Ernst-Reuther-Platz 1, D-1000 Berlin 10, FRG. Prof. Dr. Peter Giese. Institut für Geophysikalische Wissenschaften. Freie Universität Berlin. Rheinbabenallee 49 ...
Lecture Notes in Earth Sciences Edited by Somdev Bhattacharji, Gerald M. Friedman, Horst J. Neugebauer and Adolf Seilacher
17 H. Bahlburg Ch. Breitkreuz RGiese (Eds.)
The Southern Central Andes Contributions to Structure and Evolution of an Active Continental Margin
Springer-Verlag Berlin Heidelberg New York London Paris Tokyo
Editors Dr. Heinrich Bahlburg Priv. Doz. Dr. Christoph Breitkreuz Institut für Geologie und Paläontologie Technische Universität Berlin Ernst-Reuther-Platz 1, D-1000 Berlin 10, FRG Prof. Dr. Peter Giese Institut für Geophysikalische Wissenschaften Freie Universität Berlin Rheinbabenallee 49, D-1000 Berlin 33, FRG
ISBN 3-540-50032-4 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-50032-4 Springer-Verlag New York Berlin Heidelberg
This work is subject to Copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its Version of June 24, 1985, and a Copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1988 Printed in Germany Printing and Dinding: Druckhaus Beltz, Hemsbach/Bergstr. 2132/3140-543210
STRUCTURES AND CRUSTAL DEVELOPMENT OF THE CENTRAL ANDES BETWEEN 21° AND 25°S
K.-J. REUTTER*, P. GIESE**, H.-J. GÖTZE**, E. SCHEUBER*, K. SCHWAB***, G. SCHWARZ** & P. WIGGER** * I n s t i t u t für Geologie der Freien Universität B e r l i n A l t e n s t e i n s t r . 34 a, 1000 B e r l i n 33 * * I n s t i t u t für Geophysik der Freien Universität B e r l i n Rheinbabenallee 49, 1000 B e r l i n 33 I n s t i t u t für Geologie und Paläontologie der Technischen Universität L e i b n i z s t r . 10, D-3392 C l a u s t h a l - Z e l l e r f e l d
ABSTRACT
The t e c t o n i c s
o f the morphostructural u n i t s o f the Central Andean segment between
21°S and 25°S are reviewed and t h e i r r e l a t i o n t o the deep c r u s t a l s t r u c t u r e s , as f a r as known from geophysical
research,
i s discussed.
Special
regard
i s given t o the
superposition o f s t r u c t u r e s due t o the stepwise eastward displacement Systems subsequently d e v e l o p i n g on
the C o n t i n e n t a l
margin
during
o f f o u r arc
the Andean Cycle:
(1) L i a s - Early Cretaceous, (2) Mid-Cretaceous, (3) Latest Cretaceous - Eocene, and (4)
Miocene
activity
can
- Holocene. Within these be d i s t i n g u i s h e d :
The
arc Systems,
subduction
zone
three areas o f main and
subduction
tectonic
complex, the
magmatic arc, and the backarc r e g i o n . The subduction complexes o f the f o s s i l
stages
are not preserved and the t e c t o n i c a c t i v i t y o f the present subduction complex a f f e c t s the c o n t i n e n t only l o c a l l y along the coast. The s t r u c t u r e s o f the f o u r magmatic arcs are exposed r e s p e c t i v e l y i n the Coastal
Range, the Longitudnal V a l l e y , the Chilean
P r e c o r d i l l e r a , and i n the broad area extending from the Preandean Depression western p a r t o f the Eastern C o r d i l l e r a . Notwithstanding great s t r u c t u r a l
t o the
differences
between the i n d i v i d u a l arcs, there are common f e a t u r e s such as the close r e a t i o n s h i p between deformation and magmatism, the i n c o r p o r a t i o n o f basement i n t o f o l d and hörst s t r u c t u r e s , and conjugate reverse f a u l t Systems. In the case o f oblique subduction, longitudinal Coastal
strike
slip
faulting,
which may
be left-handed (Atacama Fault o f the
Range) or right-handed (West Fissure o f the Chilean P r e c o r d i l l e r a ) ,
follows
the magmatic a r c . In the backarc r e g i o n , east vergent f o l d and t h r u s t b e l t s developed only i n the stages 3 and 4. A l l the d i f f e r e n t arc stages gradually t o crustal
seem t o have c o n t r i b u t e d
t h i c k e n i n g as there i s a general development i n these
from ens'ialic m a r i n e c o n d i t i o n s over an e n v i r o n m e n t o f C o n t i n e n t a l
lowlands
Systems t o the
present high plateau S i t u a t i o n . Lecture Notes in Earth Sciences, Vol. 17 H. Bahlburg, Ch. Breitkreuz, P. Giese (Eds), The Southern Central Andes © Springer-Verlag Berlin Heidelberg 1988
232
X X X X X
Coast Range
Western Cordillera
Longitudinal Valley
Neogene-Holocene Volcanism
Andean foreland(Chaco)
Altiplano
Chilean Precordillera
Salt lakes (Solares)
Eastern Cordillera
B
Preandean Depression
Subandean Ranges
- JC^-H Q) with Precambrion autcrops I b) without Precambrian outcrops clEostern front of Neogene-Holocene volcan.
n 0
100
200
300 km
f j c u _ l : The morphostructural u n i t s o f the Central Andean segment under c o n s i d e r a t i o n .
233
INTRODUCTION
The
distinct
morphostructural
u n i t s of
elements of an arc geotectonic
the
Central
Andes
( f i g . 1)
are
tectonic
s e t t i n g generated at the western rim of the South
American continent caused by i t s convergence w i t h the oceanic p l a t e of the P a c i f i c . Within t h i s s e t t i n g , the Western C o r d i l l e r a represents the magmatic arc, the backarc area compriSes the A l t i p l a n o , the Eastern C o r d i l l e r a , the Subandean Ranges as well as the Chaco lowlands, Chilean
Central
w h i l e the
Valley,
the
inner slope Chilean
o f the trench, the Coastal
P r e c o r d i l l e r a , and
the
Range, the
Preandean
Depression
belong t o the f o r c a r c System ( f i g . 2 ) . Morphology, t e c t o n i c behaviour, and
internal
s t r u c t u r e s of these u n i t s are not only determined by the stresses a c t i v e i n the upper plate
as
a
consequence
Parameters such as fluids
and
levels,
the
as
e.g.
as
inhomogeneities may
plate
convergence,
but
are
c o n t r o l l e d by
lithology,
temperature d i s t r i b u t i o n ,
of
magmatic bodies w i t h i n
presence
well
In t h i s respect,
of
by
liquid
geological
history,
as
the
partial
the
physical
pressure
different
preexisting
of
crustal
structures
and
development at l e a s t during the Mesozoic and
the
c o n t r o l the younger deformation.
the geotectonic
Cainozoic, i . e . during the Andean Cycle, should be considered.
In the segment of the
Andes studied the trend of displacement of the arc system towards the i n t e r i o r of the continent i s well developed, b e t t e r than i n other parts o f the Central Andes ( f i g . 7). Thus, i t i s known t h a t the chain of the orogenic a n d e s i t i c volcanism s h i f t e d from the Coastal Position
Range, where i t was
in
the
Precordillera
Western
during
s i t u a t e d during the Early J u r a s s i c , t o i t s present
Cordillera with
Cretaceous
and
Early
intermediate Tertiary
Evidence of a s i m i l a r m i g r a t i o n o f arc plutonism 1985.
was
Together w i t h the magmatic arc the Continental
stress f i e l d s and deformations
in
the
(COIRA e t
published
by
arc system as
Chilean
a l . , 1982).
