Hybrid Modulation of Bidirectional Three-Phase ... - Semantic Scholar

9 downloads 0 Views 7MB Size Report
Jun 27, 2016 - Yen-Ching Wang, Fu-Ming Ni and Tzung-Lin Lee *. Department of Electric Engineering, National Sun Yat-sen University, Kaohsiung 80424, ...
energies Article

Hybrid Modulation of Bidirectional Three-Phase Dual-Active-Bridge DC Converters for Electric Vehicles Yen-Ching Wang, Fu-Ming Ni and Tzung-Lin Lee * Department of Electric Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; [email protected] (Y.-C.W.); [email protected] (F.-M.N.) * Correspondence: [email protected]; Tel.: +886-7-525-2000 (ext. 4197) Academic Editors: Frede Blaabjerg and Dirk Söffker Received: 9 March 2016; Accepted: 23 June 2016; Published: 27 June 2016

Abstract: Bidirectional power converters for electric vehicles (EVs) have received much attention recently, due to either grid-supporting requirements or emergent power supplies. This paper proposes a hybrid modulation of the three-phase dual-active bridge (3ΦDAB) converter for EV charging systems. The designed hybrid modulation allows the converter to switch its modulation between phase-shifted and trapezoidal modes to increase the conversion efficiency, even under light-load conditions. The mode transition is realized in a real-time manner according to the charging or discharging current. The operation principle of the converter is analyzed in different modes and thus design considerations of the modulation are derived. A lab-scaled prototype circuit with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and effectiveness. Keywords: DAB; LiFePO4 battery; EV charger

1. Introduction Fossil-fuel shortages and environmental concerns have strongly impacted the energy industries during the last decades. As one of the promising solutions to reduce the usage of the fossil fuel and carbon emissions, electric vehicles (EVs) are receiving much attention. Various infrastructures and charging standards for EVs have been presented considering different power levels as well as charging fields [1]. Among them, the direct-current charging standard, which is defined to deliver high power and high current charging capability, normally requires an off-board charger. Traditionally, a unidirectional dc converter is able to satisfy the requirement of refreshing battery energy. Recently, various economical and technical issues about using EVs to support the power grid have been discussed [2,3]. In this sense, power has to be delivered between the utility and EVs to meet demand response and/or take advantage of time-of-use electricity rates. On the other hand, EVs should be able to act as a standalone backup power in emergency situations [4–6]. Regarded as distributed energy resources, in this scenario EVs require an interface dc converter with both charging and discharging capabilities. The dual active bridge (DAB) dc converter is a widely used circuit topology intended for bidirectional power flow, due to its soft-switching characteristic, high efficiency and low volume [7]. The DAB converter is typically controlled by using so-called phase-shifted modulating method, in which two-level square waves with a designated phase shift are applied to the isolated transformer. In this sense, power flow and its direction can be controlled by the phase difference. However, this control method suffers from low conversion efficiency under light-load condition due to high conduction and switching losses. In order to improve the efficiency of the DAB converter, various modulating schemes have been presented. In [8,9], one of voltage pulses across on the transformer was replaced by a three-level pulse. In this sense, the DAB converter can operate in a wide-range soft-switching mode and its conduction loss can also be reduced by considering the reactive power Energies 2016, 9, 492; doi:10.3390/en9070492

www.mdpi.com/journal/energies

Energies 2016, 9, 492  Energies 2016, 9, 492

22 of 13  of 13

of the converter [10]. However, the required algorithm needs heavy computation to determine the  of the converter However, the required algorithm needs heavy computation to determinewere  the operating  point [10]. of  the  converter.  The  so‐called  triangular  and  trapezoidal  modulations  operating of the converter. The so-called triangular andthe  trapezoidal modulations were proposed proposed point by  imposing  two  three‐level  voltage  pulses  on  transformer  [11,12].  By  shaping  the  by imposing two three-level voltage pulsescan  on the transformer [11,12]. switching  By shapingand  the transformer transformer  current,  both  modulations  provide  zero‐current  reduce  the  current, bothcurrent  modulations can provide zero-current andof reduce the gain  circulating currentrating.  under circulating  under  light‐load  conditions  switching at  the  cost  voltage  and  power  light-load conditions at the cost of voltage gain and power rating. Moreover, various optimization Moreover, various optimization modulations have been proposed to reduce the peak current [10] or  modulations have been proposed to reduce the peak current [10] or reactive power [13,14], but they reactive power [13,14], but they are not suitable for real‐time applications due to their complexity.  are not suitable for real-time applications due to their complexity. In order for high‐power applications, the bidirectional three‐phase DAB (3ΦDAB) converter has  order for [15].  high-power applications, thefeatures  bidirectional three-phase DAB compared  (3ΦDAB) converter been Inpresented  The  3ΦDAB  converter  higher  power  density  with  the  has been presented [15]. The 3ΦDAB converter features higher power density compared with the single‐phase DAB (1ΦDAB) converter. It is worth noting that the current frequency of the 3ΦDAB  single-phase DAB times  (1ΦDAB) converter. It is worth noting that the current frequency of the 3ΦDAB converter  is  three  of  that  of  the  1ΦDAB  converter.  Thus  the  volume  of  the  switching‐ripple  converter three times of that of the 1ΦDAB converter. Thus theHowever,  volume of similarly  the switching-ripple filters  can is be  significantly  reduced  in  the  3ΦDAB  converter.  to  1ΦDAB  filters can be significantly reduced with  in thephase‐shifted  3ΦDAB converter. However, similarly to 1ΦDAB converter, converter,  the  3ΦDAB  converter  modulation  still  performs  poor  efficiency  at  the 3ΦDAB converter with phase-shifted modulation still performs poor efficiency at low-power low‐power  operation [16–21].  In [20], a  hybrid  modulation  strategy  was  proposed  for  the 3ΦDAB  operation [16–21]. In [20], a hybrid modulation strategy was proposed for the 3ΦDAB converter, converter, including phase‐shifted, triangular and trapezoidal modulations. The converter is able to  including phase-shifted, triangular and trapezoidal modulations. The converter is able to operate operate at the highest efficiency with a changeable modulating scheme according to the operating  at the highest efficiency with a changeable modulating scheme according to the operating point. point. This study was focused on the estimations and analysis of the various modulations, but no  This study was focused on the estimations and analysis of the various modulations, but no information information was provided on how to determine optimizing modulation, which may be very difficult  was provided on how to determine optimizing modulation, which may be very difficult in real-time in real‐time implementation. Furthermore, the considered triangular modulation may substantially  implementation. Furthermore, the considered triangular modulation may substantially increase the increase the complexity of the modulation scheme.  complexity of the modulation scheme. The  authors  have  presented  the  3ΦDAB  converter  with  hybrid  modulation  in  previous    The authors have presented the 3ΦDAB converter with hybrid modulation in previous research [21]. The converter is able to switch its modulation between phase‐shifted and trapezoidal  research [21]. The converter is able to switch itseven  modulation between phase-shifted modes  autonomously  to  maintain  efficiency  in  the  light‐load  condition.  In and this trapezoidal paper,  we  modes autonomously to maintain efficiency even in the light-load condition. In this paper, we further further focused on theoretical analysis of the mode transition based on loss analysis of the circuit.  The condition of when the modulation modes switch is pre‐determined based on efficiency analysis.  focused on theoretical analysis of the mode transition based on loss analysis of the circuit. The condition Design  of modes the  modulation  also  proposed  and onthe  corresponding  of whenconsiderations  the modulation switch is are  pre-determined based efficiency analysis.suggested  Design control  progress  with  flowchart are for  hybrid  modulation  is  also  provided.  A  lab‐scale  considerations of the modulation also proposed and the corresponding suggested control platform  progress consisting of a 1.2 kW 3ΦDAB converter with a 48V/20Ah LiFePO 4 battery was established to verify  with flowchart for hybrid modulation is also provided. A lab-scale platform consisting of a 1.2 kW the proposed method.  3ΦDAB converter with a 48V/20Ah LiFePO4 battery was established to verify the proposed method. 2. Review of DAB Operation 2. Review of DAB Operation  Figure 1 shows the 3ΦDAB converter. Two sets of three-phase half bridges are deployed with a Figure 1 shows the 3ΦDAB converter. Two sets of three‐phase half bridges are deployed with a three-phase three‐phase  isolated isolated  transformer. transformer.  Various Various modulating modulating strategies strategies  have have been been presented. presented. The The phase-shift phase‐shift  modulation is able to provide zero-voltage switching (ZVS) for all switches, but this feature may modulation is able to provide zero‐voltage switching (ZVS) for all switches, but this feature may lose  lose in case of wide voltage variation. In order to assure in light load operation, in  case  of  wide  voltage  gain gain and and load load variation.  In  order  to  assure  ZVS ZVS in  light  load  operation,  the  the trapezoidal modulation was presented [12,13,20,22]. Here, we briefly review both modulations. trapezoidal modulation was presented [12,13,20,22]. Here, we briefly review both modulations. 

