ieee transactions on magnetics, vol. mag-23, no. 2 ... - UT RIS webpage

2 downloads 0 Views 391KB Size Report
T. ten Kate and L.J.M. van de Klundert. University ofTwente, Department ofApplied Physics,. Low Temperature Laboratory,. P.O.B. 217, 7500 AE Enschede, The ...
IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-23, NO. 2, MARCH 1987

595

5 HZ

A HIGH-POWER MAGNETICALLY SWITCHED SUPEKCONDUCTLNG RECTTPZRR OPERATING AT

*

G . B . J . Mulder, H.J.G. Krooshoop, A. N i j h u i s , H.H..T. t e n Kate and L.J.M. vandeKlundert. University Twente, of Department Applied of Physics, Low Temperature Laboratory, P.O.B. 217, 7500 AE Enschede, The N e t h e r l a n d s .

*

Supported by F.O.M.,

on Matter.

t h eN e t h e r l a n d sF o u n d a t i o nf o rR e s e a r c h

Abstract Above a c e r t a i n c u r r e n t l e v e l , t h e u s e o f a superconductiw rectifier as a c r y o g e n ci cu r r e ns ot u r c e o f f e r s a d v a n t a g e s compared t o t h e u s e o f a power s u p p l y a t room t e m p e r a t u r ew h i c hr e q u i r e sl a r g ec u r r e n tf e e d In some c a s e s , t h e power oE t h r o u g h si n t ot h ec r y o s t a t . such a r e c t i f i e r is immaterial, €orexampleif i t is to beused as a c u r r e n t s u p p l y f o r s h o r t t e s t sampleswith low inductances.Usually,however, a r e c t i f i e r is intended t oe n e r g i z el a r g es u p e r c o n d u c t i n gm a g n e t s , so t h e maximum power a v a i l a b l e becomesanimportantparameter s i n c e i t d e t e r m i n etsh leo a d i n g time. One method of i n c r e a s i n gt h e power of a r e c t i f i e r is t o raise t h e o p e r a t i nf rge q u e n ctIyhnr.iess p e cmt ,a g n e t i c a l l y c o n t r o l l e ds w i t c h e sw i t hv e r yf a s ts w i t c h i n g times are p r e f e r a b l et ot h e r m a l l yc o n t r o l l e do n e s . T h i sp a p e r e p o r t s on the des.ign,as well as t h e e x p e r i m e n t arl e s u l t s , o E a m a g n e t i c a l l ys w i t c h e df u l l wave s u p e r c o n d u c t i n gr e c t i f i e r . Once t h i s r e c t i f i e r i s brought t o i t s d e s i g nf r e q u e n c yo f 5 Hz, t h ea v e r a g e power d e l i v e r e dt ot h ec r y o g e n i cl o a d w i l l be 500 W.

By r e v e r s i nt ghse q u e n cot ehfceo n t r os il g n a l s , pumping down, i.e. d e c r e a s i n gt h el o a dc u r r e n t is also possible. The magnitude the commutation of step on t h em o ~ n e n t a r ys e c o n d a r yc u r r e n t obviouslydepends whichmust t h e r e f o r eb em e a s u r e di no r d e rt og e n e r a t e t h ec o r r e c tp r i m a r yc u r r e n t .F o r a detalledtheoretical is t r e a t m e n t oE superconducting rectiEiers t h er e a d e r r e f e r r e dt o Kef. 1. Here we c o n f i n eo u r s e l v e st ot h e mean power of a r e c t i f i e r w i t h c o n s t a n t f r e q u e n c y :

primary and s e c o n d a r yt r a n s f o r m e ri n d u c t a n c e . c o u p l i n gc o n s t a n to ft h et r a n s f o r m e r . operatingfrequencyoftherectifier. a c o a p l . e t e dl o a d i n gc y c l e . loadcurrentafter