RIVANO e t a l . , a whole, i . e .
c h a r a c t e r i s t i c f o r the f o r e a r c , arc and backarc region
must have moved eastwards during t h a t time. This parts o f the Central
positions
times
is clearly
shown i n the
eastern
Andes where the backarc t e c t o n i c s , i . e . the Subandean t h r u s t
b e l t p r o g r e s s i v e l y extends i n t o the Subandean f o r e l a n d not y e t a f f e c t e d by Andean deformation
( f i g . 7 ) . This
also means t h a t the present
a f f e c t areas which some time before had
arc
and
forearc tectonics
been deformed, r e s p e c t i v e l y , i n the backarc
and arc regimes. A s t r u c t u r a l comparison of the Central Andean morphostructural
units
has t h e r e f o r e t o take t e c t o n i c superpositions i n t o account which, as a consequence, become more intense-from for
the
surface
east t o west. This consideration should not only be
s t r u c t u r e s and
s t r u c t u r e s detected by geophysical work
(WIGGER, t h i s
•agnetotelluric
issue)
surveys
morphological
features
methods. Seismological
gravity
measurements
(Schwarz, et a l , 1986)
c r u s t a l s t r u c t u r e s of the Central Andes.
but
f o r deep
s t u d i e s , seismic
(GÖTZE et are
also
a l . , this
valid
crustal
refraction issue)
and
a v a i l a b l e t o probe the deeper
234 Residual 10 Bouguer Anomaly 0
f k L _ 2 : Cross section through the Central Andes a t 21°25'S showing c r u s t a l s t r u c t u r e s according t o g e o l o g i c a l and geophysical data. The subsurface s t r u c t u r e s o f the f o l d and t h r u s t b e l t o f the Subandean Ranges are h y p o t h e t i c a l .
In t h e f o l l o w i n g , t h e surface s t r u c t u r e s and, as f a r as they are known, the deep crustal
structures
o f t h e morphostructural
units
o f t h e Central
Andean
Segment
between 21° and 25°S s h a l l be reviewed b r i e f l y i n order t o e l u c i d a t e the s t r u c t u r a l development during the Andean Cycle.
TECTONICS OF THE MORPHOSTRUCTURAL UNITS
THE ANOEAN FORELAND (CHACO)
The
Subandean
lowlands
o f t h e Chaco
are an a c t i v e
depositional
basin
whose
C o n t i n e n t a l deposits are supplied by r i v e r s t h a t d r a i n the Eastern C o r d i l l e r a and the Subandean
Ranges. The Late
Tertiary
and Pleistocene
Sediments
(Chaco Fm.) show
growing thicknesses from E t o W exceeding
2000 m near the Subandean f o o t h i l l s . They
overlie
Tertiary
either
notably
thinner
Early
and Cretaceous
S e d i m e n t s , or
a l t e r n a t i v e l y d i r e c t l y T r i a s s i c o r Carboniferous Sediments a t the top o f a more o r less
complete
and t h i c k
Palaeozoic
sedimentary
sequence. There
i s no pronounced
235
| *
* \s
|
1 Precambrian
LVZ = Low Velocity Zone
angular unconformity between the Neogene Sediments and t h e i r Substrate, but as i n the vicinity active
o f t h e Subandean Ranges, t h e underlying formations structures
( o i l production)
beneath
a flat
surface
form young and s t i l l o f recent
deposition.
I n t e r n a l unconformities should e x i s t w i t h i n the Chaco Fm. i t s e l f . In conformity w i t h t h e increasing
sedimentary thicknesses and i n c i p i e n t
structures,
the top o f the Precambrian basement i s i n c l i n e d towards the Subandean Ranges and i s s i t u a t e d a t a depth o f about 7 t o 10 km (ALLMENDINGER e t a l . , 1983) i n t h e zone o f the
foothills
(MARTINEZ e t a l . , 1973). Based on t h e view t h a t
Brazilian shield al., and
the crust
s t a r t s t o point downwards underneath the C o r d i l l e r a
of the
(LYON-CAEN e t
1987), c r u s t a l thickness i s accordingly supposed t o increase i n t h a t d i r e c t i o n may reach 35 km. Except f o r the absence o f young marine Sediments, a l l these
sedimentary and s t r u c t u r a l typical quite
foreland. normal
features
are c h a r a c t e r i s t i c
o f a Molasse basin
and a
The Bouguer g r a v i t y f i e l d o f the Chaco area i s characterized by
values o f g r a v i t y
normal g r a v i t y o f c o n s i l i d a t e d
f l u c t u a t i n g around -50 mGals. This
i s nearly t h e
s h i e l d areas.
SUBANDEAN RANGES
The
boundary
o f t h e Subandean
Ranges
appearance o f young Andean s t r u c t u r e s
with
t h e foreland
i s determined
by
the
a t t h e surface. The s t r a t i g r a p h i c column i s
very s i m i l a r t o t h a t o f the Chaco. The thicknesses o f the Lower Palaeozoic formations gradually
increase from the east (roughly 4 km) towards the Eastern C o r d i l l e r a , where
236
values of approximately 15 km are reported ( C o r d i l l e r a Real: MARTINEZ, 1978). In the same d i r e c t i o n , also the Lower T e r t i a r y and Upper Cretaceous sequences become t h i c k e r and s t r a t i g r a p h i c a l l y more complete, although t h e i r thicknesses are subject t o local v a r i a t i o n s (MINGRAMM et a l . , 1979;
SALFITY & MARQUILLAS, 1981). As a consequence of
Neogene and Quarternary u p f o l d i n g , the basin of f o r e l a n d Sedimentation was g r a d u a l l y s h i f t e d t o the east i n t o i t s present p o s i t i o n . The Subandean Ranges are s t r u c t u r a l l y characterized as a schuppen zone or a b e l t of f o l d s t r u c t u r e s w i t h broad synclines and r e l a t i v e l y narrow a n t i c l i n e s whose eastern f l a n k s are f r e q u e n t l y d i s r u p t e d by east verging u p t h r u s t s . As none of the s t r u c t u r e s comprise S e d i m e n t s o l d e r than Devonian or S i l u r i a n , the f a u l t s can a l l be expected t o bend l i s t r i c a l l y towards the west and j o i n a f l a t l y i n g main t h r u s t System at depth which descends stepwise
i n the same d i r e c t i o n
through
the u n d e r l y i n g , not folded
formations. Thus, the Subandean Ranges seem t o form a t y p i c a l
"Cordilleran fold
and
t h r u s t b e l t " (PRICE, 1981), which sheared o f f along Devonian and S i l u r i a n formations and o v e r l i e s unfolded Ordovician, Cambrian, and basement rocks. Based on a
balanced
cross section near the B o l i v i a n border (MINGRAMM e t a l . , 1979), ALLMENDINGER e t a l . (1983) c a l c u l a t e d a minimum shortening of the Subandean zone o f 60 km since the Late Miocene. The development of the Subandean zone during the Cretaceous and
Early T e r t i a r y
has
been i n t e r p r e t e d by GALLISKI & VIRAMONTE ( i n press) as a f o r e l a n d p a l e o r i f t of "low v o l c a n i c i t y type". I t corresponds
to a Continental
backarc basin. This S i t u a t i o n i s
underlined by the e x t r u s i o n o f a l k a l i - b a s a l t i c lavas during the Late Cretaceous. Neogene and Quarternary t e c t o n i c s can be considered as an i n t r a c r u s t a l
The
t h r u s t or A-
Subduction system (BALLY, 1975) which came i n t o being i n the previous backarc basin. There are only few data a v a i l a b l e about the rocks underlying the Subandean t h r u s t plane. I t i s now
supposed t h a t the Ordovician, Cambrian and
the Precambrian rocks
have not been a f f e c t e d by the young Andean compressional
t e c t o n i c s (ALLMENDINGER et
al.,
increasing thicknesses
1983;
Palaeozoic
ROEDER, 1986). and
As
a
consequence
of
younger Sediments, the top of the
the
Precambrian
had
already
of
dipped
towards the west before t h r u s t t e c t o n i c s began. The p i l i n g up of t h r u s t sheets must have increased t h i s d i s p o s i t i o n . The crust can t h e r e f o r e also be expected t o t h i c k e n from E t o W. According t o g r a v i t y models by STRUNK (1985) and GÖTZE e t a l . (1986), the The
Moho descends t o about 50 km near the boundary t o the Eastern C o r d i l l e r a . magnetotelluric p r o f i l e
(SCHWARZ et
s i g n i f i c a n t f e a t u r e s i n t h i s respect. Low
a l . , 1986,
f i g . 3)
does
not
show
any
r e s i s t i v i t i e s are found i n an upper layer
about 5 km t h i c k representing non-metamorphic Sediments ( T e r t i a r y , Mesozoic and Upper Palaeozoic).
