laptop) runs the analysis using Fortran, C, Matlab codes, fetching data as needed
from databases through a web-service we adapted Fortran,. C and Matlab to.
Ciclo di seminari Università degli studi di Roma “Tor Vergata” May, 2013
Introduction to fundamentals of Turbulence, Large Eddy Simulation and subgrid-scale modeling Charles Meneveau Johns Hopkins University Baltimore, USA Additional reference: http://www.scholarpedia.org/article/Turbulence:_Subgrid-Scale_Modeling
JHU Mechanical Engineering
Ciclo di seminari Universita degli studi di Roma, Tor Vergata May, 2013
OVERVIEW: Mercoledì: • • • • •
Introduction to fundamentals of Turbulence Intro to Large Eddy Simulation (LES) Intro to Subgrid-scale (SGS) modeling The dynamic SGS model Some sample applications from our group
Venerdì: • Dynamic model for LES over rough multiscale surfaces • LES studies of large wind farms
JHU Mechanical Engineering
Turbulence = eddies of many sizes
From: Multimedia Fluid Mechanics, Cambridge Univ. Press
Turbulence = eddies of many sizes + large-scale vortices
From: Multimedia Fluid Mechanics, Cambridge Univ. Press
Turbulence in aerospace systems: Jets and eddies during shuttle launch
Large Eddy Simulation of flow in thrust-reversers Blin, Hadjadi & Vervisch (2002) J. of Turbulence.
Turbulence in reacting flows: Premixed flame in I.C. engine, combustion
Numerical simulation of flame propagation in decaying isotropic turbulence
Turbulence in environment and geophysics
Turbulence in renewable energy
From J.N. Sørensen, Annual Rev. Fluid Mech. 2011:"
Turbulence in astrophysics
Turbulence in astrophysics
Simplest turbulence: Isotropic turbulence Corrsin wind tunnel at the Johns Hopkins University Active Grid M = 6 "
Contractions
Test Section
Flow
Decaying turbulence
Johns Hopkins University: Baltimore, Maryland USA JHU: Latrobe Hall (Mechanical Engineering) Downtown Baltimore
Maryland Hall
Corrsin wind tunnel at JHU
Stan Corrsin 1920-1986
Turbulence is: • multiscale, • mixing, • dissipative, • chaotic, • vortical • well-defined statistics, • important in practice
Physical quantities describing fluid flow • Density field • Velocity vector field • Pressure field • Temperature field (or internal energy, or enthalpy etc..)
Physical laws governing fluid flow • Conservation of mass • Newton’s second law (linear momentum) • First law of thermodynamics (energy) • Equation of state • Some constraints in closure relations from second law of TD
Navier Stokes equations for a Newtonian, incompressible fluid
Navier-Stokes equations, incompressible, Newtonian
∂u j =0 ∂x j ∂u j ∂t
+
∂uk u j ∂xk
1 ∂p =− + ν∇ 2u j + g j ρ ∂x j
aj =
Fj m
Traditional approach: Reynolds decomposition
∂u j =0 ∂x j ∂u j ∂t
+
∂uk u j ∂xk
1 ∂p =− + ν∇ 2u j + g j ρ ∂x j
t
Traditional approach: Reynolds decomposition
∂u j =0 ∂x j ∂u j ∂t
+
∂uk u j ∂xk
1 ∂p =− + ν∇ 2u j + g j ρ ∂x j
Reynolds’ equations: ∂u j =0 ∂x j ∂u j ∂t
+
∂u j uk ∂xk
t
(
1 ∂p ∂ 2 =− + ν∇ u j + g j − u j uk − u j uk ρ ∂x j ∂xk
)
u ′j uk′ Reynolds’ stress tensor: Requires closure (“turbulence problem”)
E(k) k −5 / 3
Rate of energy cascade and dissipation !
Turbulence physics: the energy cascade (Richardson 1922, Kolmogorov 1941)
L
ηK
Turbulence problem: “last unsolved problem in classical physics” (e.g. Feynman 1979) Sample challenges (unsolved) Reynolds’ stress tensor: u ′j u k′ Requires closure (“turbulence problem”) First-principles derivation of Kolmogorov’sk-5/3 spectrum “With turbulence, it's not just " a case of physical theory " being able to handle only " simple cases—we can't do any." We have no good fundamental " theory at all.” (Feynman, 1979," Omni Magazine, Vol. 1, No.8)."