  Figure 1. The bidirectional three‐phase DAB DC/DC converter.  Figure 1. The bidirectional three-phase DAB DC/DC converter.

2.1. 3ΦDAB Phase‐Shift Modulation  2.1. 3ΦDAB Phase-Shift Modulation In phase‐shift modulation, the switches in the primary‐side legs are designed to operate at 50%  In phase-shift modulation, the switches in the primary-side legs are designed to operate at duty  ratio,  while  all  three  legs  are  with  a  120°  phase  shift  among  them.  On  the  other  hand,  the  50% duty ratio, while all three legs are with a 120˝ phase shift among them. On the other hand, secondary‐side legs are controlled with designated phase shift with respect to the primary‐side legs  for proper power transfer between two dc sides. Figure 2a shows the theoretical waveforms of both 

Energies 2016, 9, 492

3 of 13

Energies 2016, 9, 492 

3 of 13 

the secondary-side legs are controlled with designated phase shift with respect to the primary-side legs for proper and  power transfer between two dc sides. Figure 2a The  shows theoretical waveforms phase  voltages  phase  current  with  phase‐shift  modulation.  Vanthe   is  a‐phase  voltage  in  the  of both phase voltages and phase current with phase-shift modulation. The V is a-phase voltage an primary side and Vrm’ is the secondary‐side r‐phase voltage Vrm referred into primary‐side. As can be  in the primary side and Vrm ’ is the secondary-side r-phase voltage Varm referred into primary-side. seen, both phase voltages show a six‐step square wave. The variable i  is the a‐phase current that is  As can be seen, both phase voltages show a six-step square wave. The variable is the  the a‐phase  a-phase determined  according  to  voltage  difference  applied  on  the  Leqa,  which  is  defined iaas  current that is determined according to voltage difference applied on the Leqa ,a + N which is defined 2Lr). Thus the  equivalent inductance referred to the primary side. In this case, L eqa is equal to (L as the a-phase equivalent inductance referred to the primary side. In this case, L is equal to eqa power transfer PD can be determined based on integrating both voltage and current. As shown in  2 (La + N Lr ).(1)  Thus power PD can determined based onδ integrating bothsides  voltage Equations  and the (2),  PD  is transfer dependent  on be the  phase‐shift  angle  between  two  of  and the  current. As shown in Equations (1) and (2), P is dependent on the phase-shift angle δ between two D transformer [18,21]:  sides of the transformer [18,21]:

dVi 2 2 2   )2 , for 0      2 ( δ π 2δ dV i ¨ p3 ´2 q, for 0 ď δ ď 3 PD “ Leqa PD 

3

ωLeqa



3

dV    PD  dVi i 2  (  δ2 )π , for π    PD “ L ¨ pδ ´ 18 ´ q, for 3ď δ ď ωLeqaeqa π 18 3 2

(1)  (1)

2

2 2π   33

(2)  (2)

 

 

(a) 

(b) 

Figure 2. Theoretical waveforms of 3ΦDAB converter. (a) Phase‐shifted modulation; (b) Trapezoidal modulation.  Figure 2. Theoretical waveforms of 3ΦDAB converter. (a) Phase-shifted modulation; (b) Trapezoidal modulation.

The  parameter  d  is  defined  as  the  voltage  gain,  equal  to  (NVbat/Vi),  and ω  is  the  switching  frequency in radians per second. The theoretical phase‐shifted angle δ for a corresponding P D also  The parameter d is defined as the voltage gain, equal to (NVbat /Vi ), and ω is the switching can be expressed as the following Equations (3) and (4):  frequency in radians per second. The theoretical phase-shifted angle δ for a corresponding PD also can be expressed as the following Equations (3) and (4): 4 d Vi 2  16 d 2  2Vi 4  72 d LeqaVi 2 PD   , for 0      b 2 3 4dπVi2 ´ 16d2 π62dV Vi4i ´ 72dπωLeqa Vi2 PD π δ“ , for 0 ď δ ď 3 6dVi2

18d Vi  324d  Vi  72d  Vi  1296d LeqaVi PD 2



δ“

18dπVi2

2

2

2

2

2

4

(3)  (3)

2

 2 b   ,2 for  2 4 2 2 2 2 2 3 2π ´ 324d π 36 Vi dV ´i 72d π Vi ´ 1296dπωLeqa Vi PD 3 π , for ď δ ď 3 3 36dVi2