In
the
section
stretching
from
Villamontes
to
Tarija
and
Tupiza
( B o l i v i a , f i g . 1 ) , at l e a s t i n the eastern part of the Subandean Ranges no essential
237
t e c t o n i c stacking o f Sediments seems t o be indicated by m a g n e t o t e l l u r i c sounding. In the border zone between the Subandean Ranges and r e s i s t i v i t i e s o f about 100 Ohm
m may
the Eastern C o r d i l l e r a , uniform
be i n t e r p r e t e d as a t h i c k
(2 km)
stacking o f
Palaeozoic and Mesozoic metamorphic Sediments.
EASTERN CORDILLERA, ALTIPLANO, PUNA
The eastern boundary o f the Eastern C o r d i l l e r a i s c h a r a c t e r i z e d by the appearance of s t r a t i g r a p h i c a l l y deeper l e v e l s , e.g.
Lower Palaeozoic and
exposed i n the Subandean Ranges. Precambrian
Precambrian,
than those
rocks are widely d i s t r i b u t e d
i n the
Eastern C o r d i l l e r a o f NW-Argentina; they disappear as a consequence o f a s t r u c t u r a l plunge
- that
at l e a s t
i n p a r t had
existed since pre-Cretaceous
times - towards
B o l i v i a , under Cambrian q u a r t z i t e s and t h i c k (>5 km) Ordovician sequences o f shales and
sandstones.
For
the
same reason,
the easternmost
structures
o f the
Eastern
C o r d i l l e r a i n Argentina merge along s t r i k e i n t o the westernmost p a r t o f the Subandean t h r u s t b e l t east o f T a r i j a . From the h i g h l y u p l i f t e d eastern border o f the Eastern C o r d i l l e r a , the s t r u c t u r a l
level
also gradually descends towards the A I t i p i a n o . In
B o l i v i a , the A l t i p l a n o , characterized by i t s mainly Cainozoic Sediments, i s c l e a r l y separated by f a u l t s from the mostly Palaeozoic Sediments o f the Eastern C o r d i l l e r a . No g e o l o g i c a l l y well defined l i m i t between the Puna and the Eastern C o r d i l l e r a e x i s t s in Argentina. The s t r u c t u r e s i n both areas are very s i m i l a r . Therefore the whole area is treated
together i n t h i s
paper.
As
a result
o f the possibly
fault
controlled
southeastward extension o f the young volcanism (SALFITY, 1985), the western boundary of the Puna and the A l t i p l a n o , as drawn by the present volcanic arc o f the Western C o r d i l l e r a , i s very irregulär. Both areas form an endorheic high plateau w i t h several a c t i v e intramontane d e p o s i t i o n a l basins between the two C o r d i l l e r a s . In the Puna and the A l t i p l a n o , the s t r u c t u r e o f the c r u s t underlying the sedimentary sequences o f the Andean cycle changes i n such a way t h a t mechanical
influences on the
Andean t e c t o n i c s can be expected. While the f o r e l a n d , the Subandean Ranges, and the Eastern C o r d i l l e r a o f B o l i v i a d i d not s u f f e r
important deformations p r i o r
t o the
Andean Cycle and, hence, t h e i r t h i c k mainly p e l i t i c S e d i m e n t s are supposed t o o v e r l i e a r e l a t i v e l y undisturbed basement, the S i t u a t i o n changes t o the west and
southwest
w i t h what i s c a l l e d the "Faja Eruptiva de l a Puna". Volcanic i n t e r c a l a t i o n s i n the Ordovician Sediments, g r a n i t i c
intrusions,
folding,
and
some metamorphism
indicate
the e f f e c t s o f an orogeny ascribed t o the "Oclöyic Phase" o f the Famatinian
Cycle
( O r d o v i c i a n - S i l u r i a n boundary; ACENOLAZA & TOSELLI, 1976,
1973;
1981; MENDEZ et a l . ,
PALMA et a l . , 1986; f o r more d e t a i l s see BAHLBURG et a l . , t h i s i s s u e ) . This orogeny was
.interpreted as the r e s u l t
of a c o l l i s i o n
o f a hypothetical
"Arequipa
Massif"
(DALMAYRAC et a l . , 1977; MARTINEZ, 1978) w i t h the B r a z i l i a n Shield. Precambrian
rocks
in the Chilean P r e c o r d i l l e r a and i n the western part o f the A l t i p l a n o were considered
238
as i n d i c a t i o n s o f t h i s massif (LEHMANN, 1978). During the S i l u r i a n and Devonian the "Oclöyic Orogen" formed a broad u p l i f t t h i n continental
(=Arco Puneiio), a t the western side o f which
and shallow marine Sediments, c o n t r a s t i n g w i t h the contemporaneous
f a c i e s t o the east o f the u p l i f t , have been described (DONATO & VERGANI, 1985) which represent the marginal f a c i e s o f sedimentary sequences i n Chile (BREITKREUZ, 1986). The d i f f e r e n t c o n d i t i o n o f the area t o the west o f the Puna and the A l t i p l a n o i s also underlined by the development from the Late Carboniferous t o the T r i a s s i c when a broad magmatic b e l t developed w i t h mainly acid and intermediate volcanics and shallow marine as well as c o n t i n e n t a l sedimentary i n t e r c a l a t i o n s (COIRA e t a l . , As
a consequence
o f t h e Palaeozoic
tectonic
events
and p o s s i b l e
1982). pre-Cretaceous
movements, Cretaceous and Early T e r t i a r y Sediments, as f i r s t deposits o f the Andean Cycle i n t h e area o f the Eastern C o r d i l l e r a ,
Altiplano
and Puna (Salta and Oran
Groups), unconformably o v e r l i e Palaeozoic and Precambrian
rocks. I n c o n t r a s t t o the
Subandean Ranges, these Sediments were d i s t r i b u t e d throughout the area and f i l l e d up depressions w i t h several 1000 m of mostly c o n t i n e n t a l deposits (SALFITY & MARQUILLAS, 1981; MINGRAMM e t a l . , of
1979; MARQUILLAS & SALFITY, t h i s i s s u e ) . Enormous thicknesses
more than 5000 m l o c a l l y
Special
(MARTINEZ, 1978;
SALFITY, 1985;
SCHWAB, 1985)
are a
f e a t u r e o f the A l t i p l a n o and the Puna. According t o ARANIBAR (Lecture, 4 t h
C h i l . Geol. Congr., Antofagasta, 1985), blocks w i t h reduced sedimentary thicknesses may
border on other blocks w i t h very great thicknesses, so t h a t these blocks are
assumed t o be separated from each other by f a u l t s such as the San Andreas and Coniri f a u l t s o f the northern part o f the A l t i p l a n o (MARTINEZ, 1978) which might possibly be r e a c t i v a t e d p a l a e o - f a u l t s o f the basement (SALFITY, 1985). Some marine i n t e r c a l a t i o n s (e.g.