Introduction

In t hpea s t few y e a r s ,e v e r as lu p e r c o n d u c t i n g r e c t i f i e r s were b u i l t and t e s t e d a t t h eU n i v e r s i t yo f performed very Twente ( r e f e r e n c e s I, 2 and 3 ) . They well and d e m o n s t r a t e tdh astu p e r c o n d u c t i n cgo i lfso r 9 and 25 kA c abenen e r g i z ewdi atehnf f i c i e n c y However, t h eo p e r a t i n gf r e q u e n c y was exceeding 36 l i m i t e tdo below 0.1 Hz d utetohaep p l i c a t i oonf t h e r m a l l yc o n t r o l l e ds w i t c h e sw i t hl a r g ea c t i v a t i o n and 4, r e c o v e r y times. An a l t e r n a t i v e was p r e s e n t e di nR e f . a m a g n e t i c a l l yc o n t r o l l e ds w i t c ht h a t was s u c c e s s f u l l y t e s t e d up t o 25 Rz. S i m i l a rm a g n e t i cs w i t c h e s were used i nt h e 500 W, 1 kA r e c t i f i e rd e s c r i b e dh e r e .F o rt h i s r e c t i f i tehor ep e r a t i nf gr e q u e n c y is s u b s t a n t i a l l y h i g h e rt h a n 0.1 Hz and i t is i nf a c tn o td e t e r m i n e d by t hcer y o g e n ipc a rottfhsey s t e m b um t erely by t h e power of the room-temperature supplies used to drive theprimary of t h et r a n s f o r m e r and t h e c o n t r o l c o i l s o f t h es w i t c h e s .

%.

The p r i n c i p l e of a Pull-wave superconducting r e c t i f i e r wl.thinductivecommutationofthesecondary c u r r e n t i s e x p l a i n e d i? f i g u r e 1. A p r i m a r cyu r r e n t with an amplitude of Ip w i l l generate a secondary w i l l i n c r e a s e step-wise c u r r e n t h r o u g ht h el o a dt h a t t o a maximum Inax Each half period of the primary waveform is made upof f o u r parts: pumping p a r t , where a p r i m a r y c u r r e n t s t e p c a u s e s a n i n c r e a s eo ft h es e c o n d a r yc u r r e n t . d e l a y time, w h e r et h ep r i m a r yc u r r e n t is c o n s t a n t , a l l o w i n go n eo ft h es w i t c h e st ob ec l o s e d . a p r i m a cr yu r r esntte p commutation part, where c a u s etshceu r r e niton nhe a loftfhsee c o n d a r y c i r c u i t t o b et r a n s f e r r e dt ot h eo t h e rh a l f . d e l a y time, a l l o w i nognotehfsew i t c h etbsoe closed.

control electronics

I trans

I



I

former

switches

f protection diodes

.

ManuscriptreceivedSeptember

Fig. 1

a )C i r c u i to ft h er e c t i f i e rs y s t e m . b)Transformerprimarycurrent. 1. c )C u r r e n ti nc o n t r o lc o i l d )C u r r e n ti nc o n t r o lc o i l 2. 30, 1986. e) C u r r e n tt h r o u g ht h el o a d . 0018-9464/87/0300-0595$01.0001987 IEEE

