Lecture 4: Integrals and applications

6 downloads 167059 Views 342KB Size Report
The Fundamental Theorem of Calculus. The Substitution Rule. Integration by Parts. Lejla Batina. Version: autumn 2013. Calculus en Kansrekenen. 2 / 18 ...
The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Lecture 4: Integrals and applications Lejla Batina Institute for Computing and Information Sciences – Digital Security Radboud University Nijmegen

Version: autumn 2013

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

1 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Outline

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

2 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Intro So far: from f to f 0 : tangent line, monotonicity, extrema, ... From f 0 to f : If F (x) is a function such that F 0 (x) = f (x), which information we get about f (from F )? (x) f (x) = F 0 (x) = limh→0 F (x+h)−F h ⇒ f (x) · h ≈ F (x + h) − F (x).

So, F (x) gives some information about the surface under the graph of f .

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

3 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

The area problem and the definite integral Let y = f (x) be a continuous function defined on [a, b]. In order to estimate the area under y = f (x) from a to b we divide [a, b] into n subintervals: [x0 , x1 ], [x1 , x2 ], [x2 , x3 ], . . . , [xn−1 , xn ], where a = x0 , b = xn , each of length ∆x = b−a n (xi = a + i∆x, i = 0, · · · , n). The area Si of the strip between xi−1 and xi can be approximated as the area of the rectangle of width ∆x and height f (xi ∗ ), where xi ∗ ∈ [xi , xi+1 ], i = 0, · · · , n. So, the total area under the curve is closeP to the following sum: A ≈ ni=1 f (xi ∗ )∆x = f (x1 ∗ )∆x + f (x2 ∗ )∆x + . . . + f (xn ∗ )∆x. Rb P A = limn→∞ ni=1 f (xi ∗ )∆x = a f (x)dx. Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

4 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

The evaluation theorem Theorem If f is a continuous function and F 0 (x) = f (x) (F is an Rb antiderivative of f ), then: a f (x)dx = F (b) − F (a). This value gives the area below the graph of f on [a, b].

Example Compute the following definite integrals using the evaluation theorem: R1 • 0 x 2 dx Rπ • 02 sinxdx

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

5 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Properties of the definite integrals Due to linearity and interval additivity we get: Rb Rc Rb • a f (x)dx = a f (x)dx + c f (x)dx, where a < c < b Ra • a f (x)dx = 0 Rb Ra • a f (x)dx = − b f (x)dx Rb Rb Rb • a [f (x) ± g (x)]dx = a f (x)dx ± a g (x)dx Rb • c a dx = c(b − a) Rb Rb • c a f (x)dx = a c · f (x)dx Comparison: Rb

• f (x) ≥ 0 ⇒ a f (x)dx ≥ 0 Rb Rb • f (x) ≥ g (x) ⇒ a f (x)dx ≥ a g (x)dx

Rb

• m ≤ f (x) ≤ M ⇒ m(b − a) ≤ a f (x)dx ≤ M(b − a) Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

6 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Indefinite integrals

Definition A function F such that F 0 (x) = f (x) is called an antiderivative (or a primitive) function of f . Then for any constant C , F (x) + C is another antiderivative of f (x). The family of all antiderivatives of Rf is called indefinite integral of f and denoted as: f (x)dx = F (x) + C .

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

7 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Table of indefinite integrals • • • • • • • • • • •

R 0 · dx = C R R 1 · dx = x + C , so dx = x R n n+1 x dx = xn+1 + C , n 6= −1 R 1 dx = ln |x| + C R xx e dx = e x + C R x ax a dx = lna +C R sinxdx = − cos x + C R cosxdx = sin x + C R 1 2 x dx = tan x + C R cos dx = arctan x + C 1+x 2 R dx √ = arcsin x + C 1−x 2

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

8 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Examples

Example R R R (3x 5 − 2x 2 + 1)dx = 3x 5 dx − 2x 2 dx + dx = R R R 6 3 = 3 x 5 dx − 2 x 2 dx + dx = 3 x6 − 2 x3 + x + C . R 2 R R √ 3 • ( x 2 − x12 )dx = x 3 dx − x −2 dx = √ 5/3 −1 3 = x 5 − x−1 + C = 53 x x 2 + x1 + C .



R

3

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

9 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

The fundamental theorem of calculus Theorem Let f be a continuous function on [a, b]. Then: Rx 1 The function g (x) = a f (t)dt is an antiderivative of f , i.e., g 0 (x) = f (x). 2

(Evaluation theorem) If F is an antiderivative of f , i.e. Rb F 0 (x) = f (x), then a f (x)dx = F (b) − F (a).

We can rewrite it as follows: Rx d 1 dx a f (t)dt = f (x). Rb 0 2 a F (x)dx = F (b) − F (a).

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

10 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Example

Example Find

d dx

R x2 0

t 3 dt.

R x2 We can solve this in two Let g (x) = 0 t 3 dt, then using the R u ways. theorem: for h(u) = 0 t 3 dt ⇒ h0 (u) = u 3 . We have g (x) = h(x 2 ), and from the chain rule: g 0 (x) = h0 (x 2 ) · 2x = (x 2 )3 · 2x = 2x 7 . R x2 8 4 2 Or directly: g (x) = 0 t 3 dt = [ t4 ]x0 = x4 , and then 7 g 0 (x) = 8x4 = 2x 7 .