Yacoraite Fm.) show t h a t
Sedimentation
took place
i n lowlands. A r a t h e r
tensional regime during S e d i m e n t a t i o n i s i n d i c a t e d by some b a s a l t i c flows o f Early and Late Cretaceous
age and, i n the Puna, l o c a l
basic p l u t o n i c rocks. (GALLISKI &
VIRAM0NTE, i n press). After
intense
Oligocene
compressional
("Incaic
Phase"),
intramontane l o n g i t u d i n a l ALONSO, 1987)
tectonics
a t t h e end o f t h e Eocene and during the
Neogene S e d i m e n t a t i o n
took place i n several
basins i n the Puna and the Eastern C o r d i l l e r a
under the influence o f graben-like t e c t o n i c s (SCHWAB, 1985,
separate (JORDAN & fig. 3).
I n t e r n a l unconformities, g e n e r a l l y a t t r i b u t e d t o the "Quechua and D i a g u i t a Phases", underline the synorogenic character o f Neogene S e d i m e n t a t i o n . Another Special feature of
t h e Neogene
and Quarternary
Sedimentation
i s i t s frequent a s s o c i a t i o n
volcanism. Miocene t o Holocene volcanics and subvolcanic bodies are found Altiplano,
Puna and i n the western p a r t o f the Eastern C o r d i l l e r a
1982). These eastern volcanics show backarc a f f i n i t i e s
with
i n the
(COIRA e t a l . ,
as t h e i r potassium content i s
r e l a t i v e l y high (KUSSMAUL e t a l . , 1977). As t h i s Neogene magmatism i s p a r t l y older than t h e i n s t a l l a t i o n
o f the A-Subduction
o f the Subandean Zone during
t h e Late
Miocene (ALLMENDINGER e t a l . , 1983), no causal r e l a t i o n s h i p s can be e s t a b l i s h e d .
239
f i a . 3: The subsequent stages o f the t e c t o n i c development o f the Puna, along a section a t 23°40'S l a t . i n the Salar de Cauchari area (SCHWAB, 1985, m o d i f i e d ) . ( 1 ) Formation o f backarc basins d u r i n g the Cretaceous and Early T e r t i a r y (lower two sections), ( 2 ) development o f a backarc f o l d and t h r u s t b e l t (small i n s e r t e d s e c t i o n ) , and ( 3 ) s u p e r p o s i t i o n o f conjugate reverse f a u l t i n g i n the course o f arc t e c t o n i c s (upper s e c t i o n ) .
240
The
Cretaceous
and Palaeogene
sedimentary
development
as well
as t h e r e l a t e d
magmatism c h a r a c t e r i z e the region o f A l t i p l a n o , Puna and the Eastern C o r d i l l e r a as an e n s i a l i c backarc area w i t h respect t o an arc s i t u a t e d i n the Chilean P r e c o r d i l l e r a a t t h a t time. Hence, Late Eocene and Oligocene t e c t o n i c movements a f f e c t e d the backarc where a f o l d and t h r u s t b e l t was generated. I n the Puna an eastwardly f a c i n g f o l d o f Salta group
Sediments was reconstructed by SCHWAB (1985, f i g . 3 ) . The deformation
must have occurred between the Late Eocene and Early Miocene, as the f o l d i n g i s older than Miocene block movements. From northern Peru MEGARD (1984) described a f o l d and thrust
belt
Therefore
o f the same age and e x a c t l y
i t seems q u i t e
possible t h a t
causing these eastvergent s t r u c t u r e s
within
t h e same geotectonic
A-Subduction
i n a backarc
started
regime.
position.
i n Oligocene
times,
Neogene and Quarternary
intramontane Sedimentation and t e c t o n i c s were superimposed over the previous backarc. The
structural
reverse
fault
developed
Systems
and b u i l d
SCHWAB (1985, Altiplano, uplift
s t y l e i s d i f f e r e n t t o t h a t o f the Palaeogene t e c t o n i c s as conjugate
f i g . 3 ) . The t e c t o n i c
o f t h e region and graben
continental have
vergencies
t o t h e west
as well
hörst and graben
as t o t h e east are
structures
i s the result
o f horizontal
shortening
t h i c k e n i n g and (SCHWAB, 1985;
and a thermal root (FROIDEVAUX & ISACKS, 1984). The compressive structures
and t h e connection
arc i n a broad zone and cannot
caused
described by
s t r u c t u r e s o f the Neogene deformation i n the
Puna and Eastern C o r d i l l e r a are symmetrical. The c r u s t a l
ALLMENDINGER, 1986) hörst
with
up t h e compressive
t h e east-facing
backarc
with
volcanism
characterize
be r e l a t e d t o A-Subduction which
structures
during
t h e Oligocene.