E(k) k −5 / 3
Direct Numerical Simulation (DNS): N-S equations:
∂u j ∂t
+
∂u k u j ∂xk
∂p =− + ν∇ 2 u j + g j ∂x j
Moderate Re (~ 103), DNS possible
∂u j =0 ∂x j
High Re (~ 107), DNS impossible
DNS - pseudo-spectral calculation method (Orszag 1971: for isotropic turbulence - triply periodic boundary conditions)
ˆ u(k,t) = FFT [u(x,t)] ˆ k ⋅ u(k,t) = 0,
ˆ ∂u(k,t) ˆ ˆ = P(k) ⋅ (u × ω )(k) − ν k 2 u(k,t) + P(k) ⋅ f(k,t) ∂t (u × ω )(k) = FFT [u(x,t) × ∇ × u(x,t)]
FFT
x2
k2
ˆ u(k,t)
u(x,t)
x1
k1
DNS - pseudo-spectral calculation method (Orszag 1971: for isotropic turbulence - triply periodic boundary conditions)
FFT
x2
k2
ˆ u(k,t)
u(x,t)
x1
k1
Computational state-of-the-art: 1283 - 2563: Routine, can be run on small PC with (2563 x 12 x 4) Bytes = 100 MB of RAM 10243 : needs cluster with O(100) nodes and O(64 GB) RAM 40963 : world record (Earth Simulator, Japan, 2003, 30 - TFlops), 4 TB RAM
1,0243 DNS: iso-velocity filled contours (data from: JHU public database cluster, Claire Verhulst & Jason Graham Matlab visualization)
Energetic signature of the large, intermediate (and some smaller) turbulent eddies:
u1 (x, y, z0 ,t 0 )
~ 40 grid points 1,024 grid points 1,024 grid points
1,024 grid points
Take 10243 DNS of forced isotropic turbulence (standard pseudo-spectral Navier-Stokes simulation, dealiased):
10244 space-time history 27 Tbytes, Rel~ 430
http://turbulence.pha.jhu.edu
Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C.M., R. Burns, S. Chen, A. Szalay & G. Eyink: “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence”. Journal of Turbulence 9, No 31, 2008. So far 12 papers published using data from public database
Take 10243 DNS of forced isotropic turbulence (standard pseudo-spectral Navier-Stokes simulation, dealiased): Running Fortran or C
Running Matlab
Manual query On web-browser
10244 space-time history 27 Tbytes, Rel~ 430
http://turbulence.pha.jhu.edu
Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C.M., R. Burns, S. Chen, A. Szalay & G. Eyink: “A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence”. Journal of Turbulence 9, No 31, 2008. So far 12 papers published using data from public database
New paradigm: Client computer (e.g. my laptop) runs the analysis using Fortran, C, Matlab codes, fetching data as needed from databases through a web-service we adapted Fortran, C and Matlab to “surf the web” for data
Y. Li, E. Perlman, M. Wan, Y. Yang, R. Burns, C. Meneveau, R. Burns, S. Chen, A. Szalay & G. Eyink: Journal of Turbulence 9, No 31, 2008.
Coupling GPU’s with databases: material surfaces (24 million particles) advected in turbulent 1,0243 field Real-time flow-viz (download 1 snapshot at fixed t, animated on GPU)
Dr. Kai Buerger (TUM, summer 2011) M. Karweit (MS Thesis, & Album of Fluid Motion, CUP)
iso-vorticity surfaces (JHU database, Dr. Kai Buerger visualization
Vortical signature of the smallest turbulent eddies:
)
(∇ × u)2
ai =
Fi m
Data mining: high-intensity vorticity event associated with vortex reconnections
Colors: surfaces of iso-vorticity magnitude 1024
64
Video generated by Dr. Jonathan P. Graham using VAPOR software (NCAR)
Basic (and applied) research challenge: Coarse-graining - Large-Eddy-Simulation (LES): Coarse-graining for more affordable simulations
u1 (x, y, z0 ,t 0 )
4x109 d.o.f.
u1 (x, y, z0 ,t 0 )
105 d.o.f.
Ongoing Research Questions: • How do small-scales affect large scale motions (and vice-versa)? • How can we replace the effects of small scales on large scales (SGS modeling)?
Large-eddy-simulation (LES) and filtering: G(x): Filter
N-S equations: ∂u j ∂uk u j ∂p + =− + ν∇2 u j ∂t ∂x k ∂x j
∂u j =0 ∂x j
Δ u1 (x, y, z0 ,t 0 )
ui (x,t) = GΔ * ui = ∫ GΔ (x − x ')ui (x ')d 3x ' D
Large-eddy-simulation (LES) and filtering: G(x): Filter
N-S equations: ∂u j ∂uk u j ∂p + =− + ν∇2 u j ∂t ∂x k ∂x j
Filtered N-S equations:
∂u j =0 ∂x j
Δ u1 (x, y, z0 ,t 0 )
∂u ∂u j ∂p ku j + =− + ν∇ 2u j ∂t ∂xk ∂x j D
Large-eddy-simulation (LES) and filtering: G(x): Filter
N-S equations: ∂u j ∂uk u j ∂p + =− + ν∇2 u j ∂t ∂x k ∂x j
∂u j =0 ∂x j
Filtered N-S equations:
Δ u1 (x, y, z0 ,t 0 )
∂u ∂u j ∂p ku j + =− + ν∇ 2u j ∂t ∂xk ∂x j ∂u ˜j ∂u ˜j ˜ ∂p ∂ 2 ˜ ˜ + uk =− + ν∇ u j − τ ∂t ∂x k ∂x j ∂x k jk where SGS stress tensor is:
τ ij = uiu j − u˜i u˜ j
D
Most common modeling approach: eddy-viscosity ⎛ ∂ui ∂u j ⎞ τ = −ν sgs ⎜ + = −2ν sgs Sij ⎟ ⎝ ∂x j ∂xi ⎠ d ij
Functional form in analogy to kinetic theory of gases (Chapman-Enskog expansions, etc..) “Eddies ~ molecules” (???)
