Intelligent Diagnostics: An Application to Infrastructure ...

32 downloads 0 Views 194KB Size Report
Margery Hines1a, Ariel Irizarry2b, Adnan Jamil1a, Alexis Paris3b, and Alyson Stuer2a. Sara Wadia-Fascetti2a, Carey Rappaport1a, Ingrid Padilla2b, Dionisio ...
Intelligent Diagnostics: An Application to Infrastructure Failure Margery Hines1a, Ariel Irizarry2b, Adnan Jamil1a, Alexis Paris3b, and Alyson Stuer2a 2b,, Dionisio Bernal2a Sara Wadia‐Fascetti2a,, Carey Rappaport y pp p 1a,, Ingrid Padilla g 1 Department of Electrical Engineering, 2

Deparment of Civil Engineering, 3Computing and Information Science and Engineering aNortheastern University, bUniversity of Puerto Rico, Mayagüez

Abstract

Potential ID Technologies

Over the past few decades civil infrastructure have been deteriorating significantly and in a lot of cases, being a threat to everyday life. The damages can be severe and costly; maybe even irreparable by the time they are detected without intelligent diagnostics. The Gordon‐CenSSIS center at Northeastern University and University or Puerto Rico are working on the Versatile Onboard Traffic Embedded Roaming Sensors (VOTERS) project which will allow for an intelligent and integrated method to detect these faults ahead in time to save lives, not to mention costs. In this presentation a couple of case studies will be done where bridge decks will be simulated and analyzed using a two dimensional Finite Difference Time Domain code. The electromagnetic scattering resulting from different scenarios will be important because i gives it i an intuition i i i which hi h will ill be b a key k step in i accomplishing li hi the h goal.l The Th various i electromagnetic l i interactions between bridge components hold information on defects. Finally potential methods of accurately identifying defects will be discussed.

Case 1 – Expansion Joint Failure and hairline cracks • Goal – Localize small air pockets •Potential Difficulty – Air pockets are very small in comparison to components of surrounding media. Current methods of GPR would disregard them as probable variations for the given operating conditions •Technology ‐ Coming up with a way for the GPR system to read time domain characteristics resulting from an impulse response generated by the infrastructure. Case 2 ‐ Internal Concrete Cracks and air voids • Goal – Localize larger air pockets •Difficulty – Easy to locate using 3D GPR, but yields an unmanageable amount of data •Potential Technology – Create a comparable system that would rid excess data without loss of information

Background of Intelligent Diagnostics The original goal of nondestructive testing and nondestructive evaluations was to create a reliable and cost effective method of evaluating structural components, which would not affect their future usefulness. Many methods have since been developed, including visual and optical testing, radiography, magnetic particle testing, ultrasonic testing, electromagnetic testing, and acoustic emission testing. Two major difficulties with the majority of these techniques are that some depend on the qualitative opinion of the inspector and that most are only applicable for near surface inspections. The case studies presented, require a reliable source of subsurface sensing. In addition, the removal of the human element is pivotal to increasing the value of these inspections. This would create a uniformity that is currently lacking This leads to the development and necessity of intelligent diagnostics, lacking. diagnostics which use internal software to evaluate the structure quantitatively. Additionally developments are needed which can yield reliable results at a lower penetration.

-3

-3

Select Civil  Structure Worst Case  Scenario Social Impact  Analysis

Develop and  Develop and Invest in an ID System Measure  Social Benefits

50

1.5

1

300

0.5

200

0

250

450

Z (grid coordinates)

100 150 200

250

250

300

300

350

350

400

400

450

450

500

100

200

300

400

500

50

200

450

-2

500 -3

x 10 2

200 300 X (grid coordinates)

400

500

500

100

200

300

400

500

-2

500 -3

x 10 2

450

-2 2

500

100

100

200

300

400

500

300

-0.5

350

450

-2 2

500

-1

450 100

200

300

400

500

-0.5 -1 -1.5

100

200

300

400

500

-3

50

1.5

x 10 2 50

1.5

1

0

300

-0.5

500

0.5

200 250

0

300

-0.5

350 -1

400

-2

1 150

0.5

250

450

These contour plots  depict the scattering  and interactions  between various bridge  deck components. 

100

200

-1.5

-2 2 -3

x 10 2

350

400

0

400

-1.5

150

0

0.5

350 -1

1 0.5

-3

1.5

300

100

150

-2 x 10 2

1

-0.5

400

-1.5

1.5

250

500

250

0

-3

200

400

200

350

50

300

150

300

-1

500

200

Illumination of a bridge Illumination of a bridge  deck using a narrow‐ width Gaussian pulse.

100

0.5

250

-0.5

400

100

1

200

0

300

-1.5

50

1.5

x 10 2

500

450

150

200

-1

400

-1.5

100

0.5

100

-0.5

350

50

1.5

0

300

-1

1

100

250

-0.5

400

-1.5

0.5

200

0

350 -1

400

150

150 0.5

300

-0.5

350

100

1

150

250

1.5

100

1

200

500

x 10 2 50

1.5

100

150

Slice at: y=250 mm, X-Res: 2 mm, Z-Res: 2 mm, Simulation Size: 501 x 501

-3

x 10 2

x 10 2 50 100

50

Kimberly Marie Belli. “Ground Penetrating Radar Bridge Deck Investigations Using Computational Modeling”  PhD thesis, April 2008.  Ariel Irizarry, Ariel and Alyson Stuer, “Infrastructure Failures: Needs for Development of Intelligent  Diagnostics” Annual Gordon‐CenSSIS Research and Industrial Collaboration Conference, Boston, MA  October 27‐28, 2009. NDT Resource Center. "Nondestructive Testing Resource Center." Iowa State University. Web. 8 Oct. 2009. Jol, Harry M., ed. Ground Penetrating Radar Theory and Applications. Elsevier Science, 2009. Print. Farid, Arvin M., Jose A. Martinez‐Lorenzo, Akram Alshawabkeh, and Carey Rappaport. "Tunnel Detection  Using Cross‐Well Radar." ASCE GeoCongress (2008): 284‐89. Print.

Failing infrastructure imparts enormous negative impacts on society. For example, failure of the Point Pleasant, West Virginia bridge in 1967 caused significant losses of life and property (Irizarry and Stuer, 2009). Although national standards for bridge inspection were developed thereafter, infrastructure failures still occurs and a need exists to develop reliable diagnostic methods. h d Intelligent I lli Di Diagnostic i (ID) technologies, h l i such as those presented in this work, show a large potential to improve diagnostic reliability and prevent future failures. Their applicability to a wide variety of structures can reduce costs and enhance social benefits.

Ground Penetrating Radar (GPR) Simulations

References

References

Socio‐Economic Impacts

100

200

300

400

500

-1

400

-1.5

450

-2

500

-1.5

100

200

300

400

500

-2

Conclusions This work was supported in part by the IGERT: Intelligent Diagnostics for Aging Civil Infrastructure,  under the IGERT Program of the National Science Foundation (Award Number DGE‐0654176).

Intelligent diagnostics are the next step forward in nondestructive testing. Intelligent diagnostics have made huge advancements in the medical industry, and as infrastructure continues to age, the necessity for a quantitative evaluation system is increasing. Such developments will make a huge social and economic impact in that they will decrease the probability of failure and decrease the current costs of inspection methods. The GPR data that was analyzed demonstrates the applicability and feasibility of such technology.