the
might The
superposition o f these d i f f e r e n t t e c t o n i c s t y l e s shows eastward m i g r a t i o n o f the arc configuration. The A-Subduction o f the Subandean zone i s contemporaneous t o t h e s t r u c t u r e s o f the A l t i p l a n o , Puna and Eastern C o r d i l l e r a . I t s sole t h r u s t (ROEDER, 1986: "Main Andean Thrust")
dips beneath the Eastern
basement a t a major
Cordillera
where
i t i s supposed t o enter t h e
ramp. Whereas i n Argentina t h e f r o n t a l
Eastern C o r d i l l e r a i s
characterized by a series o f steep upthrusts, i n B o l i v i a the huge Sama a n t i c l i n e near T a r i j a can be considered a f r o n t a l frontal
ramp a n t i c l i n e . The high c r u s t a l
s t r u c t u r e i s r e f l e c t e d by p o s i t i v e i s o s t a t i c and residual
uplift of this
Bouguer
anomalies
(GÖTZE e t a l . , 1987). According t o the estimates o f ALLMENDINGER e t a l . (1983), the Eastern C o r d i l l e r a moved a t l e a s t 60 km t o the east w i t h respect t o t h e foreland i n the
course o f Subandean t h r u s t t e c t o n i c s . ROEDER (1986) estimated 100 km o f Neogene
t e c t o n i c t r a n s p o r t f o r the Andes o f Northern B o l i v i a . As during t h a t time the Eastern C o r d i l l e r a was compressed and shortened, i t was displaced as a whole w i t h respect t o the Chaco p i a i n o r the Subandean basement. The m a g n e t o t e l l u r i c measurements near T a r i j a by SCHWARZ e t a l . , (1986) ( f i g . 4) do not reveal
this
important t h r u s t
fault,
but f u r t h e r west,
near Tupiza,
very low
r e s i s t i v i t i e s were found i n a depth o f about 10 km and deeper, which may be r e l a t e d
241
to t h a t t h r u s t and/or the young volcanic manifestations o f the western p a r t of the Eastern C o r d i l l e r a . Towards the west, beneath the A l t i p l a n o , the depth of the layer of very low r e s i s t i v i t y i n the c r u s t descends t o 20 and 40 km. These anomalies may
be
i n t e r p r e t e d as magmatic impregnations or shear zones which p o s s i b l y separate a r i g i d upper c r u s t from a more d u c t i l e lower c r u s t . I t also i s possible t h a t the main shear zone o f A-subduction passes through t h i s l a y e r . This megathrust must have caused a considerable c r u s t a l t h i c k e n i n g i n a d d i t i o n t o the internal
thickening
of the c r u s t
of the
Eastern
Cordillera,
Altiplano
and
Puna
region. The residual g r a v i t y of the A l t i p l a n o and Puna i s also mainly characterized by NE-SW o r i e n t e d highs and lows which i n d i c a t e deeper sedimentary basins and of
Palaeozoic
rocks
(e.g. the Faja Eruptiva O r i e n t a l ) .
Strong
local
belts
gradients of
g r a v i t y mark the main f a u l t s or Systems of f a u l t s i n the p i c t u r e o f g r a v i t y . ßased on gravity
mesurements
GÖTZE,
(1986)
calculated
crustal
thicknesses
beneath t h a t region from about 50 km (E) t o 70 km (W). Thus, i t may
which
increase
be supposed t h a t
two c r u s t a l elements of normal thickness override each other (ROEDER, 1986).
WESTERN CORDILLERA
The Western C o r d i l l e r a represents the Miocene-Holocene v o l c a n i c arc which c o n s i s t s of rhyolitic
ignimbrites
and
andesitic
volcanoes.
While
i t s eastern
border
i s very
irregulär due t o volcanoes, volcanic i n t r u s i v e s and i g n i m b r i t e s extending (according to SALFITY, 1985) along r e a c t i v a t e d transverse f a u l t Systems i n t o the A l t i p l a n o
and
Eastern C o r d i l l e r a , i t s western border i s easier t o d e f i n e . I t shows t h a t , w i t h i n the segment considered here, the axis of the Western C o r d i l l e r a i s not a s t r a i g h t
N-S
s t r u c t u r e but t h a t the p o r t i o n north of 23°30' trends NNW,
and
only the part t o the south of 25°S trends The p a r t s t h a t do not run N-S at
a
low
angle.
Thus,
the middle p o r t i o n SSW
N-S.
i n t e r s e c t w i t h the neighbouring morphostructural u n i t s
from
23°30'S
towards
NNW,
the
Western
Cordillera
is
successively superposed on the northern prolongations of the Salar de Atacama and the Upper Loa V a l l e y , both elements o f the Preandean Depression, and, n o r t h of 21°S, the
Chilean
Precordillera.
The
southern
extensions
of the
Salar de
on
Atacama are
i n t e r s e c t e d by the middle p o r t i o n of the Western C o r d i l l e r a i n the segment. These contrasting determined
directions by
are
intracrustal
due
to
the
fact
that
the
stresses whereas the p o s i t i o n
tectonic
structures
are
o f the v o l c a n i c arc i s
c o n t r o l l e d by the subcrustal subduction o f the Nazca Plate beneath the c r i t i c a l
depth
of about 110 km (GILL, 1981). The v o l c a n i c arc o f the Western C o r d i l l e r a came i n t o being d u r i n g the Miocene east of an e x t i n c t
Latest Cretaceous
- Eocene arc s i t u a t e d
i n the ambit
o f the
Chilean
242
pTocopiUa *> • I Cao l mo» • i r> - * C H I L E V'Antofagasta 70"
68°
—
66' .•»»t»chn Villamontes Tupizg B O L I V I A >B
-
—
60 km
,/
V \ ARGENTINA • MT-Station 200 300hm 6266" 61"
250 k m
f i g . 4: E l e c t r i c r e s i s t i v i t y p r o f i l e through northern Chile and southern B o l i v i a based on m a g n e t o t e l l u r i c data ( R e s i s t i v i t y d i s t r i b u t i o n c a l c u l a t e d from 1D models, SCHWARZ e t a l . , 1986).
243
P r e c o r d i l l e r a and, hence, i n the former backarc area. Due t o p r i o r backarc t e c t o n i c s and subsequent erosion, the Substrate o f the Miocene-Holocene v o l c a n i c s may consist o f Palaeogene and Cretaceous rocks as well as o f Palaeozoic v o l c a n i c s , Sediments and intrusives. segment
Palaeozoic
along
rocks as a Substrate p r e v a i l
t h e Argentinian-Chilean border,
i n t h e southern
thus
showing
part o f t h e
stronger u p l i f t and
erosion p r i o r t o Neogene volcanic a c t i v i t y . The
effects
o f t h e Miocene-Holocene arc t e c t o n i c s
border zone o f the Western C o r d i l l e r a than w i t h i n
can b e t t e r it.
be observed
The growing
i n the
s t r u c t u r e s were
possibly buried beneath the extruding volcanic products whose s y n t e c t o n i c nature i s also revealed by i n t e r n a l unconformities (LAHSEN, 1982). I t has been suggested
that
the volcanoes formed along f r a c t u r e zones and t h a t block f a u l t i n g occurred w i t h i n the Western C o r d i l l e r a (LAHSEN, 1982), but e v i d e n t l y there are no important normal or even graben s t r u c t u r e s . Generally, there seems t o be no fundamental between
the tectonics
Altiplano
except
o f t h e Western
f o r the Special
Cordillera
mechanical
and those
conditions
faults
difference
o f t h e neighbouring
imposed
by t h e large
q u a n t i t i e s o f intruded and extruded volcanic m a t e r i a l . The minimum o f the Bouguer g r a v i t y f i e l d o f about -450 mGals was observed i n the area o f the Western C o r d i l l e r a gravity
field
also a t t a i n s
(GÖTZE, 1986,
GÖTZE e t a l . 1987). Although t h e regional
i t s minimum we l e a r n t
from p o t e n t i a l
field
Separation
techniques t h a t the negative values mentioned are p a r t l y caused by g r a v i t y sources o f the
points
t o t h e anomalies
of electrical
c o n d u c t i v i t y and t h e i r i n t e r p r e t a t i o n . The l e v e l
upper
crust
(down
t o 5 km).
