1. Bressanone Sept. 2006. Hybrid Materials. 1. Inorganic-Organic. Hybrid
Materials. Bressanone Sept. 2006. Hybrid Materials. 2 ...
Inorganic-Organic Hybrid Materials
Bressanone Sept. 2006
Hybrid Materials
1
Bressanone Sept. 2006
Hybrid Materials
2
1
Composites – Hybrid Materials
cm
µm
nm
CLASSICAL COMPOSITES
Property Improvement: • mechanical stability • thermal stability • photochemical stability
Hybrid Materials
From Molecules to Nanobuilding Blocks
Various properties possible depending on precursors and processing
Bressanone Sept. 2006
Hybrid Materials
3
Hybrid Materials
Composite Material
Compound 1
Macroscopic phases
Compound 2
Hybrid Material
Molecular or nanoscale building blocks
The goal is to create materials with specific combinations of properties by combining different molecular building blocks in various ratios and by controlling their mutual arrangement Control at the nanolevel
Bressanone Sept. 2006
Hybrid Materials
4
2
Homogeneity
vs.
Problems: scatters light, mechanical properties, etc… Control over homogeneity: • precursor selection (functional group) • reaction conditions: kinetics, solvent, etc. • interactions between the components
Bressanone Sept. 2006
Hybrid Materials
5
Typical Properties of Organic and Inorganic Materials
Properties
Organic materials (polymers)
Inorganic materials (glass, ceramics)
Nature of bonds
covalent [C–C], van der Waals, H-bonding low low (except polyimides) low low elastic flexible rubbery (depending on Tg) hydrophilic or hydrophobic
ionic or covalent high high high high hard strong brittle hydrophilic
insulating to conductive non-magnetic at low temperatures and pressures (molding, casting, etc.)
insulating to semiconductors magnetic at high temperatures and/or pressures (sintering, glass forming)
Tg Thermal stability Density Refractive index Mechanical properties
Hydrophobicity Electronic and magnetic properties Processability
Bressanone Sept. 2006
Hybrid Materials
6
3
Nanolego
Form Function Geometry of the linkage Connectivity Kind of linkage
Bressanone Sept. 2006
Hybrid Materials
7
Nanolego: Building Blocks Inorganic Building Blocks O
O
O O
Si
O
O Ti
O
Mechanical, optical, electrical, magnetical properties
O
O O
Connecting Blocks
O
H2C
O
Si
O
O O
X Ti
O
Y O
Reduction of the crosslinking density, coupling sites between inorganic / organic components
Organic Building Blocks Functional groups, crosslinking, polymerizability
A
Flexibility, elasticity, processability H2 C
H2 C C H2
C H2
Bressanone Sept. 2006
Hybrid Materials
8
4
Nanolego: Linking the Building Blocks Polymerization / Polycondensation CH3
COOR
CH3
COOR
CH3
COOR
O
HO
OR
O
+ O
H2N
HN
O
O
HN
O
NH2
OH
NH
Sol-Gel-Process RO
Si
OR OR
HO + H2O
Si
OH OH
OH
OR
HO - H2O
+ H+
HO
Si
OH OH
O
OH Na4SiO4
Si
HO
Si
OH OH
OH OH
Self-Organization Zn(NO3)2 + HO O
Zn4O(terephthalate)6
O
OH
Bressanone Sept. 2006
Hybrid Materials
9
Nanolego: Critical Issues
¾ Homogeneous distribution of the building blocks in the material ¾ Stable distribution: no microphase separation ¾ Interaction between the two components ¾ Structure-property relationships ¾ Inclusion of functionalities ¾ Tailoring of molecular structure ↔ nanostructure ↔ microstructure (= hierarchical structure design)