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

11 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

The substitution rule As it holds: 0 du weRcan write: R R = u dx, f (u)u 0 dx = f (u)du = f (g (x))g 0 (x)dx, where u = g (x).

Example R cosR x3 dx = [u = x3 , du = 13 dx ⇒ dx = 3du] = cos u · 3du = = 3 cos udu = 3 sin u + C = 3 sin x3 + C . R • x sin(x 2 )dx = [u = x 2 , du = 2xdx ⇒ xdx = 12 du] R R = sin u · 21 du = 12 sin udu = − 21 cos x 2 + C . R √ • x 2 x + 1dx = [x + 1 = u, dx = du ⇒ x = u − 1] = R R 5 R 3 R 1 √ = (u − 1)2 udu = u 2 du − 2 u 2 du + u 2 du = . . . R cos √x √ dx √ √ ⇒ √ • dx = [u = x, du = 2dx = 2du] = x x x R √ = 2 cos udu = 2 sin x + C . •

R

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

12 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Integration by parts Recollect the product rule for differentiation: [f (x)g (x)]0 = f 0 (x)g (x) + f (x)g 0 (x), or f (x)g 0 (x) = [f (x)g (x)]0 − f 0 (x)g (x). After integration we get: R R f (x)g 0 (x)dx = [f (x)g (x)] − f 0 (x)g (x)dx. For u = f (x), v = g (x), we get du = f 0 (x)dx and dv = g 0 (x)dx, hence: R R udv = uv − vdu. For definite integrals we have:

Lejla Batina

Version: autumn 2013

Rb a

udv = uv |ba −

Rb a

vdu

Calculus en Kansrekenen

13 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Examples

Example R xe x dx = [uR = x ⇒ du = dx, dv = e x dx ⇒ v = e x dx = e x ] = xe x − e x dx = xe x − e x + C . R 2 • x ln xdx = [u = ln x ⇒ du = dx , dv = xdx ⇒ v = x2 ] = x R 2 R 2 2 2 2 = x2 ln x − x2 · x1 dx = x2 ln x − 12 xdx = x2 ln x − x4 + C . •

R

Lejla Batina

Version: autumn 2013

Calculus en Kansrekenen

14 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Applications

• The area below y = f (x) between x = a and x = b is

A=

Rb a

f (x)dx.

• Let f (x) and g (x) are continuous functions such that

g (x) ≤ f (x) when a ≤ x ≤ b. The area between f and g and Rb x = a and x = b is A = a [f (x) − g (x)]dx. • Let f be differentiable function on [a, b]. The arc length of f

(between a and b) is: L =

Lejla Batina

Version: autumn 2013

Rbp 1 + (f 0 (x)2 )dx. a

Calculus en Kansrekenen

15 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

Examples Example • Compute the area below y = sin2 xcosx between x1 = 0 and

x2 = π2 . R π2 R1 2 2 0 sin xcosxdx = [u = sin x ⇒ du = cos xdx] = 0 u du = 3 = u3 |10 = 13 . • Compute the area bounded by y 2 = 4x and 4x − 5y + 4 = 0.

Solution: A = 89 . • Find the length of the following curve x = 41 y 2 − 12 ln y from 2

y = 1 to y = e. x 0 (y ) = y2 − 12 · y1 = y 2y−1 . Re q R e √y 4 +2y 2 +1 R (y 2 −1)2 1 e 1 s = 1 1 + 4y 2 = 1 = 2y 2 1 (y + y )dy = 1 y2 2( 2

Lejla Batina

+ ln y )|e1 = 14 (e 2 + 1). Version: autumn 2013

Calculus en Kansrekenen

16 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Radboud University Nijmegen

More applications • Applications of the indefinite integral • Displacement and velocity formulas R As v = ds ⇒ s = vdt. dt so ds = vdt R d 2s a = dv adt. dt = dt 2 ⇒ v = • Voltage across Ra capacitor i = dq idt, i-current, q-charge. dt ⇒ q = • Applications of the definite integral • Computing volumes (derived by rotation) • Average value of a function

For y =R f (x) from x = a to x = b: yave = • ···

Lejla Batina

b a

f (x)dx b−a .

Version: autumn 2013

Calculus en Kansrekenen

17 / 18

The Definite Integral The Indefinite Integral The Fundamental Theorem of Calculus The Substitution Rule Integration by Parts

Examples:

Radboud University Nijmegen

from “Interactive mathematics” (www.inmath.com)

Example • A proton moves in an electric field such that its acceleration 20 (in cm2 /s) is: a(t) = − (1+2t) 2 . Find the velocity as a cm function R of time if v = 30 s when t = 0. v = R adt R du 20dt v = − (1+2t) = 10 2 = [u = 1+2t, du = 2dt] = −10 u +C . u2 cm cm For t = 0 ⇒ v (0) = 30 s so 30 = 10 + C ⇒ C = 20 s and 10 then v (t) = 1+2t + 20 cm s .

• The temperature T (in C) recorded during a day followed the

curve T = 0.001t 4 − 0.280t 2 + 25, where t are hours from noon −12 ≤ t ≤ 12. Find the average temperature during a day. R yave = Lejla Batina

12 −12

T (t)dt 24

= · · · = 15.7C .

Version: autumn 2013

Calculus en Kansrekenen

18 / 18