering

7 0.1

0.3

0.05

0.25

0 0.2

โˆ’0.05

0.15

โˆ’0.1

0.1

โˆ’0.15 โˆ’0.2

0.05 โˆ’0.25 0 โˆ’0.05

โˆ’0.3 0

10

20

30

40

50

60

x1 with disturbance x1 without disturbance

โˆ’0.35

0

10

20

30

40

50

60

x2 with disturbance x2 without disturbance

Figure 1: ๐‘ฅ1 and ๐‘ฅ2 with internal disturbance.

and because of |ฬƒ ๐‘’(๐‘ก)|2 = |๐‘’(๐‘ก)|2 + [๐œ€(๐‘ก)]2 , |๐‘ƒฬƒ๐‘› |2 = |๐‘ƒ๐‘๐‘ |2 + |๐›พ|2 , it can be proved by ๐‘Ž= ๐‘=

2๐‘‰ (0) , (min {๐œ† ๐‘„min , 2๐›พ} โˆ’ 1) ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ2 ๓ต„จ๓ต„จ๐‘ƒ๐‘๐‘ ๓ต„จ๓ต„จ + ๐›พ2 (min {๐œ† ๐‘„min , 2๐›พ} โˆ’ 1)

(40)

noting that {๐œ† ๐‘„min , 2๐›พ} โˆ’ 1 > 0. Proof. If ๐œ” โˆˆ ๐ฟ 2 , we can obtain ๐‘’ โˆˆ ๐ฟ 2 by Theory 2, because the variables are bounded; then ๐‘’ ฬ‡ โˆˆ ๐ฟ โˆž , by Barbalat lemma (if ๐‘’ โˆˆ ๐ฟ 2 โˆฉ ๐ฟ โˆž and ๐‘’ ฬ‡ โˆˆ ๐ฟ โˆž , then lim๐‘กโ†’โˆž |๐‘’(๐‘ก)| = 0); we can get lim๐‘กโ†’โˆž |๐‘’(๐‘ก)| = 0.

6. Simulation Example 1. The inverted pendulum problem is studied by the hybrid adaptive fuzzy control method: ๐‘ฅ1ฬ‡ = ๐‘ฅ2 , ๐‘ฅ2ฬ‡ =

๐‘” sin ๐‘ฅ1 โˆ’ ๐‘š๐‘™๐‘ฅ22 sin ๐‘ฅ1 / (๐‘š๐‘ + ๐‘š) ๐‘™ (4/3 โˆ’ ๐‘š cos2 ๐‘ฅ1 / (๐‘š๐‘ + ๐‘š)) +

(41)

cos ๐‘ฅ1 / (๐‘š๐‘ + ๐‘š) ๐‘ข ๐‘™ (4/3 โˆ’ ๐‘š cos2 ๐‘ฅ1 / (๐‘š๐‘ + ๐‘š))

and ๐‘” = 9.8 m/s2 , ๐‘š๐‘ = 1 kg, ๐‘š = 0.1 kg, ๐‘™ = 0.5 m. Choosing ๐พ๐‘‡ = (๐‘˜1 ๐‘˜2 ) = (1 2) , ๐ถ๐‘˜ = 1, ๐‘„ = diag (10 10), by solv5 ing equation ฮ›๐‘‡๐‘ ๐‘ƒ = ๐‘ƒฮ› ๐‘ = โˆ’๐‘„, then ๐‘ƒ = ( 15 5 5 ).

The membership function is ๐œ‡๐‘€11 (๐‘ฅ1 ) = exp [โˆ’ (

๐‘ฅ1 + (๐œ‹/6) 2 ) ], ๐œ‹/10

๐œ‡๐‘€12 (๐‘ฅ1 ) = exp [โˆ’ (

๐‘ฅ1 2 ) ], ๐œ‹/10

๐œ‡๐‘€13 (๐‘ฅ1 ) = exp [โˆ’ (

๐‘ฅ1 โˆ’ (๐œ‹/6) 2 ) ], ๐œ‹/10

๐‘ฅ + (๐œ‹/6) 2 ๐œ‡๐‘€21 (๐‘ฅ2 ) = exp [โˆ’ ( 2 ) ], ๐œ‹/10 ๐œ‡๐‘€22 (๐‘ฅ2 ) = exp [โˆ’ (

๐‘ฅ2 2 ) ], ๐œ‹/10

๐œ‡๐‘€23 (๐‘ฅ2 ) = exp [โˆ’ (

๐‘ฅ2 โˆ’ (๐œ‹/6) 2 ) ]. ๐œ‹/10

(42)

Set the initial conditions ๐‘ฅ(0) = (โˆ’๐œ‹/9, ๐œ‹/12)๐‘‡ , the original system, and control system with internal disturbance (system state input ๐‘ฅ is substituted by (1 + ๐›ฟ1 )๐‘ฅ, ๐›ฟ1 = 0.5) and external disturbance (๐›ฟ2 = 0.01). From Figures 1โ€“3, when the system is disturbed, the hybrid bionic adaptive controller proposed in this paper makes the system have more anti-interference and good convergence. In addition, this paper makes a comparison when the output trajectory has both internal and external disturbances; it can be seen that the fuzzy system has achieved good results. From Figure 4(a), when ๐ถ๐‘˜ = 1, the system has good convergence and biological adaptability than system controlled by traditional method. From Figure 4(b),