Bressanone Sept. 2006
Hybrid Materials
10
5
Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures
Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating networks Dual networks
Bressanone Sept. 2006
Hybrid Materials
11
Molecular Precursors Network Modifiers (non-reactive organic groups) (RO)3Si CH3
(RO)3Si
(RO)3Si
Precursors with Functional Organic Groups (RO)3Si (RO)3Si
O O
+ HS-Si(OR)3
(RO)3Si
(RO)3Si
O
O RO
(EtO)3Si
O Ti
N
H N
O O
N
N R
OR
OR
(RO)3TiSO3(Co-phthalocyanine)
polymerizable organic groups ⇒ inorganic-organic hybrid polymers
Bressanone Sept. 2006
NO2
O
O
NH2
N H
groups with other organic functions
Hybrid Materials
12
6
Nano Building Blocks: Polyhedral Oligomeric Silsesquioxanes (POSS)
Bressanone Sept. 2006
Hybrid Materials
13
Nano Building Blocks: Functionalized Metal Oxide Clusters
Ti16O16(OEt)24(OPr)8 (same with OCH2CH2OC(O)C(Me)=CH2)
Zr6O4(OH)4(methacrylate)12 covalent interaction
[(BuSn)12O14(OH)6]2+·2 methacrylate[SiW11O39(OSi2(C6H4CH=CH2)2)]4-
Bressanone Sept. 2006
Hybrid Materials
electrostatic interaction
14
7
Bridged Alkoxysilanes
(RO)3Si
(RO)3Si-(CH2)n-Si(OR)3
Si(OR)3
H N
(RO)3Si-(CH2)m
H (CH2)n N
H N (CH2)n
C
H N
H N (CH2)m-Si(OR)3
O
O (EtO)3Si
C
O O N
N
N H
(EtO)3Si
H N
SO2(CH2)2O
N
O O
Si(OEt)3
O
2+ NH
(RO)3Si
H2N
Bressanone Sept. 2006
NH2 Ni
NH
Si(OR)3
Hybrid Materials
15
Alkoxysilyl-Substituted Organic Polymers
CH3 (EtO)3SiO
Si
O
Si(OEt)3 n
CH3
(EtO)3Si-(CH2)3 O
Bressanone Sept. 2006
CH3
H2 C
n C
O
(CH2)4-O
n
O
Si(OMe)3
(CH2)3-Si(OEt)3
Hybrid Materials
16
8
Pre-formed Nanostructures (Nano)Particles
Preformed Oligomers and Polymers
Clays / Layered Materials
Porous Materials
Bressanone Sept. 2006
(Nano)Fibres, Nanotubes
Hybrid Materials
17
Consequences of Introducing Organic Substituents
¾ Reduced degree of crosslinking of the inorganic network ¾ Polarity changes (changes in hydrogen bonding) ¾ Reactivity change of the remaining alkoxide groups (electronic and steric effect of the organic substituents)
These effects are an inevitable consequence of the organic modification
Bressanone Sept. 2006
Hybrid Materials
18
9
Degree of Crosslinking Si(OR)4-nRn n = 1-3
Si(OR)2R2
Si(OR)3R R
R
R
Si
Si
Si
O
O O
R
R Si
Si
O
O
O
O
O
O O
O
Si
Si
Si
Si
R
R
R
Silsesquioxanes R R
O Si O Si O
O
R R
O n
O
R
Si(OR)R3 R
Si O
Si R
R
R
R'
Oligo- and Polysiloxanes
Dimers
R Si O O R O Si
Si
OR Si O O Si Si O O R R
R
Polyhedral Oligomeric Silsesquioxanes
Bressanone Sept. 2006
Hybrid Materials
19
Influence on Reaction Rates Example:
(RO)3Si
Si(OR)3
0.6 M in methanol, 25°C The dashed line is pH vs. gel time for Si(OMe)4 (2.0 M in methanol, 60°C).
Bressanone Sept. 2006
Hybrid Materials
20
10
Influence on Reaction Rates
(acac = acetylacetonate, ftac =trifluoroacetylacetonate, dbzm = dibenzoylmethanide)
Bressanone Sept. 2006
Hybrid Materials
21
Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures
Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks
Bressanone Sept. 2006
Hybrid Materials
22
11
Types of Inorganic-Organic Hybrid Materials by Sol-Gel Processing Physically entrapped molecules, particles, etc.