(4)  (4)

2.2. 3ΦDAB Trapezoidal Modulation  2.2. 3ΦDAB Trapezoidal Modulation For 3ΦDAB trapezoidal modulation, the two phases of the converter operate in parallel, which  For 3ΦDAB trapezoidal modulation, the two phases of the converter operate in parallel, which can can be viewed as 1ΦDAB trapezoidal modulation. Figure 3 shows the equivalent circuit. Since the  be viewed as 1ΦDAB trapezoidal modulation. Figure 3 shows the equivalent circuit. Since the b-phase b‐phase  and  c‐phase  are  in  parallel,  Leqb  and  Leqc  are  in  parallel  connection.  Therefore,  the  total  equivalent inductance LeqT can be expressed as Equation (5): 

Energies 2016, 9, 492

4 of 13

and c-phase are in parallel, Leqb and Leqc are in parallel connection. Therefore, the total equivalent inductance LeqT can be expressed as Equation (5): LeqT “ Leqa ` Leqb,c “ 1.5 ¨ Leqa

(5)

where Leqb,c is equal to 0.5Leqa assuming equal three-phase total equivalent inductances, Leqa , Leqb and Leqc . Figure 2b shows the typical voltage and current waveforms of trapezoidal modulation. Energies 2016, 9, 492  4 of 13  The power conversion PT can be expressed as Equations (6) and (7) [18,21]. Controllable variables include phase-shifted angle δT , the primary- and secondary-side duty cycles D1 , D2 . LeqT  Leqa  Leqb , c  1.5  Leqa   (5)  Vi 2 PT “ ¨ rD1 2 ´ dpD1 ´ δT q2 s (6) where  Leqb,c is equal to 0.5Leqa assuming equal three‐phase total equivalent inductances, L eqa, Leqb and  2πωLeqT Leqc.  Figure  2b  shows  the  typical  voltage  and  current  waveforms  of  trapezoidal  modulation.  The  D power conversion PT can be expressed as Equations (6) and (7) [18,21]. Controllable variables include  D2 “ 1 (7) d phase‐shifted angle δT, the primary‐ and secondary‐side duty cycles D 1, D2. 

  Figure 3. The equivalent circuit with trapezoidal modulation.  Figure 3. The equivalent circuit with trapezoidal modulation.

Due to parallel operation, voltage and side of the transformer have the Vi 2current2in the primary P   [ D1  d ( D1  T )2 ]   (6)  T following relationship: 2L eqT

Vbn

ib “ ic “ ´0.5i a D1   2  “ Vcn “D´0.5V d an “ ´Vi {3

(8)

(7)  (9)

Thus PT could be simple controlled by two variables δT and D1 . Once the variable δT is decided, Due to parallel operation, voltage and current in the primary side of the transformer have the  the duty cycle D1 can be obtained as shown in Equation (10): following relationship:  b D1 “

´dδT `

i b  i c   02 . 5 i a   2 2 d2 δ T 2 ` p1 ´ dqVi ¨ pdδT Vi ` 2πωLeqT PT q 1´d

Vbn  V cn  0 .5V an  Vi / 3  

(8)  (10) (9) 

3. Hybrid Modulation Design Thus PT could be simple controlled by two variables δT and D1. Once the variable δT is decided,  In this paper, a hybrid modulating strategy was proposed to allow the converter to be able the duty cycle D 1 can be obtained as shown in Equation (10):  to autonomously switch between phase-shift and trapezoidal modes according to output current. 2 2 d T  dis2pre-determined T 2Vi 2 on  2efficiency LeqT PT ) analysis, which includes The turning point for mode transition T  (1  d )Vi  ( dbased (10)    D1  device loss and magnetic loss. The former part consists of both conduction and switching losses. 1 d The latter one is estimated based on the datasheet of core material. Table 1 shows the circuit parameters used in this paper. The primary-side and secondary-side switches are IGBTs (IXGK60N60BsD1, 600 V, 3. Hybrid Modulation Design    75 A, IXYS Co., Ltd., Milpitas, CA, USA) and MOSFETs (IXFK120N20P, 200 V, 120 A, IXYS Co., Ltd., In this paper, a hybrid modulating strategy was proposed to allow the converter to be able to  Milpitas, CA, USA), respectively. autonomously switch between phase‐shift and trapezoidal modes according to output current. The  turning  point  for  mode  transition  is  pre‐determined  based  on  efficiency  analysis,  which  includes  device loss and magnetic loss. The former part consists of both conduction and switching losses. The  latter one is estimated based on the datasheet of core material. Table 1 shows the circuit parameters  used in this paper. The primary‐side and secondary‐side switches are IGBTs (IXGK60N60BsD1, 600 V,  75 A, IXYS Co., Ltd., Milpitas, CA, USA) and MOSFETs (IXFK120N20P, 200 V, 120 A, IXYS Co., Ltd.,  Milpitas, CA, USA), respectively.   

Energies 2016, 9, 492

5 of 13

Energies 2016, 9, 492 

5 of 13 

Table 1. Circuit parameters.

Table 1. Circuit parameters.  Parameter Name Value Parameter  Name Value  Prated Rated power 1.2 Prated  Rated power  1.2  fs Switching frequency 20 Switching frequency  20 350 Vi fs  Input voltage Input voltage  350  Vbat Vi  Output voltage 42–58.4 bat  Output voltage  42–58.4  V Csnubber Snubber capacitors 1.0 snubber  Snubber capacitors  1.0 215 La LC HVS auxiliary inductors b Lc HVS auxiliary inductors  215  6 Lr LLsa L Ltb Lc  LVS auxiliary inductors LVS auxiliary inductors  6  65 Lr Ls Lt  Lleakage Leakage inductance Leakage inductance  65  6 NLleakage  Turn ratio Turn ratio  6  265 Rp N  Primary-side winding resistance of the transformor Primary‐side winding resistance of the transformor  265 102 RS Rp  Secondary-side winding resistance of the transformor Rds RS  Conductor Resistance of secondary-side switches Secondary‐side winding resistance of the transformor  102 22 Conductor Resistance of secondary‐side switches  22  Rds 

Unit Unit  kW kW  kHz kHz Volt Volt Volt Volt nF nF  µH μH µH μH µH μH  ‐  mΩ mΩ mΩ mΩ mΩ mΩ 

3.1. Loss and Efficiency 3.1. Loss and Efficiency  For EV application, the charging operation with adjustable charging current according to the For EV application, the charging operation with adjustable charging current according to the  operator is the main focus. That is why we design the converter for high efficiency from light load operator is the main focus. That is why we design the converter for high efficiency from light load to  to heavy load. The power flow of the proposed DAB circuit can be controlled between the primary heavy load.  The  power  flow  of  the  proposed  DAB  circuit  can  be  controlled  between  the  primary  and secondary sides, so the theoretical analysis has addressed dual operation for both charging and and secondary sides, so the theoretical analysis has addressed dual operation for both charging and  discharging behavior. Figure 4 shows phase-shifted angle andand  dutyduty  ratioratio  withwith  respect to output current discharging  behavior.  Figure  4  shows  phase‐shifted  angle  respect  to  output  forcurrent for both modulating modes, which were calculated by adjusting phase‐shifted angle. Based  both modulating modes, which were calculated by adjusting phase-shifted angle. Based on the modulation parameters in Figure 4, converter loss and its efficiency can be derived. on the modulation parameters in Figure 4, converter loss and its efficiency can be derived.   