ν sgs = (c sΔ) | S˜ | 2
cs: “Smagorinsky coefficient”
Detour: some remarks on eddy-viscosity ⎛ ∂ui ∂u j ⎞ τ = −ν sgs ⎜ + = −2ν sgs Sij ⎟ ⎝ ∂x j ∂xi ⎠ d ij
Functional form in analogy to kinetic theory of gases (Chapman-Enskog expansions, etc.. “Eddies ~ molecules” (???)
Limitations of basic eddy-viscosity:
⎛ ∂ui ∂u j ⎞ τ = −ν sgs ⎜ + = −2ν sgs Sij ⎟ ⎝ ∂x j ∂xi ⎠ d ij
Turbulence is not like a “can of sand”
Limitations of basic eddy-viscosity:
⎛ ∂ui ∂u j ⎞ τ = −ν sgs ⎜ + = −2ν sgs Sij ⎟ ⎝ ∂x j ∂xi ⎠ d ij
Turbulence is not like a “can of sand”
but more like a “can of worms”
Visualizations of multi-scale vortices in turbulence
Limitations of basic eddy-viscosity:
⎛ ∂ui ∂u j ⎞ τ = −ν sgs ⎜ + = −2ν sgs Sij ⎟ ⎝ ∂x j ∂xi ⎠ d ij
Turbulence is not like a “can of sand”
but more like a “can of worms”
Still, in LES eddy-viscosity seems to work “better than it should” Also, many models need eddy-viscosity additions in ad-hoc “regularizations” Next slides: an “excuse” for eddy-viscosity via “fluid dynamics” arguments
A “fluid-mechanical” rationale for basic eddy-viscosity:
(
τ ≡ u i u j − ui u j d ij
) ( ) d
≈ u i′u ′
d
A “fluid-mechanical” rationale for basic eddy-viscosity:
(
τ ≡ u i u j − ui u j d ij
u′(0)
) ( ) d
≈ u i′u ′
d
∂(ui + ui′) ∂(ui + ui′) + (u k + uk′ ) = forces ∂t ∂xk u′(t)
A
A “fluid-mechanical” rationale for basic eddy-viscosity:
(
τ ≡ u i u j − ui u j d ij
u′(0)
) ( ) d
≈ u i′u ′
d
∂(ui + ui′) ∂(ui + ui′) + (u k + uk′ ) = forces ∂t ∂xk u′(t)
A
dui′ ∂ui =− uk′ + [ forces '− ∇(u 'u ')] dt ∂xk
A “fluid-mechanical” rationale for basic eddy-viscosity:
(
τ ≡ u i u j − ui u j d ij
u′(0)
) ( ) d
≈ u i′u ′
d
∂(ui + ui′) ∂(ui + ui′) + (u k + uk′ ) = forces ∂t ∂xk u′(t)
A “Production-only” approximation:
dui′ ∂ui =− uk′ + [ forces '− ∇(u 'u ')] dt ∂xk
du′ u′, ≈ − Ai dt
(stretching and tilting of vel. fluctuation by large-scale velocity gradients - consistent with vortex stretching)
Li, Chevillard, Eyink & CM Phys Rev. E, 2009.
∂ui Aik = ∂xk
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt u′(0)
u′(t)
A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt
i u′(0) u′(t) = exp(− At)
u′(0)
u′(t)
A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt
i u′(0) u′(t) = exp(− At)
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
u′(0)
u′(t)
A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt u′(0)
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
(
)