This
o f low r e s i s t i v i t y
i n the western
p a r t o f the A l t i p l a n o shallows towards W and reaches minimum values o f less than 1 Ohm m below the western p a r t o f the Western C o r d i l l e r a a t a depth o f merely 8-10 km. This
extremely
high
conductivity
may be i n t e r p r e t e d
s o l i d i f i e d magmatic i n t r u s i o n s a t t h a t l e v e l first
alternative
by not o r not completely
o r by c i r c u l a t i n g thermal waters. The
seems t o be confirmed by r e f r a c t i o n
seismics along a l i n e
from
Chuquicamata i n t o the A l t i p l a n o and the Eastern C o r d i l l e r a , as WIGGER (1986) noted a strong a t t e n n u a t i o n o f seismic waves beneath the Western C o r d i l l e r a .
PREANDEAN DEPRESSION
In the northern p a r t o f Chile considered here, an important morphologic and t e c t o n i c depression between the Western C o r d i l l e r a and the Chilean P r e c o r d i l l e r a i s developed, most spectacular expression o f what i s the basin o f the Salar de Atacama. To the south i t i s succeeded by the Salar de Punta Negra, and s t i l l
f u r t h e r south endorheic
basins along the western border of the Western C o r d i l l e r a i n d i c a t e the persistence o f t h i s morphostructural element. To the north o f the Salar de Atacama the depression o f the upper Loa V a l l e y can be regarded as a s t r u c t u r e o f the same type.
244
As mentioned above, the Salar de Atacama region was a f f e c t e d d u r i n g the Late Eocene and the Oligocene
by strong compressive movements which caused f o l d i n g and f a u l t i n g
of the P u r i l a c t i s Group ( e s s e n t i a l l y Latest Cretaceous - Eocene according t o CHARRIER & REUTTER, i n prep.), a p a r t i a l equivalent t o the Salta Group i n Argentina (MARQUILAS & SALFITY, t h i s
i s s u e ) . During
t h e Miocene and Pliocene f u r t h e r compression also
a f f e c t e d t h e Sediments which had been accumulating depression
since
t h e Late
Oligocene.
w i t h great thicknesses
The s i m i l a r i t y
i n tectonic
i n the
and sedimentary
developments between the A l t i p l a n o and the Salar de Atacama depression suggests the l a t t e r was t e c t o n i c a l l y a part o f the A l t i p l a n o u n t i l
that
t h e i n s t a l l a t i o n o f the
Western C o r d i l l e r a oblique t o the t e c t o n i c g r a i n separated both areas i n the course of the Miocene. There are, however, also d i f f e r e n c e s . The area o f the present Preandean
Depression
was covered by Jurassic marine and Lower Cretaceous c o n t i n e n t a l Sediments forming the eastern p a r t s o f an e n s i a l i c Jurassic backarc basin. These Sediments were completely eroded p r i o r lavas
t o t h e Sedimentation
i n t h e upper
proximity
t o an
part
of this
Eocene
o f the P u r i l a c t i s group
(and o l d e r )
Group. Furthermore,
andesitic
(CHARRIER & REUTTER, i n prep.) volcanic
arc s i t u a t e d
indicate
i n t h e Chilean
Precordillera. The Preandean Depression came i n t o being contemporaneously t o the Western C o r d i l l e r a . The Depression
only roughly followed p r e e x i s t i n g t e c t o n i c s t r u c t u r e s . Therefore,
i f
the s t r a i g h t north-south t r e n d i n g axis o f the P r e c o r d i l l e r a i s taken as a reference l i n e , the Salar de Punta Negra depression developed f a r t h e r west than t h e Salar de Atacama, so t h a t
i t would c u t i n t o t h e P r e c o r d i l l e r a .
Depression
lies
individual
t e c t o n i c depressions
other
by ranges.
farther
west
structurally
than
Furthermore,
t h e Upper Loa
t h e Salar de Atacama. A l l these
are not d i r e c t l y connected but separated
I t may be supposed
that
these
depressions
from each
developed
due t o
compression between t h e i s o s t a t i c a l l y u p r i s i n g blocks o f the P r e c o r d i l l e r a and the Western C o r d i l l e r a w i t h i n
a crustal
p o r t i o n weakened by magmatic processes.
This
assumption i s supported by the i n t e r p r e t a t i o n o f m a g n e t o t e l l u r i c measurements i n the upper Loa Valley by SCHWARZ e t a l . (1986: S t a t i o n ARL) who found r e s i s i t i v i t i e s o f about 2 Ohm m down t o 15 km and o f less than
1 Ohm m below 20 km ( f i g . 4 ) . The
absorption o f seismic Signals from Chuquicamata towards the east (WIGGER, 1986) also p o i n t s i n t h e same d i r e c t i o n . Residual
g r a v i t y i n t h e Preandean Depression
zone i s
c o n t r o l l e d by an enormous g r a v i t y high o f 60-100 mGals. This anomaly Covers the area between Calama i n the NW and the Argentinan Puna crossing the Salar de Atacama and the Western C o r d i l l e r a (GÖTZE e t a l . , t h i s i s s u e ) . The extension, width and s t r i k i n g of
this
hitherto
unknown
anomaly corresponds
perfectly
Occidental" proposed by PALMA e t a l . (1986) The l o c a l
with
t h e "Faja
Eruptiva
negative anomalies caused by
s a l t deposits i n t h e Salar de Atacama are completely masked by t h i s g r a v i t y high.
245
Other l o c a l
p o s i t i v e anomalies
here are r e l a t e d t o deep seated i n t r u s i o n s o f basic
magmas. These authors i n d i c a t e a c r u s t a l
thickness o f about
70 km, and almost the
same thickness was i n t e r p r e t e d by WIGGER (1986) from r e f r a c t i o n seismic data f o r the P r e c o r d i l l e r a t o the south o f Chuquicamata.
CHILEAN PRECORDILLERA
The
mountain
ranges
t o t h e east
o f t h e Chilean
Longitudinal
Valley
( S i e r r a de
Domeyko, S i e r r a de Moreno) r i s e t o heights o f about 4.000 m and are morphologically clearly
separated
structural
from the Western C o r d i l l e r a by the Preandean Depression.
From a
p o i n t o f view, the P r e c o r d i l l e r a presents a good example o f what may be
c a l l e d 'arc t e c t o n i c s ' . The pre-Jurassic development o f the P r e c o r d i l l e r a i s s i m i l a r t o t h a t o f the Preandean Depression
and t h e Western C o r d i l l e r a .
Palaeozoic
Sediments and p l u t o n i c rocks o f
d i f f e r e n t ages are mostly o v e r l a i n by Late Carboniferous t o T r i a s s i c volcanics and Sediments.
During
t h e Late
Triassic,
t h e Lias o r l o c a l l y
t h e Dogger,
a marine
transgression occurred which led t o the d e p o s i t i o n o f t h i c k carbonatic sequences. The eastward
extension o f t h e sea i s not known, as i n t h e Preandean Depression and
f a r t h e r east, erosion preceded the d e p o s i t i o n o f Cretaceous S e d i m e n t s ; t o t h e west the basin was l i m i t e d by the Jurassic volcanic arc, which was then located i n the Chilean Coastal
Range (v.HILLEBRANDT e t a l . , 1986).