(a) 

 

(b) 

 

Figure 4. 4.  Modulation Modulation  parameters    Figure parameters with  with respect  respect to  to current.  current. (a)  (a) Phase‐shifted  Phase-shiftedmodulation;  modulation; (b) Trapezoidal modulation.  (b) Trapezoidal modulation.

The  50%  duty  ratio  makes  phase‐shifted  modulation  less  loss  in  high  current  operation  in  The 50% duty ratio makes phase-shifted modulation less loss in high current operation in Figure 5a. Figure 5a. However, the  phase‐shifted modulation suffers from high switching loss in low current  However, the phase-shifted modulation suffers from high switching loss in low current range due range  due  to loss  of  ZVS.  On  the  other  hand,  the  trapezoidal  modulation  benefits in low  current  to range due to reduced circulating current in Figure 5b, but the conduction loss significantly increases  loss of ZVS. On the other hand, the trapezoidal modulation benefits in low current range due to reduced circulating current in Figure 5b, but the conduction loss significantly increases with increasing with increasing output current. Therefore, the crossover point of the efficiency curves in Figure 5d is  output current. Therefore, the crossover point of the efficiency curves in Figure 5d is located around 2 A, located around 2 A, which is a preferred selection of  the mode‐switching current I mode. Despite the  which is aloss  preferred selection of the mode-switching current Imode . Despite themethod  power to  loss equations power  equations  and  simulation  results,  we  still  use  the  trial‐and‐error  locate  the  and simulation results, we still use the trial-and-error method to locate the crossover point of the crossover  point  of  the  efficiency  curves  and  select  2  A  as  the  mode‐switching  current  Imode  in  the  efficiency curves and select 2 A as the mode-switching current Imode in the experiment. The efficiency experiment. The efficiency curves and the preferred mode‐switching current I mode is measured and  curves and the preferred mode-switching current Imode is measured and verified in the experimental verified in the experimental results in a later section.  results in a later section.

Energies 2016, 9, 492 Energies 2016, 9, 492 

6 of 13 6 of 13 

  (a) 

(b) 

  (c) 

  (d) 

Figure 5.5.  Simulation Simulation  result result of of the the power power loss loss and and efficiency. efficiency.  (a) (a) Detailed Detailed loss loss with with phase-shift; phase‐shift;    Figure (b) Detailed loss with trapezoidal; (c) The curves of power loss; (d) Efficiency curve.  (b) Detailed loss with trapezoidal; (c) The curves of power loss; (d) Efficiency curve.

Because the experimental platform is over‐designed for protection, the operation range where  Because the experimental platform is over-designed for protection, the operation range where the the  trapezoidal  modulation  provides  better  efficiency  is  limited.  If  the  600V/40A  IGBTs  and    trapezoidal modulation provides better efficiency is limited. If the 600V/40A IGBTs and 200V/50A 200V/50A  MOSFETs  are  chosen,  the  crossover  point  will  up  to  3  A  but  the  platforms  will  have  MOSFETs are chosen, the crossover point will up to 3 A but the platforms will have higher risk. higher risk.  3.2. Control Scheme 3.2. Control Scheme  Figure 6a shows the proposed control block diagram, including battery charging scheme and Figure 6a shows the proposed control block diagram, including battery charging scheme and  hybrid modulator. The logical switches shown are to explain control flow only. Both constant-current hybrid  The  (CV) logical  switches  shown inare  explain  control  flow  only.  (CC) and modulator.  constant-voltage modes are designed the to  battery charging algorithm. In theBoth  CC constant‐current  constant‐voltage  (CV)  modes  are  designed  the  battery  mode, logic switch(CC)  SCV isand  set at off-state so that the modulator input is simplyin determined bycharging  current algorithm. In the CC mode, logic switch S CV is set at off‐state so that the modulator input is simply  command Icomd only. On the other hand, battery voltage Vbat is required for CV operation. As shown, determined by current command I comd only. On the other hand, battery voltage Vbat is required for CV  logic switch SCV is changed to on-state to produce the modified current ICV that is added to Icomd for operation. As shown, logic switch S CV is changed to on‐state to produce the modified current ICV that  the hybrid modulator. is added to I comd for the hybrid modulator.  Based on the pre-determined current turning-point Imode , a suitable modulation, phase-shifted or trapezoidal mode, is selected to generate a phase-shifted angle and/or duty ratio. As shown, in phase-shifted modulation, the logic switch SPS is turned on to allow a PI controller generating phase angle command δ according to the current command Icomd . On the other hand, duty ratio command D1 can be produced by turning on STA for the trapezoidal mode. The required phase angle δT is the phase-shifted angle at current turning-point Imode . Figure 6b shows the mode transition of the hybrid

Energies 2016, 9, 492 

7 of 13 

Energies 2016, 9, 492

7 of 13

modulator, where Imode is set as 2 A. As shown, δ and D1 are controllable variables for the current command larger and less than 2 A, respectively. Energies 2016, 9, 492  7 of 13   

(a) 

(b) 

Figure  6.  The  control  scheme  and  hybrid  modulation.  (a)  The  control  scheme  of  the  converter;    (b) Phase angle and duty cycle of hybrid modulation. 