(
)
i u′(0) ⎤ ⎡ u′T (0) i I − A Tt ⎤ u′ ⊗ u′ = u′u′T ≈ ⎡⎣ I − At ⎦⎣ ⎦ u′(t)
A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt u′(0)
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
(
)
(
)
(
)
(
)
i u′(0) ⎤ ⎡ u′T (0) i I − A Tt ⎤ u′ ⊗ u′ = u′u′T ≈ ⎡⎣ I − At ⎦⎣ ⎦ u′(t)
A
≈ I − At i u ′u ′ T A u ′u ′ T A
t =0
Tt i I−A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt u′(0)
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
(
)
(
)
(
)
(
)
i u′(0) ⎤ ⎡ u′T (0) i I − A Tt ⎤ u′ ⊗ u′ = u′u′T ≈ ⎡⎣ I − At ⎦⎣ ⎦ u′(t)
A
≈ I − At i u ′u ′ T A u ′u ′ T A isotropy :
(
ce Δ S
t =0
)I 2
Tt i I−A
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
(
)
(
)
(
)
(
)
i u′(0) ⎤ ⎡ u′T (0) i I − A Tt ⎤ u′ ⊗ u′ = u′u′T ≈ ⎡⎣ I − At ⎦⎣ ⎦
u′(0)
u′(t)
A u ′u ′ A T
tA
(
≈ ce Δ S
)
2
≈ I − At i u ′u ′ T A u ′u ′ T A isotropy :
(
A )i(I − A T t A ) ⎤ ≈ ce Δ S ⎡⎣(I − At ⎦
(
ce Δ S
t =0
Tt i I−A
)I 2
) ⎡⎣I − (A + A ) t 2
T
2 S
A
+ O(t 2 ) ⎤⎦
A “fluid-mechanical” rationale for basic eddy-viscosity:
du′ u′ ≈ − Ai dt
1 2 ⎛ ⎞ u′(t) ≈ ⎜ I − At + (At) − ...⎟ iu′(0) ⎝ ⎠ 2
(
)
(
)
u′(0)
u′(t)
≈ I − At i u ′u ′ T A u ′u ′ T A
A u ′u ′ A T
tA
(
≈ ce Δ S
τ = u′u′ A d ij
(
)
(
)
i u′(0) ⎤ ⎡ u′T (0) i I − A Tt ⎤ u′ ⊗ u′ = u′u′T ≈ ⎡⎣ I − At ⎦⎣ ⎦
T
d tA
)
2
isotropy :
(
A )i(I − A T t A ) ⎤ ≈ ce Δ S ⎡⎣(I − At ⎦
(
≈ −2 ce Δ S
)t 2
ν sgs
A
S
(
ce Δ S
t =0
Tt i I−A
)I 2
) ⎡⎣I − (A + A ) t 2
T
2 S
A
+ O(t 2 ) ⎤⎦
A “fluid-mechanical” rationale for basic eddy-viscosity:
τ = u ′u ′ d ij
T d tA
(
≈ −2 ce Δ S
)t 2
A
S
ν sgs choosing
tA
1 ∝ S
ν sgs = (c sΔ) | S˜ | cs: “Smagorinsky coefficient” 2
Effects of tij upon resolved motions: Energetics (kinetic energy): ∂ 12 u˜ j u˜ j ∂ 12 u˜ j u˜ j ∂ (....) − 2νS˜ jk S˜ jk − −τ jk S˜ jk + u˜ k =− ∂t ∂x k ∂x j
(
)
∂u j ⎞ 1 ⎛ ∂u Sij = ⎜ i + 2 ⎝ ∂x j ∂xi ⎟⎠
Π Δ = − τ jk S˜ jk
u′ 3 ε= L
u1 (x, y, z0 ,t 0 )
Inertial-range flux π Δ
E(k) ΠΔ
LES resolved
Δ SGS
k
Theoretical calibration of cs (D.K. Lilly, 1967): τ ij = −2(cs Δ)2 | S | Sij
Π Δ = ε = − τ ij Sij
ε≈c Δ 2
Sij Sij
2
3/2
Sij Sij
E(k) = cK ε 2 / 3 k −5 / 3 π Δ
E(k)
ε = cs2 Δ 2 2 | S | Sij Sij 2 s
u′ 3 ε= L
3/2
ΠΔ
1 ∂ui ⎛ ∂ui ∂u j ⎞ = + = ⎜ ⎟ 2 ∂x j ⎝ ∂x j ∂xi ⎠
LES resolved
SGS
1 1 k2 2 3 2 E(k) 3 = ∫∫∫ [k j Θii (k) + ki k j Θij (k)]d k = ∫∫∫ [k ( ( δ − )) + 0]d k ii 2 |k|< π / Δ 2 |k|< π / Δ 4π k 2 k2 2/3 1 = cK ε 2
π /Δ
∫ 0
k −5 / 3+ 2
3−1 4π k 2 dk = cK ε 2 / 3 2 4π k