Interpenetrating inorganic and organic networks
Class I materials: weak interactions
R R RR R
Class II materials: strong interactions
RR
R R R R RR
RR
R R
RR R R R R R
R RR RR R R
R R
RRR R R
Modification of the gel network by organic groups
Bressanone Sept. 2006
Dual inorganic and organic networks connected by covalent bonds
Hybrid Materials
23
Entrapped Biomolecules
Bressanone Sept. 2006
Hybrid Materials
24
12
Entrapped Biomolecules: Glucose Sensor NO-releasing glucose biosensor (cleaved NO suppresses degradation by bacteria)
O
Glucose oxidase in MeSi(OEt)3 Gel
SiO2
Si
CH3 OH
N NO H O Si (CH2)3 N (CH2)6 N H
in polyurethan
M.H.Schoenfisch et al., 2004
Bressanone Sept. 2006
Hybrid Materials
25
Entrapped Inorganic Particles: Dental Filling abrasion 9 µm
shrinkage 1,97 vol% adhesion 25,8 / 27,6 MPa
pyrogenic silica (≈ 40 nm)
+ standard dental glass particles (≈ 0,7 µm)
Bressanone Sept. 2006
Hybrid Materials
26
13
Entrapped Inorganic Particles: Controlled Release
in SiO2
Bressanone Sept. 2006
Hybrid Materials
27
Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures
Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks
Bressanone Sept. 2006
Hybrid Materials
28
14
Heterogenization of Homogeneous Catalysts Classical approach RO
RO
RO
Si
RO
Sol-gel approach
+ MLn
A
RO
Si
A
RO
MLn
+ MLn
A
O Si
A
Si
O
MLn
A
MLn
O
O
+ MLn
+ MLn
Si
O
+
A
RO
A
Bressanone Sept. 2006
Si
Si
O
E(OR) n
A
RO
O
RO
O
RO
O
RO Si
MLn
+ E(OR) n
O
RO
A
RO
+
O
Si
RO
RO
RO
RO
RO
Si
A
O
+
Hybrid Materials
29
Heterogenization of Catalysts by Sol-Gel Processing RO Si
RO
A
MLn
Examples:
+ Si(OR)4
RO
Si
O
A
Ph
C O
Ph P
Si(OR)3
Ph
MLn
O
(EtO)3Si
Poren pores
(EtO)3Si
sol-gel Sol-GelProzeß processing
Ph Cl P Ru P Ph Cl
Ph P P Ph
Si(OEt)3
Si(OEt)3
Synthesis of N,N-diethylformamide from CO2, H2 and diethylamine A. Baiker et al., 1999
K K
Cl Rh
P
More active in the hydrosilation of 1-hexene than Rh(CO)Cl(PR3)2 U. Schubert et al., 1989
O
SiO2 /
Ph (RO)3Si
K K
K
O
K
K
(RO)3Si
K K
aktive Spezies = katalytisch catalytically active species
N H
NH2 N
Cu2+
NH 2
Catalyst for the oxidation of 3,5-di-tert.butylcatechol to the quinone M. Louloudi et al., 1998
Bressanone Sept. 2006
Hybrid Materials
30
15
Coatings with Optical Properties Photochromism: fast for optical switches, for eye protection, privacy shields slow for optical data storage, energy conserving coatings, etc... Example: Spirooxazine derivative
hν1
N N
O
Δ or hν2
N N
O
Embedding in sol-gel coatings: For sufficient photochromism: dye concentration > 25 wt% → mechanical stability of sol-gel film is deteriorated. Grafting of the dye to the sol-gel matrix → higher chromophore concentrations can be achieved without affecting the mechanical integrity of the sol-gel matrix
Si(OEt)3 HN
O N N
O
O
Photochromic coating on paper
Bressanone Sept. 2006
Hybrid Materials
31
Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures
Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks
Bressanone Sept. 2006
Hybrid Materials
32
16
Interpenetrating Networks Sequential Sequentialtwo-step two-stepprocess: process: Second Secondnetwork networkis is formed formedin inthe thefirst first
IPN Examples: ¾ Generation of the organic polymer in the pores of an inorganic porous material (in channels of zeolites or mesoporous materials, between sheets of a layered lattice, such as a clay mineral) ⇒ rigid inorganic moiety with a regular pore or channel structure in the nanoscale ¾ Inorganic structures form and interpenetrate an organic polymer (difficulties: incompatibility between the moieties ⇒ phase separation)
Bressanone Sept. 2006
Hybrid Materials
33