  Based on the pre‐determined current turning‐point Imode, a suitable modulation, phase‐shifted or  trapezoidal  mode,  is  selected  to  generate  a  phase‐shifted  angle  and/or  duty  ratio.  As  shown,  in  phase‐shifted modulation, the logic switch S PS is turned on to allow a PI controller generating phase  (b)  (a)  angle command δ according to the current command Icomd. On the other hand, duty ratio command  Figure  6.  The  control  scheme  and  hybrid  modulation.  (a)  The  control  scheme  of  the  converter;    Figure 6. The control scheme and hybrid modulation. (a) The control scheme of the converter; (b) Phase D1 can be produced by turning on S TA for the trapezoidal mode. The required phase angle δ T is the (b) Phase angle and duty cycle of hybrid modulation.  angle and duty cycle of hybrid modulation. phase‐shifted angle at current turning‐point Imode. Figure 6b shows the mode transition of the hybrid  modulator,  where Imode is  set  as 2  A. As  shown,  δ and  D1 are  controllable  variables  for  the  current  Based on the pre‐determined current turning‐point Imode, a suitable modulation, phase‐shifted or  command larger and less than 2 A, respectively.  There are two variables, duty cycle D1 and phase angle δT in trapezoidal modulation. trapezoidal  mode,  is  selected  to  generate  a  phase‐shifted  angle  and/or  duty  ratio.  As  shown,  in  There  are from two  phase-shift variables,  duty  cycle  D1  and  phase  angle  T  in  trapezoidal  modulation.  When  When switching to trapezoidal modulation, the δphase angle δ generated by phase-shift phase‐shifted modulation, the logic switch S PS is turned on to allow a PI controller generating phase  switching  from  phase‐shift  to  trapezoidal  modulation,  the  phase angle  δ generated  by  phase‐shift  modulation is sent to trapezoidal modulation as a fixed variable. During the trapezoidal modulation, angle command δ according to the current command I comd. On the other hand, duty ratio command  is  sent beto changed trapezoidal  modulation  as  S a PSfixed  variable.  During  trapezoidal  themodulation  phase angle won’t by the PI because the in Figure 6a is off. This the  hybrid modulator D1 can be produced by turning on STA for the trapezoidal mode. The required phase angle δ T is the modulation,  the  phase  angle  won’t  be  changed  by  the  PI  because  the  S PS  in  Figure  6a  is  off.  This  design reduces the bouncing problem betweenmode modulations. phase‐shifted angle at current turning‐point I . Figure 6b shows the mode transition of the hybrid  hybrid modulator design reduces the bouncing problem between modulations.  Figure 7 shows the ofA. As  the proposed control After obtaining a battery charging modulator,  where I modeflowchart  is  set  as 2  shown,  δ and  D1scheme.  are  controllable  variables  for  the  current  Figure  7  shows  the  the  proposed  control  scheme.  obtaining  or discharging command, theflowchart  converterof  determines its operation based onAfter  battery voltage. a  Inbattery  charging command larger and less than 2 A, respectively.  charging or discharging command, the converter determines its operation based on battery voltage.  case, CC mode is two  normally chosen and theDhybrid modulator the modulating There  are  variables,  duty  cycle  1  and  phase  angle  δdetermines T  in  trapezoidal  modulation. strategy When  In charging case, CC mode is normally chosen and the hybrid modulator determines the modulating  switching  to  trapezoidal  modulation,  the  phase angle  by  phase‐shift  according to from  Imode .phase‐shift  At the end of charging, CV is started instead to δ generated  decrease charging current. strategy according to Imode. At the end of charging, CV is started instead to decrease charging current.  is  sent  to  trapezoidal  modulation  fixed  the  trapezoidal  Themodulation  charging process is ended as the charging currentas is a  less than variable.  0.4 A. ForDuring  discharging requirement, The charging process is ended as the charging current is less than 0.4 A. For discharging requirement,  modulation,  the  phase  angle  won’t  be  changed  by  the  PI  the  SPS  in  Figure  is preventing off.  This  only current command is needed. A low-voltage limitation 42because  V is considered in this case6a  for only  current  command  is  needed.  A  low‐voltage  limitation  42  V  is  considered  in  this  case  for  hybrid modulator design reduces the bouncing problem between modulations.  battery from over-discharging. preventing battery from over‐discharging.  Figure  7  shows  the  flowchart  of  the  proposed  control  scheme.  After  obtaining  a  battery  charging or discharging command, the converter determines its operation based on battery voltage.  In charging case, CC mode is normally chosen and the hybrid modulator determines the modulating  strategy according to Imode. At the end of charging, CV is started instead to decrease charging current.  The charging process is ended as the charging current is less than 0.4 A. For discharging requirement,  only  current  command  is  needed.  A  low‐voltage  limitation  42  V  is  considered  in  this  case  for  preventing battery from over‐discharging. 

  Figure 7. The flowchart of the proposed control scheme.  Figure 7. The flowchart of the proposed control scheme.

  Figure 7. The flowchart of the proposed control scheme. 

Energies 2016, 9, 492

8 of 13

Energies 2016, 9, 492 

8 of 13 

4. 4. Experimental Results  Experimental Results AnAn  experimental prototype is established to measure efficiency of theof  three-phase DAB converter experimental  prototype  is  established  to  measure  efficiency  the  three‐phase  DAB  with the hybrid modulation, experimental areparameters  shown in Table 1. Considering power converter  with  the  hybrid and modulation,  and parameters experimental  are  shown  in  Table  1.  Considering power rating, voltage rating and over‐design for protection, the converter circuit use  rating, voltage rating and over-design for protection, the converter circuit use IGBTs (IXGK60N60BsD1, IGBTs  V,  75  and A)  as  primary‐side  switches  and  (IXFK120N20P,    600 V, 75 (IXGK60N60BsD1,  A) as primary-side600  switches MOSFETs (IXFK120N20P, 200MOSFETs  V, 120 A) as secondary-side 200 V, 120 A) as secondary‐side switches. A DC power supply is applied to theprimary side while  switches. A DC power supply is applied to theprimary side while the LiFePO4 battery (TY-D 20-48, the LiFePO 4 battery (TY‐D 20‐48, 20AH, Ty Dynamic Co., Ltd., New Taipei City, Taiwan) is applied  20AH, Ty Dynamic Co., Ltd., New Taipei City, Taiwan) is applied to the secondary side. A three-phase to  the  secondary  side.  A  transformer  is  composed  by  three  single‐phase  ferrite‐core  transformer is composed bythree‐phase  three single-phase ferrite-core transformers (ferrite core, EE55-28-21-MB3, transformers  (ferrite  core,  EE55‐28‐21‐MB3,  New  Industry  Co.,  of Ltd.,  Taiwan).  The  New Favor Industry Co., Ltd., Taipei, Taiwan). TheFavor  leakage inductance theTaipei,  transformer is referred leakage inductance of the transformer is referred to the high‐voltage side. The control strategy of the  to the high-voltage side. The control strategy of the converter is accomplished via usage of a digital converter  is  accomplished  via  usage  of  a  digital  signal  processors  (DSPs,  TMS320C28335,  Texas  signal processors (DSPs, TMS320C28335, Texas Instruments, Dallas, TX, USA). Instruments, Dallas, TX, USA).  4.1. Steady State 4.1. Steady State  Figure 8a shows Van , Vrm , ia waveforms when the converter is operated at IB * = 1 A. Obviously, Figure 8a shows Van, Vrm, ia waveforms when the converter is  operated at  IB* = 1 A.  Obviously,  trapezoidal modulation is enabled with parameters D1 = 23.5% (11.75 µs), D2 = 25.86% (11.75 µs) and trapezoidal modulation is enabled with parameters D1 = 23.5% (11.75 μs), D2 = 25.86% (11.75 μs) and    δT = 5.2˝ (0.72 µs). Note that the transformer current ia is approximately equal to 0.1 A due to dead δT = 5.2° (0.72 μs). Note that the transformer current ia is approximately equal to 0.1 A due to dead  time. Figure 8b shows key waveforms in phase-shifted modulation at I*B * = 10 A, in which the phase time. Figure 8b shows key waveforms in phase‐shifted modulation at I B  = 10 A, in which the phase  ˝ . Figure 8c shows the waveforms also in phase-shifted modulation but with I * = ´10 A angle δ is 30 angle δ is 30°. Figure 8c shows the waveforms also in phase‐shifted modulation but with IB*B = −10 A  discharging current. discharging current. 