f

load coil

596

The s w i t c h e s The magnetic switches consist of a swLtching elementplacedbetweenaninner and o u t e rc o n t r o lc o i l having opposite windings. With t h i s geometry acombinat i o n of a homogeneous f i e l d a t t h e s w i t c h e l e m e n t anda c o n t r o lc o i lw i t h low s e l f - i n d u c t a n c e is o b t a i n e d . The sw€tch elements are made of 24 p a r a l l eslt r a n d s of m u l t i f i l a m e n t a r yw i r ew i t h a second c r i t i c a lf i e l d of 0.8 T (MCA, Nbl%Zr/CuNi, 0.3 mm d i a . , 574 f i l a m e n t s ) . is t o compareswitch 1 and 2 P a r t o fo u ri n v e s t i g a t i o n s which d i f f eirnt h ae r r a n g e m e n t of t h e s e 24 s t r a n d s 3 ) . In t h e f i r s t switch 48 s t r a n d s were ( s e ef i g u r e wound a s a f l a t c a b l e i n s e v e r a l l a y e r s . F o r t h e s e c o n l andthen two c a b l e s switch 24 s t r a n d s w e r e f i r s t c a b l e d were simultaneously wound.The d i r e c t i o n s of t r a n s p o r t 3 show how t h e s t r a n d s were c u r r e n t. i n d i c a t e di nf i g u r e connectedafterwards i n o r d e r t o o b t a i n a non-inductive A non-inductlve arrangement is switch elelnent. n e c e s s a r yi no r d e tr om i n i m i z et h es e l f - f i e l d of t h e switchelement and so avoiding a s e r i o u s d e g r a d a t i o n of t h e maximum c u r r e n t . An obvious advantage of s w i t c h 1 i s t h he i g h e r f i l l i n fga c t oorsfu p e r c o n d u c t o r which r e s u l t s in a l a r g e r e s i s t a n c ei nt h en o r m a sl t a t ew i t h a smaller s w i t c h i n g volume ( s e e t a b l e 1).

The f a c t o r d reaches a maximum of 1 . 6 when t h e c u r r e n t h r o u g ht h e magnet is i n c r e a s e dt o 7 l . 5 % of I,,,at. For a givenprimaryenergyofthetransformerthe b e i n c r e a s e d by improving the mean power can only of t h et r a n s E o r m e ro r by r a i s i n gt h e c o u p l i n gc o n s t a n t frequency. An e x p e r i m e n t a l r e c t i f i e r

I n o r d e rt od e m o n s t r a t et h e feasibility ofhighf r e q u e n c ym a g n e t l c a l l ys w i t c h e dr e c t i f i e r s , w ed e s i g n e d anexperimentalmodel,ofwhichtheconstruction was completed afewmonthsago.Designparametersforthis r e c t i f i e r wereaprimaryandsecondarycurrent of 30 A and 1000 A r e s p e c t i v e l y , an o p e r a t i nfgr e q u e n c y of power of 500 W. The c r y o g e n i c about 5 Hz, anaverage p a r t of t h er e c t i f i e r , mounted i n a 0.27 m diameter 2. Subsequently, some c r y o s t a t , Cs shown ifni g u r e w i l l be d i s c u s s e d . aspectsofthisparticularrectifier

Table 1

Switch parameters. switch 1

switch volume open-stateresistance .

switch 2

[litres] ~

f

o p e n - s t a t ec o n t r o lc u r r e n t DIODES ,SWITCH

1

,SWITCH

2

/SWITCH ELEMENT

Bothswitches and t h e i r c o n t r o l c o i l s a r e p r o v i d e d i n order minimize to temperature wih t he da rt a i n s rises. P a r t i c u l a r l yd u r i n gt h e pumping s t a g e , when t h e c o n t r o l c o i l i s energized and t h e momentary d i s s i p a t i o n i nt h es w i t c he l e m e nct a n be a sh i g ha s 50 W, i t is Lmportant that the control coil remains superconducmust not t i n gF. u r t h e r m o r et, h es w i t c he l e m e n it t s e l f heat up o t h e r w i s e a combinationofthermal and magnetic switching would occur.

-CONTROL FIELD COIL

rTRANSFORMER

1

-......-

2L strands + 2L strands

I

r L O A D COIL

2L strands 24 strands

+

-

2 dummy cores

L

+'--~--------t

-HALL

I I

I

PROBE

LOAD COIL

I

6 strands + 1 dummycore

I

I

I

bFig. 2

270 m m

C r o s s - s e c t i o n a lv i e w of t h e r e c t i f i e r mounted i n a 0.27 m d i a m e t e r c r y o s t a t .

+

2L strands 1 dummy core

Fig. 3

Conductorgeometries in t h es w i t c h e s , l o a d c o i l and transformer.