Interpenetrating Networks Interaction via hydrogen bonds to silanol groups of the forming silica Organic polymers with hydrogen bonding ability:
n
n NMe2
O
OH
n
n
n
O
O
OMe
n O
O
O
N
OH poly(VP)
poly(DMAA)
poly(VA)
poly(VAc)
poly(MMA)
poly(HEMA)
Si(OR)4 and/or RSi(OR)3 H2O, [Kat]
No macro phase separation Resulting materials: high degree of homogeneity and optical transparency
Important reaction parameter: pH Change of crosslinking density and interaction with polymer using RSi(OR)3/Si(OR)4 mixtures
Bressanone Sept. 2006
Hybrid Materials
34
17
Interpenetrating Networks
+ Sol from GLYMO and Al(OsBu)3 (H2O/HCl)
Poly(isopren-block-ethylenoxide) swollen in THF/CH3Cl
(RO)3Si
O O
Nanostructured hybrid polymer U.Wiesner et al., 2004
Bressanone Sept. 2006
Hybrid Materials
35
Interpenetrating Networks Organic Monomer
Inorganic Monomer
Catalyst
Solvent
AIBN
TEOS
HF
Water
O
OH
C. L. Jackson et al. Chem. Mater. 1996, 8, 727
O
Initiator
Addition of tetrakis(2-(acryloxy)ethoxy)silane improves homogenity
TEM images of the nanocomposites:
Increasing Sol-Gel Catalyst Concentration => Faster Reaction
Bressanone Sept. 2006
Hybrid Materials
36
18
Nanocomposites: Polymer-Clay
Layered solid
Layered solid
+ Monomer (Polymerization)
Exfoliated layers
+ Polymer
+ Monomer (Polymerization) or + Polymer
Bressanone Sept. 2006
Hybrid Materials
37
Nanocomposites: Polymer-Clay
Bressanone Sept. 2006
Hybrid Materials
38
19
Nanocomposites: Polymer-Clay 15 μm glass fibre in polyolefin
1 nm thick montmorillonite sheet in epoxy resin
Bressanone Sept. 2006
Hybrid Materials
39
Nanocomposites: Intercalation of Polymers in Pores
Direct Intercalation
+
Polymer
Porous Host
Problems: ¾ Pore diameter ↔ size of Polymer ¾ Diffusion of polymer ⇒ Usually only end of polymer sits in pore but not the whole chain
Bressanone Sept. 2006
Hybrid Materials
40
20
Nanocomposites: Polymerization in Pores
Monomer Intercalation
+
Monomer
Polymerization
Porous Host
Monomer is interacalated into the pores (vapor, liquid), then polymerization
T. Aida et al. 2000
Bressanone Sept. 2006
Hybrid Materials
41
Nanocomposites: Polymerization in Pores
T. Aida et al. 2000
T. Bein et al. 1992
Bressanone Sept. 2006
Hybrid Materials
42
21
Precursors Molecular precursors Clusters (nano-building blocks, NBB) Alkoxysilyl-substituted organic polymers Pre-formed nanostructures
Classes of sol-gel hybrid materials Physically entrapped components Functionalized inorganic networks Interpenetrating structures Dual networks
Bressanone Sept. 2006
Hybrid Materials
43
Dual Network Structures Preparation strategies Concomitant formation of the inorganic and organic structures Stepwise formation of the organic and inorganic networks ¾ from pre-formed organic structures ¾ from pre-formed inorganic structures Options
Chemical composition of the inorganic component(s) Chemical composition of the organic component(s) Proportion of the inorganic/organic components Curing method (thermal / photochemical) Dimension of the inorganic / organic components (molecular, nanometer, extended)
Bressanone Sept. 2006
Hybrid Materials
44
22
Concomitant Formation of Inorganic and Organic Network Typical procedure
Metal Alkoxides Metal Salts + water (ev. catalyst or additives) - alcohol
Precursors
Hydrolysis Condensation
Sol Gelation
formation of inorganic network
Gel formation of organic network
Hardening (thermal or uv)
Many Examples: Coatings Section
Hybrid Polymer
Bressanone Sept. 2006
Hybrid Materials
45
Concomitant Formation of Inorganic and Organic Network Often used precursors O (RO)3Si
(RO)3Si
O
(RO)3Si
O
O O
O
or O
OH
O
O
+ Zr(OR)4
O
+ Si(OR)4, Zr(OR)4, Al(OR)3, etc.