8

Mathematical Problems in Engineering 0.3

0.1 0.05

0.25

0 0.2

โˆ’0.05

0.15

โˆ’0.1

0.1

โˆ’0.15 โˆ’0.2

0.05 โˆ’0.25 0 โˆ’0.05

โˆ’0.3 0

10

20

30

40

50

60

โˆ’0.35

0

x1 with disturbance x1 without disturbance

10

20

30

40

50

60

40

50

60

x2 with disturbance x2 without disturbance

Figure 2: ๐‘ฅ1 and ๐‘ฅ2 with external disturbance.

0.3

0.1 0.05

0.25

0 0.2

โˆ’0.05

0.15

โˆ’0.1

0.1

โˆ’0.15 โˆ’0.2

0.05 โˆ’0.25 0 โˆ’0.05

โˆ’0.3 0

10

20

30

40

50

60

x1 with disturbance x1 without disturbance

โˆ’0.35

0

10

20

30

x2 with disturbance x2 without disturbance

Figure 3: ๐‘ฅ1 and ๐‘ฅ2 with both internal and external disturbances.

by comparing the output trajectories, it can be obtained that the bionic hybrid fuzzy control has better result. Example 2. Consider the following uncertain system:

where ๐œ” โˆˆ ๐‘… is the unmodelled dynamics of the system. ฮ”โ„Ž(๐œ”) is the related uncertain item of the unmodelled dynamics ๐œ”. Set

๐œ”ฬ‡ = โˆ’๐œ” + ๐‘ฅ12 + ๐‘ฅ22 , ๐‘ฅ1ฬ‡ = ๐‘ฅ2 , ๐‘ฅ2ฬ‡ = โˆ’๐‘ฅ โˆ’ 2๐‘ฅ2 + ฮ”๐‘“ (๐‘ฅ, V, ๐‘ก) + ฮ”โ„Ž (๐œ”) + ๐‘ข,

ฮ”โ„Ž (๐œ”) = 2๐œ”, (43) ฮ”๐‘“ (๐‘ฅ, V, ๐‘ก) =

๐‘1 + ๐‘2 cos (2๐‘ก) ๐‘ฅ12 ๐‘ฅ22 . ๐‘Ž1 + ๐‘Ž2 sin (๐‘ก) + ๐‘Ž3 ๐‘ฅ12 + ๐‘Ž4 ๐‘ฅ22

(44)

Mathematical Problems in Engineering

9

0.35 0.3 4

0.25

3

0.2 0.15

2

0.1 1

x

0.05 0

0

โˆ’0.05 โˆ’1

โˆ’0.1 โˆ’0.15

0

10

20

30

x1 when (Ck = 0) x1 when (Ck = 0.2) x1 when (Ck = 0.5)

40

50

โˆ’2

0

5

10

15

20

Time (s)

x1 when (Ck = 0.8) x1 when (Ck = 1)

x1 with control x2 with control

x1 without control x2 without controlโ€™ location

(b) Sliding mode control output trajectories ๐‘ฅ1 , ๐‘ฅ2

(a) ๐‘ฅ1 with both internal and external disturbances (when ๐ถ๐‘˜ chooses different values)

Figure 4

0.6

0.2

0.5

0.1

0.4

0

0.3

โˆ’0.1

0.2

โˆ’0.2

0.1

โˆ’0.3

0

โˆ’0.4

โˆ’0.1

0

5

10

15

20

โˆ’0.5

0

5

10

15

20

x2 without disturbance x2 with disturbance

x1 without disturbance x1 with disturbance

Figure 5: ๐‘ฅ1 and ๐‘ฅ2 with internal disturbance.

๐‘Ž, ๐‘ are unknown constants, satisfying the fact that ๐‘Ž1 โ‰ฅ ๐‘Ž2 + 1 > 0, ๐‘Ž3 โ‰ฅ 1, ๐‘Ž4 โ‰ฅ 1. In stimulation, set ๐‘Ž1 = 2, ๐‘Ž2 = 0.5, ๐‘Ž3 = 1.5, ๐‘Ž4 = 1.5, ๐‘1 = 1, ๐‘2 = 2.

From Figure 5, to the uncertain system with disturbance, the hybrid bionic adaptive controller proposed makes the system have more anti-interference and good convergence. From Figure 6, when ๐ถ๐‘˜ = 1, the system has good

10

Mathematical Problems in Engineering 0.7

article revision and made a great contribution to the language presentation and revision of first proof.

0.6

References

0.5 0.4 0.3 0.2 0.1 0

0

2

4

6

8

10

x1 when (Ck = 0) x1 when (Ck = 0.5) x1 when (Ck = 1)

Figure 6: ๐‘ฅ1 with both internal and external disturbances (when ๐ถ๐‘˜ chooses different values).

convergence and biological adaptability than system controlled by traditional method.