597 The l o a d c o i l

Table

The l o a d c o i l i s wet-wound w i t h a s i x - s t r a n d c a b l e on a s t a i n l e s s steel c o i lf o r m e r using.STYCAST 2850 FT r e s i n . A maximum c o i cl u r r e n o tf 1200 A is expected frompreviouscrtticalcurrentmeasurements on a s i n g l e s t r a n d (MCA, NbTi/Cu, 0.686 mm d i a . , 2070 f i l a m e n t s ) . A t t h ed e s i g nc u r r e n t of 1 kA t h es o l e n o i dg e n e r a t e s a f i e l d of4.5 t e s l a c o r r e s p o n d i n gt o a storedenergyof 6.75 k J . In t h e 5 cm bore and over a lengthof 6 cm we o b t a i n a test-volume o l 1 X homogeneity. The p o s i t i o n s of t h ree c t i f i e r components a r e oftheload chosen in such a way t h a t t h e s t r a y f i e l d c o i l a t t hsew i t c h e s i s less t h a n 20 mT so t h a t is notnecessary., m a g n e t i cs h i e l d i n go ft h es w i t c h e s

two s w i t c h e l e m e n t s two c o n t r o l f i e l d c o i l s transformer primary windings

The t r a n s f o r m e r The t r a n s f o r m e r i s o ft h et o r o i d a la i r - c o r et y p e . T h it so r o i d as lh a paev o i d s a s t r a fyi e l d from t h e t r a n s f o r m e ra n dm a g n e t i cc o u p l i n gw i t ha l lo t h e rc o i l s intherectifier. A s a consequence, a compact construct i o n was p o s s i b l e . The t r a n s f o r m ecro u l d be mounted its f i e l d c l o stetohleo acdo iwl i t h o ustp o i l i n g h o m o g e n e i tolyer a d i ntegox c e s s i vme u t u af ol r c e s . Furthermore,theoperationoftheswitcheswhich are n o ts h i e l d e df o re x t e r n a lf i e l d s i s n o it n f l u e n c e db y t h ep r e s e n c eo ft h et r a n s f o r m e r . S e v edr ai sl a d v a n t at ghoerf so i ds ha al p e compared t o a s o l e n o i d were t a k e nf o rg r a n t e d :a )t h e f a b r i c a t t o n is more d i f f i c u l t ; b) i t t a k e s 2 t o 3 ttmes more superconducting wire t o o b t a i n a comparableselfi n d u c t a n ctcehe);x e tra amount of superconductor i m p lliaersgale.ocrs.csdoe )so;l i n g is bad, The l a t t e r e s p e c i a l l y a t t h ei n n e rs i d eo ft h et o r o i d . two problems were partly overcome by realizing the H w i t h a r e l a t i v e l yl a r g e primary inductance of 0.2 t r a n s f o r m evr o l u maen fde w w i n d i n g sr,e s u l t i n ign a l a r gceo o l i nsgu r f a c e and moderate magnetic field. show C a l c u l a t i o n sf o rt h i s 0.25 m diametertransformer a temperature rise l e s s t h a n 1 K i f t h e d i s s i p a t e d h e a t l o s s e s a t 5 Hz is c o n d u c t e dt ot h eh e l i u m d u et o a.c. b at h r o u gt h e STYCAST i m p r e g n aannt hcdo e il windingswithoutusingheat-drains. The secondary windings are located between two sectiono s pf r i m a r yw i n d i n g isno r d e trog e t good a c o u p l i n gc o n s t a n t ( >97.5 X ) . Theprimary and secondary H r e s p e c t i v e l y . In both i n d u c t a n c e sa r e 0.2 H and280 p same conductor was t r a n s f o r m e ar n dc o n t r ocl o i l st h e a p p l i e d ( MCA, NbTi/CuNi,0.3 mm d i a . , 575 f i l a m e n t s ) .

2

I = 30 A.