4/3 ⎛ 3 π ⎛ ⎞ ⎞ 2 2 3/2 2/3 ε ≈ cs Δ 2 ⎜ cK ε ⎜ ⎟ 4 ⎝ Δ ⎠ ⎟⎠ ⎝
π /Δ
∫ 0
1/ 3 2/3 3 ⎛ π ⎞ k dk = cK ε ⎜ ⎟ 4 ⎝ Δ⎠
3/2
⎛ 3c ⎞ ⇒ 1 ≈ cs2π 2 ⎜ K ⎟ ⎝ 2 ⎠
3/2
cK = 1.6 ⇒ cs ≈ 0.16
4/3
⎛ 3c ⎞ ⇒ cs = ⎜ K ⎟ ⎝ 2 ⎠
−3/ 4
π −1
k
Theoretical calibration of cs (D.K. Lilly, 1967): τ ij = −2(cs Δ)2 | S | Sij
Π Δ = ε = − τ ij Sij
ε≈c Δ 2
Sij Sij
2
3/2
Sij Sij
E(k) = cK ε 2 / 3 k −5 / 3 π Δ
E(k)
ε = cs2 Δ 2 2 | S | Sij Sij 2 s
u′ 3 ε= L
3/2
ΠΔ
1 ∂ui ⎛ ∂ui ∂u j ⎞ = + = ⎜ ⎟ 2 ∂x j ⎝ ∂x j ∂xi ⎠
LES resolved
SGS
1 1 k2 2 3 2 E(k) 3 = ∫∫∫ [k j Θii (k) + ki k j Θij (k)]d k = ∫∫∫ [k ( ( δ − )) + 0]d k ii 2 |k|< π / Δ 2 |k|< π / Δ 4π k 2 k2 2/3 1 = cK ε 2
π /Δ
∫ 0
k −5 / 3+ 2
3−1 4π k 2 dk = cK ε 2 / 3 2 4π k
4/3 ⎛ 3 π ⎛ ⎞ ⎞ 2 2 3/2 2/3 ε ≈ cs Δ 2 ⎜ cK ε ⎜ ⎟ 4 ⎝ Δ ⎠ ⎟⎠ ⎝
π /Δ
∫ 0
1/ 3 2/3 3 ⎛ π ⎞ k dk = cK ε ⎜ ⎟ 4 ⎝ Δ⎠
3/2
⎛ 3c ⎞ ⇒ 1 ≈ cs2π 2 ⎜ K ⎟ ⎝ 2 ⎠
3/2
cK = 1.6 ⇒ cs ≈ 0.16
4/3
⎛ 3c ⎞ ⇒ cs = ⎜ K ⎟ ⎝ 2 ⎠
−3/ 4
π −1
k
Theoretical calibration of cs (D.K. Lilly, 1967): τ ij = −2(cs Δ)2 | S | Sij
Π Δ = ε = − τ ij Sij
ε≈c Δ 2
Sij Sij
2
3/2
Sij Sij
E(k) = cK ε 2 / 3 k −5 / 3 π Δ
E(k)
ε = cs2 Δ 2 2 | S | Sij Sij 2 s
u′ 3 ε= L
3/2
ΠΔ
1 ∂ui ⎛ ∂ui ∂u j ⎞ = + = ⎜ ⎟ 2 ∂x j ⎝ ∂x j ∂xi ⎠
LES resolved
SGS
1 1 k2 2 3 2 E(k) 3 = ∫∫∫ [k j Θii (k) + ki k j Θij (k)]d k = ∫∫∫ [k ( ( δ − )) + 0]d k ii 2 |k|< π / Δ 2 |k|< π / Δ 4π k 2 k2 2/3 1 = cK ε 2
π /Δ
∫ 0
k −5 / 3+ 2
3−1 4π k 2 dk = cK ε 2 / 3 2 4π k
4/3 ⎛ 3 π ⎛ ⎞ ⎞ 2 2 3/2 2/3 ε ≈ cs Δ 2 ⎜ cK ε ⎜ ⎟ 4 ⎝ Δ ⎠ ⎟⎠ ⎝
π /Δ
∫ 0
1/ 3 2/3 3 ⎛ π ⎞ k dk = cK ε ⎜ ⎟ 4 ⎝ Δ⎠
3/2
⎛ 3c ⎞ ⇒ 1 ≈ cs2π 2 ⎜ K ⎟ ⎝ 2 ⎠
3/2
cK = 1.6 ⇒ cs ≈ 0.16
4/3
⎛ 3c ⎞ ⇒ cs = ⎜ K ⎟ ⎝ 2 ⎠
−3/ 4
π −1
k
Theoretical calibration of cs (D.K. Lilly, 1967): τ ij = −2(cs Δ)2 | S | Sij
Π Δ = ε = − τ ij Sij
ε≈c Δ 2
Sij Sij
2
3/2
Sij Sij
E(k) = cK ε 2 / 3 k −5 / 3 π Δ
E(k)
ε = cs2 Δ 2 2 | S | Sij Sij 2 s
u′ 3 ε= L
3/2
ΠΔ
1 ∂ui ⎛ ∂ui ∂u j ⎞ = + = ⎜ ⎟ 2 ∂x j ⎝ ∂x j ∂xi ⎠
LES resolved
SGS
1 1 k2 2 3 2 E(k) 3 = ∫∫∫ [k j Θii (k) + ki k j Θij (k)]d k = ∫∫∫ [k ( ( δ − )) + 0]d k ii 2 |k|< π / Δ 2 |k|< π / Δ 4π k 2 k2 2/3 1 = cK ε 2
π /Δ
∫ 0
k −5 / 3+ 2
3−1 4π k 2 dk = cK ε 2 / 3 2 4π k
4/3 ⎛ 3 π ⎛ ⎞ ⎞ 2 2 3/2 2/3 ε ≈ cs Δ 2 ⎜ cK ε ⎜ ⎟ 4 ⎝ Δ ⎠ ⎟⎠ ⎝
π /Δ
∫ 0
1/ 3 2/3 3 ⎛ π ⎞ k dk = cK ε ⎜ ⎟ 4 ⎝ Δ⎠
3/2
⎛ 3c ⎞ ⇒ 1 ≈ cs2π 2 ⎜ K ⎟ ⎝ 2 ⎠
3/2
cK = 1.6 ⇒ cs ≈ 0.16
4/3
⎛ 3c ⎞ ⇒ cs = ⎜ K ⎟ ⎝ 2 ⎠
−3/ 4
π −1
k
cs=0.16 works well for isotropic, high Reynolds number turbulence But in practice (complex flows)
c s = c s (x,t) Ad-hoc tuning?