7. Conclusion In this paper, the hybrid fuzzy control method combined model error with tracking error to design the adaptive laws. Compared with traditional method, it has faster convergence rate. In addition, the biological characteristics are embedded in the bionic fuzzy system, which improved the condition that traditional adaptive law just considers the current state of system. The method proposed in this paper makes system have advantages of anti-interference and strong self-adaptability.

Conflicts of Interest The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authorsโ€™ Contributions Yan Li was responsible for the overall revision of the paper and wrote the main manuscript text and put forward some new ideas in the research; Faxiang Zhang provided the dynamic model and the parameter values of a century application; Yimin Li provided the guidance of the paper and was responsible for correspondence.

Acknowledgments This research is supported by the National Natural Science Foundation of China: Bionic Intelligent Control Method of Chaotic Ecosystems under Slow Disturbance (11072090). The authors also thank Jing Hua who participated in the

[1] L. Wang, Fuzzy Systems and Fuzzy Control Course, Tsinghua University Press, Beijing, China, 2003. [2] M. Zhihong and X. H. Yu, โ€œAn adaptive control using fuzzy basis function expansions for a class of nonlinear systems,โ€ Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 21, no. 3, pp. 257โ€“275, 1998. [3] Y. Li, S. Hu, and L. Li, โ€œFuzzy control method based on niche technology,โ€ Systems Engineering Theory and Practice, vol. 24, no. 3, pp. 63โ€“68, 2004. [4] Y. Li, S. Hu, and L. Li, โ€œNiche control method of intelligent greenhouse system,โ€ Journal of Agricultural Engineering, vol. 6, no. 18, pp. 103โ€“106, 2002. [5] X. Wang and Y. Li, โ€œA new fuzzy control method for niche,โ€ Science Technology and Engineering, vol. 24, pp. 6318โ€“6321, 2007. [6] Y. Li and S. Hu, โ€œFuzzy adaptive control method with biological,โ€ World Journal of Modeling and Simulation, vol. 2, pp. 81โ€“90, 2005. [7] Y. Li and Y. Hao, โ€œIndirect T-S fuzzy adaptive control based on niche,โ€ Systems Engineering and Electronics, vol. 10, no. 33, pp. 2282โ€“2288, 2011. [8] M. Hojati and S. Gazor, โ€œHybrid adaptive fuzzy identification and control of nonlinear systems,โ€ IEEE Transactions on Fuzzy Systems, vol. 10, no. 2, pp. 198โ€“210, 2002. [9] B.-S. Chen, C.-H. Lee, and Y.-C. Chang, โ€œHโˆž tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach,โ€ IEEE Transactions on Fuzzy Systems, vol. 4, no. 1, pp. 32โ€“43, 1996. [10] S. K. Hong and R. Langari, โ€œFuzzy modeling and control of a nonlinear magnetic bearing system,โ€ Journal of Intelligent and Fuzzy Systems, vol. 7, no. 4, pp. 335โ€“346, 1999. [11] W. Wen-June, V. V. Phong, C. Wei et al., โ€œA synthesis of observer-based controller for stabilizing uncertain T-S fuzzy systems,โ€ Journal of Intelligent & Fuzzy Systems, vol. 30, pp. 3451โ€“3463, 2016. [12] J.-M. Zhang, R.-H. Li, and P.-A. Zhang, โ€œStability analysis and systematic design of fuzzy control systems,โ€ Fuzzy Sets and Systems, vol. 120, no. 1, pp. 65โ€“72, 2001. ห‡ [13] I. Skrjanc, S. Blaห‡ziห‡c, and D. Matko, โ€œModel-reference fuzzy adaptive control as a framework for nonlinear system control,โ€ Journal of Intelligent and Robotic Systems: Theory and Applications, vol. 36, no. 3, pp. 331โ€“347, 2003. [14] T. Zhao, โ€œResearch on fuzzy control based on biological adaptive strategy,โ€ East China Normal University, vol. 43, no. 16, pp. 52โ€“ 54, 2012. [15] C. Zhu, โ€œEcological niche theory and extension hypothesis,โ€ Chinese Journal of Ecology, vol. 17, pp. 324โ€“332, 1997. [16] Z. H. Xiu and G. Ren, โ€œStability analysis and systematic design of T-S fuzzy control systems,โ€ Acta Automatica Sinica. Zidonghua Xuebao, vol. 30, no. 5, pp. 731โ€“741, 2004. [17] Z. Lili, Adaptive Fuzzy Control of Nonlinear Systems and Its Performance, Liaoning University of Technology, Jinzhou, China, 2005. [18] G. Ying, Adaptive Fuzzy Control for A Class of Nonlinear Uncertain Systems, Liaoning University of Technology, Jinzhou, China, 2016.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at https://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

#HRBQDSDฤฎ,@SGDL@SHBR

Journal of

Volume 201

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014