(a)

(b) Figure 8. Cont.

 

 

Energies 2016, 9, 492 Energies 2016, 9, 492  Energies 2016, 9, 492 

9 of 13 9 of 13  9 of 13 

(c)

(c)

 

 

Figure  8.  Steady‐state  waveforms.  (a)  Trapezoidal modulation  with  1  A  charging  current;    Figure 8. Steady-state waveforms.  waveforms. (a) (a)Trapezoidal Trapezoidalmodulation  modulationwith  with 1 1 A  A charging  charging current;  current;   Figure  8.  Steady‐state  (b)  Phase‐shifted  modulation  with  10  A  charging  current;  (c)  Phase‐shifted  modulation  with  10  A  (b) Phase-shifted modulation with  with 10  10 A  A charging  charging current;  current; (c)  (c) Phase‐shifted  Phase-shifted modulation  modulation with  with 10  10 A  A (b)  Phase‐shifted  modulation  discharging current.  discharging current. discharging current. 

4.2. Transient Behaviour  4.2. Transient Behaviour 4.2. Transient Behaviour  Figure 9a illustrates the transient waveform when the charging current command Ibat* increases  * increases Figure 9a illustrates the transient waveform when the charging current command Ibat * increases  Figure 9a illustrates the transient waveform when the charging current command I bat from  1  to  4  A.  As  expected,  the  modulation  is  successfully  switched  from  trapezoidal  mode  to  from 1 to 4 A. As expected, the modulation is successfully switched from trapezoidal mode to  to from  1  to  4  A.  As  expected,  the  modulation  is  successfully  switched  from  trapezoidal  mode  phase‐shifted mode. Figure 9b shows the transient behavior when the charging current command  phase-shifted mode. Figure 9b shows the transient behavior when the charging current command phase‐shifted mode. Figure 9b shows the transient behavior when the charging current command  Ibat* is increased from 0 to 4, 6 and 8 A, respectively. As shown, the charging current Ibat can is able to  * is increased from 0 to 4, 6 and 8 A, respectively. As shown, the charging current I IIbat can is able to * is increased from 0 to 4, 6 and 8 A, respectively. As shown, the charging current I batfollow the current command I bat bat*.  bat can is able to  *. follow the current command I * bat In  normal  operation,  the  comd  is  tuned  slowly  in  constant‐voltage  mode,  so  follow the current command I batcurrent command I .  InPI  normal operation, the current command Icomd isis  tuned slowly in in  constant-voltage mode, so the the In  controller  in  the  hybrid  modulator  can  designed  for  fast‐tracking  ability  with  normal  operation,  the  current command I comd be  tuned  slowly  constant‐voltage  mode,  so  PI controller in the hybrid modulator can be designed for fast-tracking ability with hard-to-notice hard‐to‐notice  overshoot  transient.  Since  the  transient  experiments  are  extreme  case  of  the  PI  controller  in  the  hybrid  modulator  can  be  designed  for  fast‐tracking  ability  with  overshoot transient. Since the transient experiments are caseactually  of current-command-I current‐command‐I comd   adjustment,  the  current  in extreme Figure  9b  the  overshoot  hard‐to‐notice  overshoot  transient.  Since  the spikes  transient  experiments  are  is extreme  case comd of  expressed in terms of 2 s/div, which is induced by the fast‐tracking PI controller.    adjustment, the current spikes in Figure 9b actually is the overshoot expressed in terms of 2 s/div, current‐command‐Icomd  adjustment,  the  current  spikes  in  Figure  9b  actually  is  the  overshoot  which is induced by the fast-tracking PI controller. expressed in terms of 2 s/div, which is induced by the fast‐tracking PI controller.   

(a) 

(a)  Figure 9. Cont.

 

 

Energies 2016, 9, 492

10 of 13

Energies 2016, 9, 492  Energies 2016, 9, 492 

10 of 13  10 of 13 

   

(b) (b)

Figure 9. Transient waveforms. (a) Waveforms when the modulation switches; (b) Waveforms when  Figure 9. Transient waveforms. (a) Waveforms when the modulation switches; (b) Waveforms when Figure 9. Transient waveforms. (a) Waveforms when the modulation switches; (b) Waveforms when  charging current changes.  charging current changes. charging current changes. 

4.3. CV Operation  4.3. CV Operation 4.3. CV Operation  Figure  10  shows shows  battery battery voltage voltage V Vbat and  the  converter converter  Figure 10 and battery  battery current  current when  when the  the operation  operation of  of the Figure  10  shows  battery  voltage Vbat bat and  battery  current  when  the  operation  of  the 0–t converter  changes from CC mode to CV mode. The converter runs in CC mode at I bat* = 10 A during t 1 period,  * changes from CC mode to CV mode. The converter runs in CC mode at* Ibat = 10 A during t0 –t1 changes from CC mode to CV mode. The converter runs in CC mode at I bat  = 10 A during t0–t1 period,  which is modulated by the phase‐shifted scheme. When the battery voltage is equal to 58.4 V at t 1,  period, which is modulated by the phase-shifted scheme. When the battery voltage is equal to 58.4 V which is modulated by the phase‐shifted scheme. When the battery voltage is equal to 58.4 V at t 1,  the  mode  switches  to  CV  mode.  During  the the CV  mode,  in  at t1charging  , the charging mode switches to CV mode. During CV mode,the  theconverter  converterstill  still operates  operates in the  charging  mode  switches  to  CV  mode.  During  the  CV  mode,  the  converter  still  operates  in  phase‐shifted modulation modulation during –t2 period since the charging current I mode = 2 A.  phase-shifted during tt1–t period since the charging current I bat is larger than I is larger than Imode = 2 A. phase‐shifted modulation during t11–t22 period since the charging current Ibat bat is larger than Imode = 2 A.  When I bat is less than 2 A, the converter changes its modulation to the trapezoidal mode during the  When Ibat is less than 2 A, the converter changes its modulation to the trapezoidal mode during the bat is less than 2 A, the converter changes its modulation to the trapezoidal mode during the  ttWhen I 2–t3 period. After Ibat is smaller than 0.4 A at t3, the battery charging is terminated.  –t period. After Ibat is smaller than 0.4 A at t3 , the battery charging is terminated. t22–t33 period. After Ibat  is smaller than 0.4 A at t3, the battery charging is terminated. 