The Jurassic
palaeogeographic
c o n f i g u r a t i o n i s g e n e r a l l y i n t e r p r e t e d as an e n s i a l i c backarc basin. At the approximate
time o f the Jurassic-Cretaceous boundary, marine
gradually
by t r a n s i t i o n a l
thick.
replaced
They are conformably
and c o n t i n e n t a l
or unconformably
clastics,
overlain
Sediments were
locally
several km
by v o l c a n i c formations o f
intermediate and acid composition. These volcanics i n d i c a t e t h a t a new magmatic arc was
b u i l t up w i t h i n t h e former Jurassic backarc
basin a f t e r the e x t i n c t i o n o f the
corresponding magmatic arc i n the present Coastal Range during the Early Cretaceous. From t h e southwestern
p a r t o f t h e S i e r r a de Moreno ROGERS (1985) has dated "Mid"
Cretaceous v o l c a n i c rocks (Rb/Sr-isochron: 104,7±19 Ma). P l u t o n i c rocks o f about the same age are reported by MARINOVIC & LAHSEN (1984) from t h e southern p a r t o f the S i e r r a de Moreno (K/Ar i n b i o t i t e : 103+4 Ma). The "Mid" Cretaceous volcanics u n d e r l i e w i t h angular unconformity (MUfiOZ, 1986) a younger, only s l i g h t l y
warped volcanic
sequence (Chile-Alemania Fm., CHONG (1973), o r e q u i v a l e n t s ) o f Latest Cretaceous t o Eocene age (HERVE e t a l . , 1985).
In t h e southern
Palaeogene formation has a great areal without
intervening
continental
clastic
Cretaceous rocks o f t h e P r e c o r d i l l e r a
part
this
extension and o v e r l i e s , Sediments,
latter
t h e folded
and t h e Longitudinal
essentially
unconformably and Palaeozoic t o
V a l l e y . As Palaeogene
246 volcanics can also be found i n the Preandean Depression too, the Palaeogene magmatic arc may
have had a s l i g h t l y more w e s t e r l y p o s i t i o n than the i l l
defined Cretaceous
arc, i . e. both arc Systems overlap each other. The
Precordillera
i s s t r u c t u r a l l y c h a r a c t e r i z e d as a b e l t o f strong compressional
t e c t o n i c s w i t h intense f o l d i n g and f a u l t i n g . However, i t i s not a f o l d and
thrust
b e l t o f the f o r e l a n d type as can be seen from the f a c t t h a t Palaezoic sedimentary p l u t o n i c rocks and
locally
and
also Precambrian metamorphic rocks are involved i n the
f o l d s t r u c t u r e s . These rocks appear i n the cores o f two or t h r e e a n t i c l i n e s whose limbs c o n s i s t of Mesozoic sequences. This implies t h a t broad
(10-15 km)
the s t r u c t u r e s
are
rather
although, normally, they are s t r o n g l y compressed t o such a degree
t h a t the limbs are steep or p a r t l y overturned and that the core i s upthrusted w i t h respect t o limbs. In these a n t i c l i n e s vergencies to the w and t o the E are developed, i t seems, however, t h a t the westward vergencies are s l i g h t l y more widespread. The
flanks
and
e s p e c i a l l y the cores
d a c i t i c Stocks (1985)
which can
therefore
are
frequently
i n p a r t be considered
proposed
a
model
i n which
intruded
by
granodioritic
as synkinematic. the
deformation
or
CHONG & REUTTER was
triggered
by
i n t r u s i o n s that d e s t a b i l i z e d the stressed c r u s t and allowed shear movements i n the upper r i g i d
level
o f the c r u s t w i t h respect t o the lower weak and
viscous
( f i g . 5 ) . The wavelength o f the f o l d s would imply a detachment at an o r i g i n a l of
about
8-10 km.
This
value
corresponds
to
the
conductive l a y e r beneath the Preandean Depression.
depth
I t may
of
the
level depth
present
highly
thus be concluded
that a
s i m i l a r anomaly e x i s t e d i n the P r e c o r d i l l e r a at the end o f the Eocene. Another kind o f deformation can o c c a s i o n a l l y be observed i n the steep limbs of the PrecordiHeran
anticlines.
The
Mesozoic s t r a t a
are folded
around almost
vertical
axes. The Z-array of the f o l d s suggests t h a t they were formed by d e x t r a l t r a n s c u r r e n t faults
along
the
strike
of
the
limbs. The
sense
of
shear
along
these
faults
corresponds t o an oblique northeastward subduction of the Farallon Plate during the Palaeogene (WHITMAN et a l . , 1983, somewhat o l d e r than wrenching acted The
cannot
the
, f i g . 6 ) . In the cases mentioned,
transcurrent
be e a s i l y
movement, but,
as
i n less
folding is
inclined
rocks
recognized, i t i s supposed t h a t compression and
shear
contemporaneously.
exact age o f the deformation i s not known. In some places i t i s evident t h a t
there were two t e c t o n i c events, p o s s i b l y due t o t e c t o n i c s o f the Mid Cretaceous and the l a t e s t Cretaceous - Eocene arc. Thus, i n the S i e r r a de Argomedo (southern part of the
segment)
unconformably
the
Palaeogene
volcanics o f
the
Chile-Alemania
Formation,
which
o v e r l i e Jurassi c Sediments i n the western f l a n k o f a Precordi Heran
a n t i c l i n e , were upfolded i n a steep position, t h a t i s t o say t h a t here structures of Cretaceous
(probably Late Cretaceous)
age
were r e a c t i v a t e d
d u r i n g the Palaeogene
247
X -i 'x xPQleogene x*> KßathoLithic Intrusion*" >
X
® L
L
:
x
L
L
X
x J
L
)
•Je"-*' 1
L
L
L
L
L
L
L
L
L
J urassi c L
L
L
L
L
L L L L L L L Late Pal.-Trias volcanics , L
X
: x x x x >
X
Marine L
L
x
L
L L
L
L
L
L
L
LL L L LL L L L L L L
I I I I I I I I I I I I I II
Premesozoic basement
I I I I I I I I I I I I I
f i g . 5: Hypothetical model showing the development o f a r c - r e l a t e d compressional s t r u c t u r e s i n t h e upper c r u s t o f the P r e c o r d i l l e r a : Stage A: Plate convergence produces t a n g e n t i a l stress i n t h e c r u s t . Due t o the lack o f horizons s u i t a b l e f o r detachement, no deformation occurs. Stage B: Acid melts d e s t a b i l i z e t h e l e v e l o f i n t r u s i o n and enable f o l d i n g t o occur i n the r i g i d upper c r u s t a l l e v e l . Stage C: Increasing shortening steepens t h e f l a n k s o f the basement a n t i c l i n e g i v i n g way t o f u r t h e r f o l d i n g i n t h e sedimentary cover on the limbs of t h e a n t i c l i n e . D i a p i r i t i c r i s e o f g r a n i t i c magma i s thus possible. Stage D: Further shortening r e s u l t s i n upthrusts on t h e f l a n k s which, i n turn, enhance t h e r i s i n g o f t h e core. Further shortening occurs i n t h e synclines on the f l a n k s leading t o t h e formation o f Special f o l d s and cleavage.
248
(probably
Late
Eocene and
Choja), DAMM e t a1.(1986) syntectonic, w i t h
Oligocene).
In the northern parts
o f the
segment
(Q.
dated a m o n z o d i o r i t i c i n s t r u s i o n , which can be considered
43,7±3,8 Ma.