H y s t e r e s i sl o s sc o n t r t b u t i o nf o r

1.9 0.9 0.35 0.35

J/period J/pertod J/period J/period transformer sec

The s e c o n cd o n t r t b u t i o n i s ohmic d i s s i p a t i o ni n t hsew i t cehl e m e n tdsu r i ntgh e pumping s t a g eT. h i s c o n t r f b u t i o ni n c r e a s e sl i n e a r l yw i t ht h ef r e q u e n c yo f it dependsonthefract h er e c t i f i e r andfurthermore i s a c t u a l l yu s e df o r t i o n of time o fe a c hp e r i o dt h a t is a l s o t h e pumping s t e pT. h e r e f o r et,h e f f t c t e n c y c l o s e l yr e l a t e dt ot h e mean power of t h er e c t i f i e r . Suppose f o r example t h a t h e magnet is loaded up to 1000 A w i t h a constantfrequencyof 5 Hz and t h a t 35 X of each period i s u s e fdo r pumping. Then, t h e mean power exceeds500 W w h i l et h e ohmic l o s s is 4 % o ft h e magnet energy. Some a d d i t i o n al o l s s essu c h as eddy c u r r e n td i s s i p a t i o ni ns u p e r c o n d u c t o r so rc o n s t r u c t i o n m a t e r i a l s are n e g l i g i bslm y all. So, depending on frequency and p r i m a r y s i g n a l , t h e o v e r a l l e f f i c i e n c y o f therectiftervaries from93.5 t o 97.5 X C o n t r o le l e c t r o n i c s A correo c tp e r a t i ootnhfr e c t i f i ec rabne In o b t a i n e dw i t hv a r i o u ss h a p e so ft h ep r i m a r yc u r r e n t . t h ep r e l i m i n a r y tests u n t i l now a p r i m a r ys i g n a l was used with constant time i n t e r v a lfsot rh e pumping s t a g e ,t h ec o m m u t a t i o ns t a g e and t h ea c t i v a t i o n / r e c o v e r yo ft h es w t t c h e s . A t t h i s moment a r e c t i f i e r c o n t r o l u n i t is u n d e rc o n s t r u c t i o nw h i c hg e n e r a t e s a constant p r i m a r yv o l t a g e and t h e r e f o r e a c o n s t a n tc u r r e n tr a t e during.thecommutationand pumping s t a g e . Thi.6 c h o i c e a l l o w sf o r a combination of h i g he f f i c i e n c ya n dh i g h average power. It a l s o means t h aignte n e r at hl e frequency is n oct o n s t a nbt e c a u s teh e time i n t e r v a l s needed f o r pumping andconmutatLondepend on t h e a c t u a l loadcurrent. is t h e power supplyneeded t o d r i v e Anotherpoint t hc eo n t r co ol i l s and t h t rea n s f o r m eSri.n tchee c o n t r oc lo i al srnee v eorp esni m u l t a n e o u s l y i t is p o s s i butlosee a s i n g l e power s u p pflboyor t h s w i t c h e s . T h i s i s a 40 A, 250 V a m p l i f i e r w i t h u n i p o l a r c u r r e n t and b i p o l avro l t a gees p e c i a l lsyu i t efdo r A similar a m p l i f i w e ri bt hi p o l a r i n d u c t i vl oea d s . c u r r e n t , w h i c h is now beingdeveloped, w i l l beusedfor t h ep r i m a r y of t h et r a n s f o r m e r . Completionoftheabove-mentionedelectronics will enable a rectifier frequency of 5 Hz. Protection

Efficiency The o v e r ae lf lf i c i e ntroh cefyec t i f t e r d e f i n e d as

is

WL

WL

+

WL,

,

where WL is t h e e n e r g y d e l t v e r e d t o t h e l o a d magnetand W L i ~s t~h e e~ n e r g y d i s s i p a t e d in thecryogenicenvironment w i t he x c e p t i o no ft h ed i s s i p a t i o n in t h e magnet is less t h a n 0.2 % i t s e l (f i no u cr a s et h el a t t e r anyway). The f r a c t i o n W L O ~ S t h a t is d i s s i p a t e d in t h e c r y o s t a ct a n b ed i v i d e di n t o two main c o n t r i b u t i o n s . loss in a l l superconF i r stth fei l a m e nht y s t e r e s i s is d u c t i n gp a r t so ft h er e c t i f i e r T . h i sc o n t r i b u t i o n i n d e p e n d a notfhree c t i f i efrr e q u e n c y when h e a t i n g effectsinthesuperconductorandtheirinfluence on Jc a r e d t s r e g a r d e d . Based on t h e r e s u l t s o fp r e v i o u ss h o r t s a m pml e a s u r e m e nththsye,s t e r etlsh oiines s With a primary r e c t i f t e r was e s t i m a t e(dt a b l2e) . A i t t a k e s5 3p e r i o d st oo b t a i n 1000 A amplitudeof30 i nt h e magnet. In t h a t case t h eh y s t e r e s i ls o s s is about2.5 X oftheenergyinthemagnet.

The conductors must b ep r o t e c t e da g a i n s t damage duetoexcessiveheatingafter a quenchanywhere i n the superconductingsystem. F obr o t cho n t r oclo i l s and t hper i m a royt fh e i s achieved by means of t r a n s f o r m etrh i ps r o t e c t i o n q u e n c hd e t e c t o r sw h i c hm e a s u r et h er e s i s t i v ec o m p o n e n t i t exceeds a c e r t a t n l e v e l , a o ft h es u p p l yv o l t a g e .I f quench is assumed and t hceu r r e notth fceo i l in q u e s t i o n is s w i t c h e do f f as q u i c k l y as p o s s i b l e . T h es e c o n d a r yc i r c u i t is p r o t e c t e da g a i n s t a dump of t h el o a dc o i le n e r g y bymeansofdiodesconnected X of a c r o s tsh leo a d c o itle r m i n a l s . ’ More t h a 9n 8 t h iesn e r g y is d i s s i p a t e d in t hdei o d easb o vteh e occurs in t h se e c o n d a r y helium level when a quench c i r c u iw t h i l et h e magnet remains superconducting. On the o t h e r h a n d , . i f t h e magnetquenches, alltheenergy is d i s s i p a t e d in t h e magnet i t s e l f . In t h e l a t t e r case a c o i lc u r r e n t of 1 kA will d e c a yw i t h i n 1 s corresponding t o a maximum temperature rise less than100 K. Both t y p e so f a secondaryquenchwereforcedseveral times a t a magnet c u r r e notf 1 kA and were found completelysafetotherectifier.

598

E x p e r i m e n t a lR e s u l t s Both switches were t e s t e d i n st he ec o n d a r y a s h o r t - c i r c u i t as a load. By r e c t i f i e rc i r c u i tw i t h 2 canbe openingswitch 1 t h e maximam c u r r e n t o f s w i t c h measured and vice versa. These experiments are summarized E i ni g u r e 4 f o r a s i n u s o i dsael c o n d a r y o€ the c u r r e n t . I t s h o u l db em e n t i o n e dt h a tt h ec o o l i n g t r a n s f o r m e r is bad compared ttohceo o l i n g oE t h e S O above a c e r t a i nf r e q u e n c y we expect s w i t c he l e m e n t s t h e maximum s e c o n d a rcyu r r e ntbtolei m i t ebdtyh e t r a n s f o r m e r .F i g u r e 4 and previousmeasurements on t h e a t 5 Hz. t r a n s f o r m e ri n d i c a t et h a tt h i so c c u r s Depending on t h es u p p l yv o l t a g ef o tr h ec o n t r o l we measured switch-on and switch-off times coils, between 25 and 100 m s . T h ec o m p l e t e dr e c t i f i e r was t e s t e d f o r s e v e r a l val u e s of p r i m a r ya m p l i t u d e ,l o a dc u r r e n t and frequency. T h er e c o r d e dl o a dc u r r e n t sf o r pumping up and down f i t t h et h e o r e t i c a lc u r v e sw i t h i n 2 F i g u r e 5 f o r example shows t h e p r i m a r y c u r r e n t and l o a d c u r r e n t f o r a run a t 1.1 Hz and 60 W mean power. A t 700 A a commutation e r r oorc c u rcsa u s i n g a secundary quench. Within 3 seconds98 % o ft h el o a de n e r g y i s d i s s i p a t e di nt h e p r o t e c t i odni o d e sF.or re a s o nms e n t i o n ebde f o rteh e maximum €requency i s l i m i t e d t o 2 Hz f o r t h e p r e s e n t . D u r i nt hge tests, two t y p eofsaf i l u r e s were e n c o u n t e r e d .F i r s t , some q u e n c h e so ft h ec o n t r o lc o i l s a low helium level. A s e c o n df a i l u r e o c c u r e d u teo o c c u r si ft h em a g n i t u d e of t h e commutation s t e p i s n o t c o r r e c t .T h e n ,t h er e m a i n i n gc u r r e n ti no n eh a l fo ft h e s e c o n d a r y c i r c u i t w i l l becommutated r e s i s t i v e l y t o t h e o t h e rh a l fa f t e rt h es w i t c h i s opened. The c u r r e n t r a t e i n v o l v e dw i t h a t o ol a r g ec o m m u t a t i o ne r r o rc a u s e s a quench i n t h e s e c o n d a r y c i r c u i t .

%.

Fig. 4

I

I

3

5

I

1

I

10 3 0 5 0 FREQUENCY [Hz I

Maximum s i n u s o i d acl u r r e nitnb o t h a l v e s t hsee c o n d a rcyi r c u i t as a f u n c t i o n frequency.

0 of

of

the

Conclusions P r e l i m i n a r y tests otfh e new m a g n e t i c a l l y conwere successEu1. t r o l lseudp e r c o n d u c t i rnegc t i F i e r AEter s e p a r a t e tests of t h ec o m p o n e n t s t, h er e c t i f i e r was assembled and used to charge a I. 'k4, 6.75 kJ magnet. The r e c t i f i e r r e l i a b l y e n e r g i z e s t h i s magnet up t o 1 kA and is f u r t h e r m o r€eu l lpyr o t e c t eadg a i n s t i nt h es y s t e m . The next damage a f t e r a quenchanywhere s t e pi no u re x p e r i m e n t sc o n c e r n sr a i s i n gt h e mean power of t h er e c t i € i e rt o 500 W by i n c r e a s i n gt h eo p e r a t i n g frequencyfrom 2 Hz t o 5 Hz.

I 0

10

20

30

0

10

20

30

40

M

60

70

40

50

60

70

References 1. H.H.J. t e n Kate, "Superconducting R e c t i f i e r s " , ThesisIJniversityofTwente, The Netherlands,1984. 2. H.H..J t e n Kate, P.B. Bunk, H.A. S t e f f e n s , and L.J.M. Klundert, van de "A t h e r m asl w l yi t c h e d 9 kA s u p e r c o n d u c t i n gr e c t i f i e rf l u x p u m p " , IEEE Trans. on Magn., Vol MAG-17, 2067-2070, 1981. 3 . H.H.J t e n Kate, J.A. Knoben, H.A. S t e f f e n s , and L.J.M. vandeKlundert, "A 25 kA, 0.5 kW t h e r m a l l y switched sc. r e c t i f i eP r "r ,o c . MT-8 Grenoble, J o u r n a ld eP h y s i q u e ,C o l l o q u e C1 supplementau no. 1 tome 45, C1-659-662, 1984.

4. 6.13.5. Mulder, H.H.J. t e n Kate, A. N i j h u i as ,n d L.3.M K lduvenadne r t , "A o f apsetr a t i n g 1 kA", IEEE m a g n e t i c a lcl yo n t r o l l es w d i t cf oh r Trans. on Magn., Vol MAG-21, 686-689,1984.

Fig. 5

TIME [ S I

P r i m a r yc u r r e n t and l o a dc u r r e n tr e c o r d e di n a r u n at 1.1 Hz and a mean power of 60 W.

I