Figure 10. The CC/CV waveform.  Figure 10. The CC/CV waveform. Figure 10. The CC/CV waveform. 

   

4.4. Efficiency  4.4. Efficiency  4.4. Efficiency The  measured  efficiency  curve  is  shown  in  Figure  11a.  The  efficiency  is  improved  as  the  The measured measured  efficiency  is  shown  in efficiency  Figure  11a.  The  efficiency  is  improved  as  the  The efficiency isexample,  shown in the  Figure 11a. The isfrom  improved as to  the88.66%  charging charging  current  less  than  2 curve A. curve  For  is efficiency increased  83.04%  at  charging  current  less  than  2  A.  For  example,  the  efficiency  is  increased  from  83.04%  to  88.66%  at  current less than 2 A. For example, the efficiency is increased from 83.04% to 88.66% at I = 1 A. mode Imode = 1 A. Figure 11b gives detailed measurements of the power loss in phase‐shifted mode and the  Iresult in the trapezoidal mode for light load condition. Label on1 and on2 stand for the turn‐on loss  mode = 1 A. Figure 11b gives detailed measurements of the power loss in phase‐shifted mode and the  result in the trapezoidal mode for light load condition. Label on1 and on2 stand for the turn‐on loss  of primary‐ and secondary‐side switches, respectively; label off1 and off2 stand for the turn‐off loss  of primary‐ and secondary‐side switches, respectively; label off1 and off2 stand for the turn‐off loss 

Energies 2016, 9, 492

11 of 13

Figure 11b gives detailed measurements of the power loss in phase-shifted mode and the result Energies 2016, 9, 492  11 of 13  in the trapezoidal mode for light load condition. Label on1 and on2 stand for the turn-on loss of Energies 2016, 9, 492  11 of 13  primary- and secondary-side switches, respectively; label off1 and off2 stand for the turn-off loss of of  primary‐  secondary‐side  switches,  respectively;  the  label  cond1  and  cond2  stand  for  the  primaryand and  secondary-side switches, respectively; the label cond1 and cond2 stand for the conduction of  primary‐  and  secondary‐side  switches,  respectively;  the  label  cond1  and  cond2  stand  for  the  conduction  loss and of  primary‐  and  secondary‐side  switches, label respectively;  label  Tr  stands  for loss. the  loss of primarysecondary-side switches, respectively; Tr stands for the transformer conduction  loss  of  primary‐  and  secondary‐side  switches,  respectively;  label  Tr  stands  for  the  transformer loss. Transformer loss occupies over 60% loss, which might be improved by using low  Transformer loss occupies over 60% loss, which might be improved by using low core loss material. transformer loss. Transformer loss occupies over 60% loss, which might be improved by using low  core loss material. This results verifies the availability of hybrid method.  This results verifies the availability of hybrid method. core loss material. This results verifies the availability of hybrid method. 

(a)  (a) 

  

  

(b)  (b) 

Figure  11.  Analysis  of  efficiency  and  loss.  (a)  Measured  efficiency  of  the  converter  with  hybrid  Figure  11.  Analysis  of  efficiency  and  loss.  (a)  Measured  efficiency  of  the  converter  with  hybrid  Figure 11. Analysis of efficiency and loss. (a) Measured efficiency of the converter with hybrid modulation; (b) Histogram of the power loss.  modulation; (b) Histogram of the power loss.  modulation; (b) Histogram of the power loss.

Figure 12 shows the charging and discharging efficiency curves with phase‐shift modulation,  Figure 12 shows the charging and discharging efficiency curves with phase‐shift modulation,  Figure 12 shows the charging and discharging efficiency curves phase-shift modulation, where  the  overall  efficiency  during  discharging  operation  is  0.5%  to with 1%  lower  than  the  charging  where  the  overall  efficiency  during  discharging  operation  is  0.5%  to  1%  lower  than  the  charging  where the overall efficiency during discharging operation is 0.5% to 1% lower than the charging efficiency. The voltage gain d becomes reciprocal and decreases when discharging from low voltage  efficiency. The voltage gain d becomes reciprocal and decreases when discharging from low voltage  efficiency. The voltage gain d becomes reciprocal and decreases when discharging from low voltage to to high voltage. According to power transfer Equations (1) and (2), the phase‐shift angle δ increases  to high voltage. According to power transfer Equations (1) and (2), the phase‐shift angle δ increases  high voltage. According to power transfer Equations (1) and (2), the phase-shift angle δ increases based based on the decreased voltage gain d while maintaining the same transfer power, so the peaks of  based on the decreased voltage gain d while maintaining the same transfer power, so the peaks of  on the decreased voltage gain dcausally  while maintaining theaggravate  same transfer soloss  the peaks of transfer transfer  three  phase  current  raises  which  the power, transfer  and  reduce  the  transfer  three  phase  current  causally  raises  which  aggravate  the  transfer  loss  and  reduce  the  three phase current causally raises which aggravate the transfer loss and reduce the efficiency slightly. efficiency slightly.  efficiency slightly. 

    Figure 12. Measured charging and discharging efficiency. Figure 12. Measured charging and discharging efficiency.  Figure 12. Measured charging and discharging efficiency. 