+ acrylate, epoxide monomers, etc.
increase of “inorganic / organic ratio”
decrease of “inorganic / organic ratio”
Bressanone Sept. 2006
Hybrid Materials
46
23
Concomitant Formation of Inorganic and Organic Network O O
O
O
O
O
O
O
O
O O
O
O
Sequential formation of the organic network
UV-polymerization of methacryl groups
photo-initiator, hν O O
O
O
O
O
O
O
O O
O O
O
O
O
O
O
O
O O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O O
O
O
O
thermal polymerization of epoxy groups
ΔT O O
O
O
O
O O
O
O O O
O
O
O
O O
O
O O
O
O
O
O
O O
Bressanone Sept. 2006
O
O
O
Hybrid Materials
O
47
*) SBU: Sequentially Built-up
Concomitant Formation of Inorganic and Organic Network O H2O / NaF Si CH2O
SiO2
4
O
CH2OH n
H2O / NaF O(CH2)2O Si 4
Bressanone Sept. 2006
aq. ROMP
O +
Free Radical Polymerization
SiO2 +
Hybrid Materials
O
O(CH2)2OH 4
48
24
Photochemical Crosslinking (3D Laser Lithography) Coating or forming of ORMOCER® (with chromophor as UV initiator)
Direct 3D-laser writing (2-photon polymerisation with femtosecond laser pulses) Requirements for hardening: Development of the structure (removal of uncured ORMOCER®)
•
precise focussing
•
2-photon process
•
polymerisation in Ormocer® layer (O2 protection)
•
chromophor as initiator
Ormocer® = Organically modified Ceramics
Bressanone Sept. 2006
Hybrid Materials
49
Photochemical Crosslinking (3D Laser Lithography) CAD File
Layer model
‚Venus of Milo‘ in ORMOCER® (REM)
I am made from ORMOCER®!
Bressanone Sept. 2006
Hybrid Materials
50
25
Photochemical Crosslinking (3D Laser Lithography)
Bressanone Sept. 2006
Hybrid Materials
51
Hybrid Polymers from Pre-Formed Organic Polymers CH3
Low shrinkage by the use of prepolymerized materials
CH3
x
acrylic component silane component
(MeO)3Si(H2C)3O
O
y MeO
O
1. inorganic condensation 2. organic polymerization
acrylic monomer + polymer (incomplete polymerization)
inorganic condensation between fully polymerized polyacrylate
Bressanone Sept. 2006
Hybrid Materials
52
26
Hybrid Polymers from Pre-Formed Organic Polymers A.-M. Caminade, J.-P. Majoral, J. Mater. Chem., 2005, 15, 3643-3649
Hybrid Materials applying Dendrimers
Porous Materials using Dendrimers as Templates
Bressanone Sept. 2006
Hybrid Materials
53
Hybrid Polymers from Pre-Formed Inorganic Structures
Bressanone Sept. 2006
Hybrid Materials
54
27
Hybrid Polymers from Pre-Formed Inorganic Structures Improved Properties through Controlled Reinforcement of Polymer Chains at the Molecular Level
R O Si
R
Si
R
Si
O Si
O
O R Si O Si
R'
O
O O
O RO O
Si
R
Si O R
www.hybridplastics.com
Bressanone Sept. 2006
Property enhancements via POSS observed in POSS-copolymers and blends • Increased Tdec • Increased Tg • Reduced Flammability • Reduced Heat Evolution • Lower Density • Disposal as Silica • Extended Temperature Range • Increased Oxygen Permeability • Lower Thermal Conductivity • Thermoplastic or Curable • Enhanced Blend Miscibility • Oxidation Resistance • Altered Mechanicals • Reduced Viscosity
Hybrid Materials
55
Hybrid Polymers from Pre-Formed Inorganic Structures POSS for fire retardant materials
Bressanone Sept. 2006
Hybrid Materials
56
28
Hybrid Polymers from Pre-Formed Inorganic Structures Polymerizable Metal Oxo Clusters X
X
X X
X
X X
X X Polymerizable groups X
Zr6O4(OH)4(methacrylate)12 for free radical polymerization
Zr6O4(OH)4(5-norbornene-2-carboxylate)12 for ROMP
Bressanone Sept. 2006
Hybrid Materials
57
Hybrid Polymers from Pre-Formed Inorganic Structures Metal Oxo Clusters as Initiators for ATRP multifunctional initiator + monomer X
X
+
catalyst
X X X
X X X
+ solvent
= PMMA, PS, PtBuA
X
catalyst = pmdeta / CuBr or CuCl
e.g. Ti6O4(OOCCBrMe2)(OiPr)8
0.9
100
0.7
ln (M0/M)
G.Kickelbick et al.
Bressanone Sept. 2006
80
Y=0,0058*X R=0,997
70 60
0.5
50
0.4
40
0.3
Polydispersities