Examples: Transitional pipe flow: from 0 to 0.16 Near wall damping for wall boundary layers (Piomelli et al 1989)
y cs = 0.16
cs = cs (y)
How does cs vary under realistic conditions? Interrogate data: Measure: Measure:
Π Δ = − τ jk S˜ jk Π Smag 2 Δ = 2Δ | S˜ | S˜ij S˜ij 2 cs
Obtain“empirical” Smagorinsky coefficient
⎛ − τ S˜ jk jk ⎜ cs = ⎜ 2 ˜ ˜ ˜ ⎝ 2Δ | S | Sij Sij
= f(x,conditions…):
⎞ ⎟ ⎟ ⎠
1/ 2
An example result from atmospheric turbulence…:
Measure “empirical” Smagorinsky coefficient for atmospheric surface layer as function of height and stability (thermal forcing or damping):
HATS - 2000 (with NCAR researchers: Horst, Sullivan)
⎛ − τ S˜ jk jk ⎜ cs = ⎜ 2Δ2 | S˜ | S˜ S˜ ij ij ⎝
Kettleman City (Central Valley, CA)
c s = c s (x,t)
Stable stratification Neutral stratification
Example result: effect of atmospheric stability on coefficient from sonic anemometer measurements in atmospheric surface layer (Kleissl et al., J. Atmos. Sci. 2003)
⎞1/ 2 ⎟ ⎟ ⎠
How to avoid “tuning” and case-by-case adjustments of model coefficient in LES? The Dynamic Model (Germano et al. Physics of Fluids, 1991)
Germano identity and dynamic model (Germano et al. 1991): Exact (“rare” in turbulence):
ui u j − u˜i u˜ j = uiu j
− u˜ iu˜ j
E(k)
!
LES resolved
SGS
k
Germano identity and dynamic model (Germano et al. 1991): Exact (“rare” in turbulence):
ui u j − u˜i u˜ j = uiu j
- u˜ iu˜ j + u˜ iu˜ j
− u˜ iu˜ j
E(k)
!
LES resolved
SGS
k
Germano identity and dynamic model (Germano et al. 1991): Exact (“rare” in turbulence):
ui u j − u˜i u˜ j = uiu j
Tij =
- u˜ iu˜ j + u˜ iu˜ j
τ ij
− u˜ iu˜ j
E(k)
+ Lij
Lij − (Tij − τ ij ) = 0 L
! T
LES resolved
SGS
k
Germano identity and dynamic model (Germano et al. 1991): Exact (“rare” in turbulence):
ui u j − u˜i u˜ j = uiu j
- u˜ iu˜ j + u˜ iu˜ j
τ ij
Tij =
− u˜ iu˜ j
E(k)
+ Lij
Lij − (Tij − τ ij ) = 0 −2 (c s 2Δ ) | S˜ | S˜ij 2
2 −2 (c sΔ ) | S˜ | S˜ij
L T
Assumes scale-invariance:
Lij − c Mij = 0 2 s
(
2 where M ij = 2Δ | S˜ | S˜ij − 4 | S˜ | S˜ij
!
LES resolved
)
SGS
k
Germano identity and dynamic model (Germano et al. 1991):
Lij − c s Mij = 0 2
Over-determined system: solve in “some average sense” (minimize error, Lilly 1992):
Ε = (Lij − c Mij ) 2 s
Minimized when:
c = 2 s
Lij Mij Mij Mij
2
Averaging over regions of statistical homogeneity or fluid trajectories
Germano identity and dynamic model (Germano et al. 1991):
Lij − c s Mij = 0 2
Over-determined system: solve in “some average sense” (minimize error, Lilly 1992):
Ε = (Lij − c Mij ) 2 s
Minimized when:
c = 2 s
Lij Mij
2
Averaging over regions of statistical homogeneity or fluid trajectories
Mij Mij
Homework: (a) Prove the above equation, and
qi = u i T − ui T
(b) repeat entire formulation for the SGS heat flux vector modeled using an SGS diffusivity (find Cscalar)
∂T qi = Cscalar Δ | S | ∂xi 2
Similarity, tensor eddy-viscosity, and mixed models τ ijmnl
~ ∂u~ ∂ u ~~ j = Cnl Δ2 i − 2(CS Δ) 2 S Sij ∂xk ∂xk Two-parameter dynamic mixed model
Lij ≡ Tij − τ ij = u~iu~j − u~i u~j
~ ~ ~~ 2 ∂ui ∂u j Tij = −2(CS 2Δ) S Sij + Cnl (2Δ ) ∂xk ∂xk 2
• Mixed tensor Eddy Viscosity Model:
• Taylor-series expansion of similarity (Bardina 1980) model (Clark 1980, Liu, Katz & Meneveau (1994), …) • Deconvolution: (Leonard 1997, Geurts et al, Stolz & Adams, Winckelmans etc..) • Significant direct empirical evidence, experiments: • Liu et al. (JFM 1999, 2-D PIV) • Tao, Katz & CM (J. Fluid Mech. 2002): tensor alignments from 3-D HPIV data • Higgins, Parlange & CM (Bound Layer Met. 2003): tensor alignments from ABL data • From DNS: Horiuti 2002, Vreman et al (LES), etc…
−τ dij
S˜ij
Reality check: Do simulations with these closures produce realistic statistics of ui(x,t)?
• Need good data • Need good simulations • Next: Summary of results from Kang et al. (JFM 2003) • Smagorinsky model, • Dynamic Smagorinsky model, • Dynamic 2-parameter mixed model
Remake of Comte-Bellot & Corrsin (1967) decaying isotropic turbulence experiment at high Reynolds number Active Grid M=6" Contractions
u2 x2
Test Section
u1 x1
X-wire probe array D1 = 0.01m D2 = 0.02m D3 = 0.04m D4 = 0.08m
Flow
20M h1 = 0.005m D1 = 0.01m
30M
h3 = 0.02m D3 = 0.04m
0.91m
40M D
48M
u2 x2
u1 Flow x1
20 M
30 M
40 M
48M
Initial condition for LES
Results
(m3s-2)
10
0
10-1 x /M=20 10
1
-2
x /M=48
10-3
1
E(κ)
10-4 10-5 10-6 10-7 100
101
102
κ
103
104
(m-1)
LES of Temporally Decaying Turbulence
Experiment LES Taylor Hypothesis Spatially Decaying Grid Turbulence Temporally Decaying Turbulence x1 = u1 t 2-D Box Filter 3-D Filter
Pseudo-spectral code: 1283 nodes, carefully dealiased (3/2N)
All parameters are equivalent to those of experiments.
Initial energy distribution: 3-D energy spectrum at x1/M = 20
LES Models:
standard Smagorinsky-Lilly model, dynamic Smagorinsky and dynamic mixed tensor eddy-visc. model
Results: Dynamic Model Coefficients Dynamic Smagorinsky
τ
dyn −Smag ij
= −2
Lij M ij M ij M ij
Dynamic Mixed tensor eddy visc:
Δ S˜ S˜ij 2
τ
mnnl ij
~ ∂u~i ∂u j ~~ = Cnl Δ − 2(CS Δ) 2 S Sij ∂xk ∂xk 2
0.2
0.2
0.15
0.15
C
C
C
C
s
nl
nl
C
s
s
0.1
C
0.1
0.05
C
C
nl
s
s
1/12 from the first order approximation of Lij
0.05
0 0
10
20
x /M 1
30
40
50
0 0
10
20
x /M 1
30
40
50
3-D Energy Spectra (LES vs experiment) Dynamic Smagorinsky 10
10
0
-1
x /M=20 1
10
-2
Exp.
x /M=48 1
E(κ) 10
-3
10
-4
10
-5
10
• cutoff grid filter (D = 0.04 m) • cutoff test filter at 2D 0
10
1
10
κ
2
10
3
3-D Energy Spectra (LES vs experiment) Dynamic Mixed 10
10
tensor eddy-visc. model
0
-1
x /M=20 1
10
-2
x /M=48 1
E(κ) 10
-3
10
-4
10
-5
10
• cutoff grid filter (D = 0.04 m) • cutoff test filter at 2D 0
10
1
10
κ
2
10
3
PDF of SGS Stress (LES vs experiment) ~ ~ τ 12 ≡ u1u2 − u1u2
SGS Stress 25
x /M=48 1
20
Smagorisnky
15
Dynamic Smagorisnky
PDF 10
Dynamic mixed tensor eddy-visc model predicts PDF of the SGS stress accurately.
Dynamic Mixed Nonlinear
5
Exp. 0 -0.4
-0.3
-0.2
-0.1
0
0.1
τ 12 / u~12rms
0.2
0.3
0.4
Germano identity and dynamic model (Germano et al. 1991): Exact (“rare” in turbulence):
ui u j − u˜i u˜ j = uiu j
- u˜ iu˜ j + u˜ iu˜ j
τ ij
Tij =
− u˜ iu˜ j
E(k)
+ Lij
Lij − (Tij − τ ij ) = 0 −2 (c s 2Δ ) | S˜ | S˜ij 2
2 −2 (c sΔ ) | S˜ | S˜ij
L T
Assumes scale-invariance:
Lij − c Mij = 0 2 s
(
2 where M ij = 2Δ | S˜ | S˜ij − 4 | S˜ | S˜ij
!
LES resolved
)
SGS
k
Germano identity and dynamic model (Germano et al. 1991):
Lij − c s Mij = 0 2
Over-determined system: solve in “some average sense” (minimize error, Lilly 1992):
Ε = (Lij − c Mij ) 2 s
Minimized when:
c = 2 s
Lij Mij
2
Averaging over regions of statistical homogeneity or fluid trajectories
Mij Mij Problem: what to do for non-homogeneous flows without directions over which to average (“learn”, or “assimilate” largerscale statistics?)
Lagrangian dynamic model (M, Lund & Cabot, JFM 1996): Average in time, following fluid particles for Galilean invariance: t
E =
∫ (L
ij
−∞
− C M ij 2 s
)
2
1 −(t T-t') e dt' T
Lagrangian dynamic model (M, Lund & Cabot, JFM 1996): Average in time, following fluid particles for Galilean invariance: t
E =
∫ (L
ij
− C M ij 2 s
−∞
)
2
1 −(t T-t') e dt' T t
t
1 e dt' ∫ T 2 Cs = −∞ t (t -t' ) 1 − T ∫−∞ Mij Mij T e dt' Lij M ij
δ E =0 ⇒
(t -t' ) − T
ℑLM
1 − (tT-t') = ∫ Lij M ij e dt' T −∞ t
ℑMM
) 1 −(t -t' = ∫ Mij Mij e T dt' T −∞
Lagrangian dynamic model (M, Lund & Cabot, JFM 1996): Average in time, following fluid particles for Galilean invariance: t
E =
∫ (L
ij
− C M ij 2 s
−∞
)
2
1 −(t T-t') e dt' T t
t
1 e dt' ∫ T 2 Cs = −∞ t (t -t' ) 1 − T ∫−∞ Mij Mij T e dt' Lij M ij
δ E =0 ⇒
(t -t' ) − T
ℑLM
1 − (tT-t') = ∫ Lij M ij e dt' T −∞ t
ℑMM
) 1 −(t -t' = ∫ Mij Mij e T dt' T −∞
With exponential weight-function, equivalent to relaxation forward equations: ∂ℑLM ∂ℑ 1 + u˜k LM = (Lij M ij − ℑLM ) ∂t ∂xk T ∂ℑMM ∂ℑ 1 + u˜k MM = (Mij Mij − ℑMM ) ∂t ∂x k T
ℑLM (x,t) c = ℑMM (x,t) 2 s
Lagrangian dynamic model has allowed applying the Germanoidentity to a number of complex-geometry engineering problems LES of flows in internal combustion engines: Haworth & Jansen (2000) Computers & Fluids 29.
Examples: LES of flow over wavy walls Armenio & Piomelli (2000) Flow, Turb. & Combustion.
LES of structure of impinging jets: Tsubokura et al. (2003) Int Heat Fluid Flow 24.
Examples: LES of flow in thrust-reversers Blin, Hadjadi & Vervisch (2002) J. of Turbulence.
Examples: LES of flow in turbomachinery Zou, Wang, Moin, Mittal. (2007) Journal of Fluid Mechanics.
Examples: Human swimming flow structures (Rajat Mittal, 2008)
Michael Phelps local Baltimore boy
Ciclo di seminari Universita degli studi di Roma, Tor Vergata May, 2013
OVERVIEW: Mercoledì: • • • • •
Introduction to fundamentals of Turbulence Intro to Large Eddy Simulation (LES) Intro to Subgrid-scale (SGS) modeling The dynamic SGS model Some sample applications from our group
Venerdì: • Dynamic model for LES over rough multiscale surfaces • LES studies of large wind farms
JHU Mechanical Engineering
Examples: LES of convective atmospheric boundary layer: Kumar, M. & Parlange (Water Resources Research 42, 2006) • Transport equation for temperature • Boussinesq approximation • Coriolis forcing • Lagrangian dynamic model with assumed b=Cs(2 D)/Cs(D) • Constant (non-dynamic) SGS Prandtl number Prsgs=0.4 • Imposed surface flux of sensible heat on ground • Diurnal cycle: start stably stratified, then heating…. Imposed ground heat flux during day:
Examples: • Diurnal cycle: start stably stratified, then heating…. Resulting dynamic coefficient (averaged):
Consistent with HATS field measurements:
Large-eddy-Simulation of atmospheric flow over fractal trees: Chester, M & Parlange (J. Comp. Phys. 225, 2007; J. Env. Fluid Mech. 7, 2007)
Urban contamination and Transport Tseng, M. & Parlange, Env. Sci & Tech. 40, 2006
Downtown Baltimore: wind
Momentum and scalar transport equations solved using LES and Lagrangian dynamic subgrid model. Buildings are simulated using immersed boundary method.
Agriculture: What is the isolation distance to avoid cross-polination? Collaboration with Marcelo Chamecki (Penn State U)
Deposition flux?
Liso
LES: Eulerian approach C(x,y,z,t)
((
2 ∂C −1 + ( u − ws e 3 ) i ∇C = ∇ i Cs−dyn Δ Scsgs | S | C ∂t
Vertical settling velocity ws
)
Scale-dep dynamic eddy-viscosity eddy-diffusivity SGS Log-law type boundary condition For C, log-law, corrected by settling velocity
Low ws emitter field
High ws
Deposition flux? Liso
)
LES results: Downstream evolution of concentration profiles
Downstream evolution of deposition flux
1-D “reduction” (back to early 1900s) - vertical profile
Similarity solution for any eta (Rouse #)
Deposition downstream of field:
Sc ws γ = κ u*
deltaL is proper length-scale for deposition flux, not L
Comparison with LES:
γ =
Sc ws = 0.125 κ u*
Over field
Downstream
Scaling of deposition flux: field edge delta instead of L
γ =
γ =
Sc ws = 0.313 κ u*
Traditional approach (current rules)
Sc ws =0 κ u*
deltaL
Different L L
Sc ws γ = = 0.313 κ u*
γ =
Sc ws =0 κ u*
Collapse for different L
Scaling with deltaL
Isolation distance as function of flux threshold:
E.g., ws=0.06 m/s (d=40 micro-m), u*=0.5 m/s, Sc=1, k=0.4,
L=500m -> deltaL=30m,
ID = 4.5km !!
Sc ws γ = = 0.3 κ u*
E.g., Phi=10-3 -> ID/deltaL ~150
Useful references on LES and SGS modeling: • P. Sagaut: “Large Eddy Simulation of Incompressible Flow” (Springer, 3rd ed., 2006) • U. Piomelli, Progr. Aerospace Sci., 1999 • C. Meneveau & J. Katz, Annu Rev. Fluid Mech., 2000