5. Conclusions  5. Conclusions  This paper proposes and realizes a hybrid modulation strategy designed for the bidirectional  This paper proposes and realizes a hybrid modulation strategy designed for the bidirectional  three‐phase  dual‐active  bridge  (3ΦDAB)  DC  converter  designed  for  EV  charger  applications. The  three‐phase  dual‐active  bridge  (3ΦDAB)  DC  converter  designed  for  EV  charger  applications. The  hybrid  modulation,  which  consists  of  the  phase‐shifted  and  trapezoidal  modulation,  covers  the  hybrid  modulation,  which  consists  of  the  phase‐shifted  and  trapezoidal  modulation,  covers  the 

Energies 2016, 9, 492

12 of 13

5. Conclusions This paper proposes and realizes a hybrid modulation strategy designed for the bidirectional three-phase dual-active bridge (3ΦDAB) DC converter designed for EV charger applications. The hybrid modulation, which consists of the phase-shifted and trapezoidal modulation, covers the every power loading condition with the most efficient method and increases the over-all efficiency. The proposed control strategy applies two different modulations in on-time operation according to the magnitude of the charging/discharging current. A corresponding suggested control flowchart for hybrid modulation is also provided. A lab-scaled converter prototype with a 48V/20Ah LiFePO4 battery is established to validate the feasibility and the effectiveness of the proposed modulation method. The results show that efficiency can be increased under light load conditions. Acknowledgments: This work is funded by the Ministry of Science and Technology of Taiwan under grant 104-2221-E-110-037-. Author Contributions: Fu-Ming Ni, Yen-Ching Wang and Tzung-Lin Lee conceived and designed the experiments; Fu-Ming Ni performed the experiments; Fu-Ming Ni and Yen-Ching Wang analyzed the data; Tzung-Lin Lee contributed reagents/materials/analysis tools; Yen-Ching Wang wrote the paper. Conflicts of Interest: The authors declare no conflict of interest.

References 1. 2.

3.

4. 5. 6.

7.

8.

9.

10.

11. 12.

Inoue, S.; Akagi, H. A bidirectional DC-DC converter for an energy storage system with galvanic isolation. IEEE Trans. Power Electron. 2007, 22, 2299–2306. [CrossRef] Cvetkovic, I.; Thacker, T.; Dong, D.; Francis, G.; Podosinov, V.; Boroyevich, D.; Wang, F.; Burgos, R.; Skutt, G.; Lesko, J. Future home uninterruptable renewable energy system with vehicle-to-grid technology. In Proceedings of the Energy Conversion Congress and Exposition, San Jose, CA, USA, 20–24 September 2009; pp. 2675–2681. Erb, D.C.; Onar, O.C.; Khaligh, A. Bi-directional charging topologies for plug-in hybrid electric vehicles. In Proceedings of the IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 21–25 February 2010; pp. 2066–2072. Yilmaz, M.; Krein, P.T. Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles. IEEE Trans. Power Electron. 2013, 28, 2151–2169. [CrossRef] Tuttle, D.P.; Baldick, R. The evolution of plug-in electric vehicle-grid interactions. IEEE Trans. Smart Grid 2012, 3, 500–505. [CrossRef] Tuttle, D.P.; Fares, R.L.; Baldick, R.; Webber, M.E. Plug-in vehicle to home (V2H) duration and power output capability. In Proceedings of the Transportation Electrification Conference and Expo (ITEC), Detroit, MI, USA, 16–19 June2013; pp. 1–7. Krismer, F.; Round, S.; Kolar, J.W. Performance optimization of a high current dual active bridge with a wide operating voltage range. In Proceedings of the 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, 18–22 June 2006; pp. 1–7. Yamamoto, K.; Hiraki, E.; Tanaka, T.; Nakaoka, M.; Mishima, T. Bidirectional DC-DC converter with full-bridge/push-pull circuit for automobile electric power systems. In Proceedings of the Power Electronics Specilists Conference (PESC), Jeju, Korea, 18–22 June 2006. Kim, M.; Rosekeit, M.; Sul, S.K.; De Doncker, R.W. A dual-phase-shift control strategy for dual-active-bridge DC-DC converter in wide voltage range. In Proceedings of the International Conference on Power Electronics-ECCE Asia, Jeju, Korea, 30 May–3 June 2011. Oggier, G.G.; García, G.O.; Oliva, A.R. Modulation strategy to operate the dual active bridge DC-DC converter under soft switching in whole operating range. IEEE Trans. Power Electron. 2011, 26, 1228–1236. [CrossRef] Zhou, H.; Khambadkone, A.M. Hybrid modulation for dual-active-bridge bidirectional converter with extended power range for ultracapacitor application. IEEE Trans. Ind. Appl. 2008, 45, 1434–1442. [CrossRef] Schibli, N. Symmetrical Multilevel Converters with Two Quadrant DC-DC Feeding. Ph.D. Thesis, Ecole Polytechnique Federale de Lausanne, Industrial Electronics laboratory, Lausanne, Switzerland, 2000.

Energies 2016, 9, 492

13.

14. 15. 16. 17. 18. 19.

20.

21.

22.

13 of 13

Bai, H.; Mi, C. Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control. IEEE Trans. Power Electron. 2008, 23, 2905–2914. [CrossRef] Oliveria, D.S.; Barbi, I. A three-phase ZVS PWM DC/DC converter with asymmetrical duty cycle for high power applications. IEEE Trans. Power Electron. 2005, 20, 354–360. [CrossRef] Krismer, F. Modeling and Optimization of Bidirectional Dual Active Bridge DC-DC Converter Topologies. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2010. Kim, H.; Yoon, C.; Choi, S. A three-phase zero-voltage and zero-current switching DC-DC converter for fuel cell applications. IEEE Trans. Power Electron. 2010, 25, 391–398. Wang, Z.; Li, H. A Soft switching three-phase current-fed bidirectional DC-DC converter with high efficiency over a wide input voltage range. IEEE Trans. Power Electron. 2012, 27, 669–684. [CrossRef] De Doncker, R.W.; Divan, D.M.; Kheraluwala, M.H. A three-phase soft-switching high-power-density DC/DC converter for high-power applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [CrossRef] Van Hoek, H.; Neubert, M.; Krober, A.; De Doncker, R.W. Enhanced modulation strategy for a three-phase dual active bridge- boosting efficiency of an electric vehicle converter. IEEE Trans. Power Electron. 2013, 28, 5499–5507. [CrossRef] Van Hoek, H.; Neubert, M.; Krober, A.; De Doncker, R.W. Comparison of a single-phase and a three-phase dual active bridge with low-voltage, high-current output. In Proceedings of the 2012 International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 11–14 November 2012; pp. 1–6. Ni, F.-M.; Lee, T.-L. Implementation of a bidirectional three-phase dual-active-bridge DC converter for electric vehicle applications. In Proceedings of the International Future Energy Electronics Conference, Tainan, Taiwan, 3–6 November 2013. Jain, A.; Ayyanar, R. PWM control of dual active bridge: Comprehensive analysis and experimental verification. IEEE Trans. Power Electron 2011, 26, 1215–1227. [CrossRef] © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents