Inspection and predictive maintenance strategies

5 downloads 0 Views 196KB Size Report
Abstract. This paper addresses the problem of generating optimal inspection strategies for randomly failing systems whose state is known only through ...
INT. J. CO MPUTER INTEGRATED MANUFACTURING, 1 998, VO L. 11, NO . 3, 226 ± 23 1

In spe ction an d pre dictive m ain te n an ce strate gie s ANIS CH ELBI an d DAO UD AIT-KADI

Ab stract. Th is pape r addre sse s the proble m of gene rating op tim al inspe ction strategie s for random ly failing syste m s whose state is kn own on ly throu gh inspection. Two inspe ction strategies are presente d. Th e first on e is a sim ple inspe ction strategy while the secon d is a pre dictive orie nted on e. Both strategies are asse ssed on the basis of the ave rage total cost pe r tim e un it ove r an infinite span . For a give n e qu ipm e nt lifetim e distribution fun ction, a n um e rical exam ple is pe rform e d and re com m endations con ce rning the choice be twee n the two strategies are form ulate d.

1. In tro d u c tio n A large n um be r of m ac hin e com pone n ts such as ge ars, be arin gs, valve s, e tc. are subje ct to ran dom failu re . In m an y case s, th e state of such ran dom ly failin g com pon e nts is known on ly through inspe ction ( Barlow an d Prosch an 1965) . Afte r e ach in spe ction , th e e quipm e nt is e ith e r re place d if foun d in a faile d state, or le ft in ope ration. In orde r to ke e p e quip m e nt in ope ration , on e has to build an in spe ction strate gy wh ich spe cifies the te stin g se que nce . Th is strate gy m ust conside r th e com pone n t’ s life tim e distribution , the cost in curre d to pe rform an inspe ction an d th e cost re late d to th e in activity pe riod be twe e n failure occurre nce an d its de tection . Barlow an d Proschan ( 19 65) de rive d an optim al inspe ction strate gy de fin e d as an in spe ction se qu e n ce wh ich m in im ize s the total e xpe c ted cost pe r tim e unit ove r an in fin ite span . Th e proc e dure th e y de ve lop e d turn e d out to be difficult to im ple m e nt. Th e com putational difficultie s arise from using the inspe ction in stan ts {x1 ,x2 , ...,xn } as th e con trol variab le s. Nakagawa an d Yasu i ( 1980) de ve lope d a n e arly optim al inspe ction strate gy re duc in g the com putation al difficultie s by com p utin g succe ssive in spe ction in stan ts backwards

Au thors: A. Ch e lbi an d D. Ait-Kadi, De partm e n t of Me chan ical Engin e e rin g, Laval Un iversity, Q u e be c, P.Q , G1K 7P4, Can ad a. E-m ail:ach e lbi@gmc .u laval. ca; daoud a@gm c.ulaval.ca 0951-192X / 98 $12 × 00

starting from a large inspe ction in stant xn . Particular case s of pe riodic inspe ction s h ave be e n ad dre sse d by m an y auth ors ( Rodrigu e s 1990, Schn e e we iss 1976 an d Tad ikam alla 1979 ) . In th is pap e r, two in sp e ction strate gie s are propose d. Th e first on e , pre se nte d in Section 2 sugge sts in spe cting the e quipm e n t at pre de te rm in e d instan ts. If failu re is de te cte d the faile d com pon e n t is im m e diate ly r e p lac e d . Th e se c on d strate gy ( in Se c tion 3 ) is pre dictive orie nte d, an d consists in fixin g on e or m an y con trol param e ters wh ich can de fin e th e actual state of th e e quip m e nt com pon e n ts, an d startin g pre ve n tive action s on th e basis of an an alysis of pre de te rm in e d con trol param e te r te n de n cie s. For e ach strate gy, th e re late d assum ption s as we ll as th e m ath e m atical m ode l are pre se n ted. Th e pe rform an ce of e ach strate gy is e valuate d ove r th e e quipm e n t life cycle . In both case s, th e seque n ce of inspe ction tim e s is th e on e wh ich m in im ize s the total ave rag e cost pe r tim e unit ove r an in fin ite span . Th is cost re pre sen ts th e pe rform an ce crite rion sele cte d to ch oose th e be st suite d strate gy for a give n e quip m e nt un de r re le van t costs. In Se c tion 4 , we sh ow, th rou gh a n um e rical e xam ple , h ow th e ch oice be twe e n th e two strate gie s c an be m ad e in th e c ase of a ran d om ly failin g e quipm e n t wh ose life tim e is n orm ally distribute d.

2. Sim p le in sp e c tio n strate gy Th is strate gy sugge sts th at the e quipm e n t m ust be in spe cted accordin g to a pre de te rm ine d inspe ction se qu e n c e xi ( i 5 1 2 . . .) to de te rm in e if it is still ope rating or pre sen ts som e form of failu re . Th e m ore fre que n tly the e quipm e n t is in spe cted th e shorte r th e pe riod be twe e n failure an d its de tec tion. O n the othe r h an d, e ach in spe ction involve s a cost so that we do n ot wish to in spe ct too ofte n . Th e proble m is to de te rm in e th e se que n ce of in spe ction in stants wh ich m in im ize s th e ave rage cost pe r tim e unit. 1998 Taylor & F rancis Ltd

In spection an d predictiv e main ten an ce strategies Conside ring x0 5

Th e followin g assum ption s are m ad e : ( a) ( b) ( c) ( d) ( e)

syste m failu re is known on ly th rough in spe ction; inspe ction take s n e gligible tim e ; the in spe ction action is pe rfectly pe rform e d; e ach in spe ction im plie s a fixe d cost Ci ; a cost Cd is incurre d to e ach tim e un it e lap se d be twe e n failu re occurre n ce an d its de te ction; ( f) upon de tec tion of failure , re pair ( or re place m e nt) re quiring ne gligible tim e is un de rtake n at an ave rage cost Cg ; ( g) the system life tim e s is a ran d om var iable with kn own probability de n sity function g( .) an d distribution fun ction G( .) ; ( h) th e system failu re rate is an incre asin g function.

Th e propose d m ath e m atical m ode l for th is strate gy is an e xten sion of th e one de ve lope d by Mun ford an d Sh ah an i ( 1972) wh ic h p ropose s a n e arly optim al inspe ction policy base d on a single param e te r p. Th is param e te r stan ds for th e con dition al probability of failu re occurre n ce durin g the in terval [ 2 1 ] give n th at th e e quipm e n t was workin g at tim e 2 1: G ( xi ) 2 G ( xi 2 1 ) 1 2 G ( xi 2 1 )

for i 5

1 2

...

pi 5

p1

i

5

G ( xi ) 2 G ( xi 2 1 ) 1 2 G ( xi 2 1 )

for i 5

1 2

...

( 2)

wh e re p 1 is th e condition al probability that failu re occu rs be fore th e first in sp e ction . Th is form was arbitrarily ch ose n . O the r form s wh ich satisfy th e con dition: pi 1 m ay be use d.

1

pi

p1 5

0, (4)

G ( x1 )

from e quation ( 2) , we ge t G ( xi ) 5

pi 1

(1

2 p i ) G ( xi 2 1 )

for i 5

1 2

...

(5)

an d the inspe ction con stan ts xi can e asily be ge n e rate d with the followin g re cursive form ula: xi 5

G2

1

1

p1

12

i

G ( xi 2 for i 5

1 G ( xi 2 1 )

1)

...

1 2

(6)

Le t TC be th e total cost un til failu re is de te cte d an d re place m e n t is m ade ( cycle cost) , iCi 1

TC 5

for i 5

1 2

...

R 5

Cd ( xi 2

( 3)

E ( TC )

lim

®

)

1 Cg

(7)

¥

E( C )

5

(8)

E( T )

wh e re E( C) is the e xp e cted total c ost ove r a re place m e nt cycle wh ose ave rage duration is E ( T) . E( C) an d E( T) are , re spe ctive ly, give n by Ci E ( I ) 1

E( C) 5

( 1)

Th e inspe ction in stan ts ( 5 1 2 . . .) are de rive d as a fun ction of th e param e ter p wh ich is ch ose n so as to m in im ize th e ave rage cost ove r a cycle ( th e e lap se d tim e be twe e n con se c utive re place m e n ts) . Con sid e rin g th at the e quipm e n t failure rate is an incre asin g function ( assum ption ( h ) ) , wh ich m e an s th at failu re re pre se n ts th e outcom e of a de terioration proce ss th at grows with tim e , we se e that as tim e e lap se s an d in spe ction s are carried out, the probability of failu re occurre nc e incre ase s. In oth e r words p grows toge th e r with i. th e con dition al probability p i th at failu re occurs during th e inte rval [ xi 2 1 xi ] give n th at th e e quipm e n t was in ope ration at tim e xi 2 1, m ay th e n be e xp re sse d as follows: 1

0 an d G ( 0 ) 5

wh e re i is the total n um be r of in spe ction s during on e cycle . Th e e xp re ssion of th e ave rage total cost pe r tim e un it ove r an in fin ite span is give n by:

2.1. Mathematical model

p 5

227

Cd E ( A) 1

(9)

Cg

1 E ( A)

E( T ) 5

( 10 )

wh e re E( I) is the ave rage n um be r of in spe ction s un til failu re de te c tion, E( A) the m e an inactivity pe riod, an d l th e e quipm e n t ave rage life tim e . Le t us de ve lop e xp re ssion for E( I) an d E( A) .

The av erage n umber of in spection s du ring on e cycle, E(I) If th e ran d om var iable I de n ote s th e nu m be r of in spe ctions until failu re de te c tion, th e n th e e xp e cte d n um be r of in spe ction s is give n by:

¥

E( I ) 5

i Prob( I 5

( 11 )

i)

i5 1

wh e re p1

Prob( I 5

i2 1

i) 5

1 k

.p11

1 2 p1

k5 1

i

for i 5 for i 5

1 2 3

... ( 12 )

He n ce , E( I ) 5

p1 1

¥ i5 2

1 i

i . p1

.

i2 1 k5 1

12

1 k

p1

( 13 )

A. Chelbi an d D. Ait-Kadi

228

The av erage in activ ity period, E(A) If failu re occurs be twe e n t an d t+dt, with in th e tim e inte rval [ xi-1 , xi] , th e n th e m e an inactivity pe riod is give n by: xi

A5

2 t ) g ( t ) dt

( xi

( 14 )

xi 2 1

Sin ce failu re m ay occur with in an y inte rval [ xi-1 , xi] , th e n

¥

E ( A) 5

xi

( xi i5 1

2 t ) g ( t ) dt

( 15 )

xi 2 1

wh e r e x0 =0. Afte r som e alg e braic m an ipu lation s, e quation ( 15) m ay be put in th e followin g form :

¥

E ( A) 5

i5 1

xi [ G ( xi ) 2

From e quation ( 2) , we ge t G ( xi ) 2

G ( xi 2

th e re fore E ( A) 5

1)

¥

1 i

5

p1

i2 1

1 i

i5 1

xi p 1

k5 1

i2 1

12

k5 1

12

2

1)]

G ( xi 2

( 16 )

1 k

p1

1 k

2

p1

( 17 )

( 18 )

s : tim e at wh ich the m e asure d param e ter e xce e ds

th us, substitutin g in e quation s ( 8) , ( 9) an d ( 10) , th e e xp re ssion for th e ave rage total cost pe r tim e un it ove r an in fin ite span be com e s: Ci

¥

p1 1

1 i

i5 2

i p1

i2 1

1 k

1 i

xi p 1 i

R ( p1 ) 5

1 i

i

xi p 1

1 Cd

1 2 p1

k5 1

i2 1 k5 1

i2 1 k5 1

an an alysis of the tre nd of pre d e te rm in e d con trol param e ters wh ich can de fin e th e actual condition of th e e quipm e nt com pon e n ts. Vibration le ve l an d th e am oun t of carbon in a lubrican t are two e xam ple s of such con trol param e te rs. Th e m ath e m atical m od e l assoc iate d with th is strategy h as be e n discussed in Ch e lbi an d Ait-Kad i ( 1995 ) an d Tu rco an d Parolin i ( 198 4) . It ge n e rate s an in spe ction se que n ce m in im izin g th e total ave rag e cost pe r tim e unit, wh ich is th e sum of costs re late d to in spe c tion s, pr odu c tion losse s an d p re ve n tive or corre ctive action s. The m ode l states th at progre ssion of th e e quip m e n t de te rioratio n p r oce ss c h an ge s sign ifican tly on ce a thre sh old pe rform an ce ( sh own by m e asu re d value s of the param e te rs unde r con trol) is re ach e d. Afte r this critical instan t, the de te rioration rate in cre ase s m ore quickly. For th is re ason , it is assum e d that th e e quipm e n t failu re rate ch an ge s on ce th e alarm th re sh old is e xce e de d. In th is situation , failu re be com e s im m ine n t. The probability de nsity fun c tion associate d to th e e quipm e n t life tim e is th e re fore con side re d as a com bination of two probability de n sity fun ctions / ( .) an d f( .) , re spe ctive ly, associate d to two in de pe n de nt ran dom variab le s s an d t:

1 k

1 2 p1

t:

The followin g costs are con side re d: 2

1 Cg

( 19 )

12

th e alar m th re shold, from th e in stan t wh e n th e e quipm e n t is re store d failu re tim e from in stan t s up to failure

1 k

p1

Th is e xpre ssion is re lative ly com ple x. It in clude s th e p ar am e te r p 1 as we ll as th e in sp e c tio n in stan ts xi ( i 5 1 2 . . .) . For a give n value of p 1 , it is possible to com pute th e corre spon din g instan ts xi from e quation ( 6) . A n um e rical ite rative proce dure h as be e n de ve lope d to ge ne rate th e optim al value of p 1 corre spon din g to th e se que n ce xi ( i 5 1 2 . . .) wh ich m in im ize s th e total e xp e cted cost pe r tim e unit, R,( p 1 ) . Th e user h as sim ply to input the e quipm e nt life tim e distribution G( .) as we ll as th e re le van t costs Ci , Cd an d Cg , an d a n e arly optim al in spe ction se que n ce is obtain e d.

Cv Cp Cg Cd

in spe ction cost, pre ve ntive re place m e n t cost, failu re re place m e n t cost, cost of an inactivity tim e un it

The m ode l m ake s th e followin g assum ption s ( 1) ( 2)

( 3)

3. Pre d ictive -o rie n te d in sp e ction strate gy Th is strate gy is base d on th e syste m atic con trol of th e e quipm e n t. Pre ve n tive action starts on the basis of

: : : :

( 4) ( 5)

T h e p r o b ab i l i t y d i s tr i b u ti o n fu n c ti o n s ( ) an d ( ) are kn own . In spe c tion s h ave n o c on se que n ce on th e physical proce ss of de te rioration an d failure ( pe rfe ct in spe ction ) . The possible pre ve n tive re place m e n t is sch e dule d afte r a pre de te rm in e d tim e H from th e in spe ction in stan t in wh ic h th e param e te r unde r con trol is foun d havin g e xce e de d th e alarm le ve l. An y possible in spe ction with in th is tim e H is can ce lle d. In spe ction s do n ot ne e d an y se tup tim e . The e quipm e n t con dition in cludin g failu re is kn own only through inspe ction .

In spection an d predictiv e main ten an ce strategies Th e proble m is to fin d the instants xi ( i 5 1 2 . . .) wh ich can give th e lowe st ave rag e cost pe r tim e un it, th at is the ratio be twe e n cycle ave rage cost E( C) an d cycle ave rage tim e E( T) ove r an in fin ite h orizon. He re , a cycle re pre se nts the e lap se d tim e be twe e n con se cutive re place m e n ts, e ithe r pre ve ntive or due to failu re . Th e m ode l conside rs th e sam e e xp re ssion for p i ( e quation ( 2) ) to e xp re ss th e con dition al probability to th de te ct at th e i in spe ction , th at th e alarm thre sh old h as be e n e xc e e d e d give n th at th is situatio n was n ot th discove re d at the ( i-1) in spe ction . Th e inspe ction se que nce can be de term ine d for a give n p 1 by: xi 5

2 1

1 i

p 1 [1 2

1)] 1

( xi 2

( xi 2

1 2

...

( 20 )

p1 be in g in th is case , th e probability of havin g th e alarm th re sh old e xce e de d be fore the first in spe ction. Th e ap propriate p 1 will be the on e wh ich m in im ize s th e ratio E [C ( p 1 ) ] ( 21 ) 5 E [T ( p 1 ) ] wh e re E[ C( p1 ) ] is th e cycle ave rag e cost an d E [ T ( p 1) ] is th e cycle ave rage tim e . Th e e xpre ssion for th e cycle ave rag e cost is: Cv E [ I ( p 1 ) ] 1

E [C ( p 1 ) ] 5

Cg Pg ( p1 ) 1

Cp Pp ( p 1 ) 1

( 22 )

Cd A( p 1 )

wh e re th e probability, Pg, that the cycle e nds with a failu re e ve nt is give n by

¥

Pg 5

xi

( )F(H i5 1

xi 5

1 xi 2

)d

( 23 )

1

Th e probability, Pp , th at the cycle e n ds with a pre ve n tive inte rve n tion is give n by Pp 5

12

( ) ( xi

1 H 2 ( 1 t ) ) f ( t ) dt }d

( 26 )

O n th e oth e r h an d, th e e xp re ssion for the cycle ave rage tim e E[ T( p 1 ) ] is d e rive d from th e two followin g obse rvations: If failu re occurs be twe e n xi an d xi+H, the cycle ave rage duration would be give n by

¥

E1 [ T ( p 1 ) ] 5

xi 1 H 2

xi xi 2 1

( )

i5 1

xi 1

0

H

f ( t ) dt d

( 27 )

If failu re doe s n ot occur with in the tim e in te rval [ xi, xi + H] , in wh ich case a pre ve n tive re place m e nt is m ad e , th e cycle ave rage duration would be give n by

1)

for i 5

{

229

( 24 )

Pg

E2 [ T ( p 1 ) ] 5

¥ (H i5 1

[1 2

1 xi )

F (H 1

xi xi 2 1

xi 2

( ) ) ]d

( 28 )

Sin c e th e ab ove m e n tion e d e ve n ts are m utu ally e xclusive , th e cycle e xpe cte d duration is th e n: E [ T ( p1 ) ] 5

E1 [ T ( p 1 ) ] 1

E2 [ T ( p 1 ) ]

( 29 )

He n ce , com bin in g e quation s ( 21) to ( 29) , it is possible to e xp re ss th e ave rage total cost pe r tim e un it , as a fun ction of a single param e ter p 1 , re placin g in e ach e quation xi by its valu e give n by e quation ( 20 ) . Due to the com ple xity of th e m ode l, a num e rical ite rative proce dure h as be e n de ve lope d to ge n e rate a n e arly optim al inspe ction seque n ce xi ( i 5 1 2 . . .) wh ich corre sponds to the value of p 1 wh ich m inim ize s th e ave rage total cost pe r tim e un it. The in put of th e proce dure include s the probability distribution s F an d F, the costs Ci , Cd , Cg an d Cp , an d the duration H. A se nsitivity an alysis m ay be pe rform e d for e ach strategy usin g th e corre spon din g n um e rical proce dure in orde r to study the in flue n ce of e ach input param e te r on th e inspe ction se que n ce an d its cost.

Th e ave rage num be r of in spe ction s un til the first alarm signal, E[ I( p 1 ) ] , is e xp re sse d as follows

¥

E [ I ( p1 ) ] 5

xi 1

i[

1

( ) . F ( xi 1

o

i5 1 xi

0

( ) F ( xi

2

1

2

)d

)d ]

an d A( p 1 ) is th e ave rage in activity pe riod A( p 1 ) 5

¥

i5 1

xi 1 H 2

xi xi 2

1

0

4. Nu m e rical e xam p le

2 ( 25)

As an application of the two in spe ction strate gie s pre se n ted in th is pap e r, le t us conside r an e quipm e n t wh ose life tim e is a ran dom var iable with norm al distribution G $ ( l =900 , r =90) . Th is e quipm e nt is subm itted to a sim ple in spe ction strate gy in volvin g th e followin g costs: Ci =1 35 unit cost ( cost of one in spe ction)

A. Chelbi an d D. Ait-Kadi

230

Cd =20 un it cost/ un it tim e ( cost of an inactivity tim e unit) Th e se life tim e distribution an d costs data have be e n arbitrarily chose n in orde r to che ck th e valid ity an d th e robustn e ss of th e proc e dure s. Ac c ord in g to th e c orre sp on d in g m ath e m atic al m ode l ( Se ction 2) , th e optim al in spe ction se que n ce wh ich m in im ize s th e total ave rag e cost pe r tim e un it is sh own in Table 1. Th e tim e to pe rform the first inspe ction ( x1 =81 4 × 12 tim e un its) com e s a little be fore th e e quipm e nt ave rage life tim e is re ach e d. Th e n , as we should e xp e c t, since th e e quipm e nt failu re rate is an in cre asin g function , th e inte rval be twe e n succe ssive inspe ction s de cre ase s. Th e corre spondin g total ave rage cost pe r tim e un it is e qual to 7 × 345 ( un it cost/ un it tim e ) . Th e probability p 1 th at failu re occurs be fore the first in spe ction is 17 % . Suppose that on e con trol param e te r, vibration le ve l for instan ce , turn s out to be a good in dication of th e e quipm e nt actual state an d th at it can be m e asure d by m e an s of spe cialize d e quipm e nt. It is th e n worth se e in g if the diagn ostic pre d ictive strate gy ( Sec tion 3) prove s to be a good alte rn ative . In te rm s of costs, th e diffe re n ce be twe e n th e two strate gie s re side s obviously in th e cost of one in spe ction. In de e d, ad optin g th e se cond strate gy would involve an incre ase in the inspe ction cost be cau se of th e n e e d for m ore skille d te chn ical staff as we ll as high tech n ology e qu ip m e n t. Le t us supp ose in ou r case th at th e inspe ction cost wh e n ad optin g this strate gy is twice th e cost in th e first strate gy : Cv =270 unit cost. Assum e th at a ce rtain alarm th re sh old is fixe d an d th at th e e quipm e nt tim e to failu re turn s out to be a sum of two oth e r n orm al distributions F $ ( l 1 =800 , r 1 =78 ) unit tim e an d F $( l 2 =100, r 2 =45 ) un it tim e , be fore an d afte r e xce e din g th e alarm th re sh old. Th e calculation s

corre spon ding to the se con d strate gy ( with H =O , Cp =3500 an d Cg =60 00) yie ld th e followin g re sults. Th e ave rag e total cost pe r tim e unit is e qual to 5 × 396 ( un it cost/ un it tim e ) wh ich is 27 % lowe r th an with th e first strate gy. The probability to have th e alarm th re sh old e xce e de d be fore the first in spe ction is e qual to 40% an d th e optim al in spe ction se que n ce is shown in Table 2. He n ce , on the basis of th e pe rform an ce crite rion we h ave fixe d, we can con clude th at in this case , e ve n if th e cost of an in spe ction double s wh e n switching to a pre dictive in spe ction strate gy, it is still worth doin g it. O n e can ask the followin g que stion: up to wh at am oun t is it still worth in ve stin g? In orde r to an swe r th is que stion , th e grap h ic pre se n ted in Figu re 1 sh ows the variation of the lowe st ave rag e cost pe r tim e un it c orre spon din g to th e pre dictive in spe ction strategy, as a fun ction of th e ratio R =Cv / Ci/ ( Ci is ke pt con stan t ( 13 5 unit cost) an d Cv is varie d) . O n e can se e from th is figure that as lon g as th e

Table 2. O ptim al inspe ction seque nce correspon ding to th e se con d strategy. i 0 1 2 3 4 5 6 7 8 9 10

x

i

0 780 × 35 860 × 19 922 × 70 976 × 94 1027 × 64 1072 × 76 1115 × 20 1151 × 05 1181 × 36 1200 × 21

x

i +1

Ð

x

i

780 × 35 79 × 84 62 × 51 54 × 24 50 × 70 45 × 12 42 × 44 35 × 85 30 × 31 18 × 85

Table 1. O ptim al inspection se que nce corre spon ding to the first strategy. i 0 1 2 3 4 5 6 7 8 9 10

xi 0 814 × 12 880 × 00 912 × 24 932 × 79 947 × 64 959 × 13 968 × 44 976 × 22 982 × 88 988 × 68

xi +1 Ð

xi

814 × 12 65 × 88 32 × 24 20 × 55 14 × 85 11 × 49 9 × 31 7 × 78 6 × 66 5 × 80

Figure 1. Variation of the lowest average cost corresponding to the predictive strategy function of the inspection costs ratio.

In spection an d predictiv e main ten an ce strategies inspe ction cost in the case of a pre dictive strate gy is le ss th an twe lve tim e s the cost of a sim ple in spe ction , base d on our pe rform an ce crite rion , it is re com m e n de d to ad opt th e pre dictive in spe ction strate gy.

5.

Co nclu sio n

In this pap e r, two in spe ction strate gie s h ave be e n pre se n te d. Th e first on e can be ad van tage ously ap plie d to an yt e quipm e n t subje ct to ran dom failu re s an d wh ose state is kn own only th rough inspe ction . Th e se con d strate gy in troduce s th e pre dic tive m ain te nan ce con ce pt. In fact, at e ach inspe ction , th e ten de nc y of a m e asu rable control param e te r of the syste m is an alyse d an d it is d e c id e d wh e th e r to m ake a p re ve n tive re place m e nt or not. Give n the e quipm e nt life tim e probability distributions as we ll as th e costs associate d to the diffe re nt action s, th e m ode ls corre spon din g to the two propose d strate gie s ge n e rate a n e arly optim al in sp e ction se que n ce . Th e n um e rical re sults obtain e d are in accordan ce with wh at h as be e n alre ad y publishe d on the subje ct. For give n value s of e ach m ode l’ s param e te rs, th e user can ch oose the strate gy with th e lowe st total ave rage cost pe r tim e un it on an in fin ite span . Q uality con trol an d m e dical te sts re pre se nt som e pote n tial practical application s of th e se m ode ls.

231

Ackn o wle d ge m e n ts Th is re se arc h is partially su pporte d by th e Natural Scie nce an d En gin e e rin g Re se arch Counc il of Can cad a ( Grant O GP 0118 062) j. The au thors are ple ase d to th an k th e asscociate e ditor, F. Ve rnad at, an d th e re fe re e s for th e ir insigh tful com m e n ts.

References B ARLO W, R. E., and PRO SCH AN, F., 1965, Mathematical Theory of Reliability ( Joh n Wiley & Son s, Ne w York) . C H ELBI , A., an d AIT-KADI, D., 1995, O ptim al con dition al re placem e nt m ode l. Te chn ical Re port, De partm en t of Me chanical En gine e ring, Laval Un ive rsity, Q ue be c, Canada. MUNFO RD, A., and SHAH ANI, A., 1972, A ne arly op tim al inspe ction policy. Operational Research Qu arterly, 23, 373 ± 379. NAKAGAWA, I., and YASUI., K., 1980, Approxim ate calculation of op tim al inspection P83FD. Jou rn al of Operational Research Society, 31, 851 ± 853. RO DRIGUES DIAS, J., 1990, A new approxim ation for inspe ction pe riod of system s with differe nt failure rate s. Eu ropean Jou rn al of Operational Research, 45, 219 ± 223. S CH NEEWEISS , W. G., 1976, O n the m e an du ration of hidden faults in pe riodically che cke d system s. IEEE Tran saction s of Reliability, R-25 / 5, 346 ± 348. T ADIKAMALLA, P. R., 1979, An inspe ction policy for the Gam m a Failure Distribution s. Jou rn al of Operational Research Society, 30, 77 ± 80. T URCO , T., an d PARO LINI, P., 1984, A ne arly optim al inspe ction policy for produ ction e quipm e nt. In ternational Journal of Produ ction Research, 22, 515528.