This
age
would confirm an
Early or Middle
Eocene
t e c t o n i c event, w h i l e no e f f e c t s of a Late Cretaceous event can be observed i n t h a t region.
In
other
places,
transitional
areas
between the Longitudinal
compressional
tectonics
especially
only
during
in the
the
southern
V a l l e y and
Cretaceous.
parts
of
the
segment,
the P r e c o r d i l l e r a The
Precordillera
a f f e c t e d by Neogene mainly v e r t i c a l movements as i s demonstrated
suffered was
also
l o c a l l y by f a u l t i n g
and t i l t i n g o f the Miocene Pampa Gravels i n the v i c i n i t y o f these ranges. The P r e c o r d i l l e r a i s s i t u a t e d i n a p a r t o f the present f o r e a r c area, which i s now not very a c t i v e t e c t o n i c a l l y . volcanic
arc
during
I t s magmatic e v o l u t i o n
the
Palaeogene
and
shows t h a t
the
i t was
contemporaneous
a Continental
compressive
and
t r a n s c u r r e n t (= t r a n s p r e s s i v e ) t e c t o n i c s have t o be c l a s s i f i e d as subduction l i n k e d arc t e c t o n i c s .
The
structures
of the Palaeogene arc are p a r t l y
those of the Cretaceous arc which was
superimposed over
probably s i t u a t e d r e l a t i v e l y
nearby,
t o the
west o f the P r e c o r d i l l e r a , and both arcs came i n t o being i n the backarc area o f the Jurassic - Early Cretaceous arc System. The
interpretation
of
gravity
thickness values o f about
data
60 km.
according
to
In the residual
GÖTZE field
(1986)
leads
Chilean P r e c o r d i l l e r a i s characterized by a g r a v i t y minimum which may accumulation of r e l a t i v e l y l i g h t acid material
to
crustal
of Bouguer anomalies,
the
be due t o the
i n the magmatic arc supported by arc
t e c t o n i c s . By means o f r e f r a c t i o n seismic data along a p r o f i l e from Chuquicamata t o the
south WIGGER (1986), obtained a c r u s t a l thickness of 70 km. He detected a high
velocity
level
velocities crustal
of
might
7.3 km/s
at
correspond
thickness
should
a depth
of
only
35 km
and
suggested
these
t o a Jurassic palaeo-Moho. Accordingly, the
have
been
achieved
by
magmatic
high
present
u n d e r p l a t i n g of
basic
material which thus formed a new and t h i c k Tower c r u s t .
LONGITUDINAL VALLEY
There
are
important
differences
in
structures
and
palaeogeological
development
between the northern and the southern p a r t of the Andean segment d e a l t w i t h These
differences
northern
part,
morphologically
the
are
particularly
Pampa del
evident
Tamarugal
separating the Coastal
debris o f which accumulate
i n the
represents
Range from
Longitudinal a young
the Chilean
Valley.
tectonic
here.
In the
depression
Precordillera,
the
i n t h a t basin. Tensional t e c t o n i c s do not seem t o play a
r o l e - i n the formation o f t h a t depression; t i l t i n g
of the now
rigid
block o f the
P r e c o r d i l l e r a towards the west i s more l i k e l y t o be a kinematic motive. The Miocene and younger Sediments are not very t h i c k ; elevations of Mesozoic and Palaeozoic rocks
249 emerging from t h a t peneplain show t h a t t h i s morphostructural u n i t was
subject t o
strong t e c t o n i c s and subsequent erosion p r i o r t o the Miocene. On comparsion w i t h the southern p a r t , the u n i t can probably be said t o be of Cretaceous age. To the east o f Antofagasta, the mountains of the Coastal Range merge o r o g r a p h i c a l l y i n t o the P r e c o r d i l l e r a , i . e. a morphologically d i s t i n c t L o n g i t u d i n a l l y V a l l e y does not
exist
there.
The
Situation
changes
south
P r e c o r d i l l e r a i s separated from the Coastal occupied
of
24°30'
S,
by the Palaeogene v o l c a n i c Chile-Alemania
folded
and
faulted
transitional
area
the
Chilean
Formation (CHONG, 1973). These
basic and acid lavas, ignimbrites, tuffs and volcanic Stocks the
where
Range by a 50 km wide h i l l y peneplain
between
the
unconformably overlie
bordering morphostrustural
u n i t s , but the volcanic formation i t s e l f s u f f e r e d almost no deformation except i n the ambit o f the P r e c o r d i l l e r a . The s t r u c t u r e s of the substratum, which can be observed i n the mountaineous region east o f Antofagasta, appear t o be s i m i l a r t o those of the P r e c o r d i l l e r a , since a n t i c l i n e s w i t h cores o f Palaeozoic rocks e x i s t . Therefore the age o f the t e c t o n i c s i s o l d e r than the l a t e s t Cretaceous -
possibly
Mid-Cretacebus.
S i m i l a r l y t o the P r e c o r d i l l e r a , compression w i t h i n a d e s t a b i l i z e d c r u s t may have been the
reason for folding which, therefore, might have occurred i n the ambit of a Mid
Cretaceous magmatic arc whose l o c a t i o n , however, i s not well known. According t o the i n t e r p r e t a t i o n o f seismics (WIGGER, 1986) and
g r a v i t y data (GÖTZE,
1986), the c r u s t o f the Longitudinal Valley has a thickness o f about 50 km. Neither the the
Bouguer g r a v i t y f i e l d nor the residual g r a v i t y p o i n t t o an abnormal thickness of sedimentary
cover.
The
Longitudinal
Valley
i s even
controlled
by
positive
residual g r a v i t y anomalies which cover both the Central V a l l e y and the Coastal Range w i t h values up t o +80 mGals. Zones of low e l e c t r i c r e s i s t i v i t y
could not be detected
in
The
the m a g n e t o t e l l u r i c measurements
intense
young
tectonics
of
that
(SCHWARZ et a l . , 1986). present
forearc
region
spaceous and
coincide
with
not these
geophysical data.
COASTAL RANGE
Düring the Jurassic and Early Cretaceous the magmatic arc was s i t u a t e d i n the Coastal Range (BUCHELT & TELLEZ, t h i s i s s u e ) . I t c o n s i s t s o f a n d e s i t i c lavas, l o c a l l y more than 10 km
thick
and
o f large
plutons of mainly d i o r i t i c
composition. The
thickness of the volcanics as well as t h e i r composition showing t h o l e i i t i c i n the e a r l y stages ("early basics", PICHOWIAK e t a l . , 1988)
great
affinities
i n d i c a t e a geotectonic
s e t t i n g d i f f e r e n t t o t h a t o f the l a t e r arc-systems. The v o l c a n i c s o v e r l i e some Early Jurassic
marine
Sediments,
Triassic
and
Upper
Palaeozoic
deposits,
Palaeozoic
g r a n i t o i d s as well as rocks o f the metamorphic basement (probably Cambrian, DIAZ et al.,
1985,
DAMM et
a l . , 1986).
Marine
intercalations
i n the Jurassic volcanics
250 i n d i c a t e a d e p o s i t i o n a l environment more or less at sea l e v e l . The e x t r u s i o n o f these volcanics was thus accompanied by a considerable c r u s t a l subsidence and the i n t r u s i o n of huge d i o r i t i c b a t h o l i t e s as e a r l y as Jurassic times. A second p l u t o n i c pulse took place i n the Early Cretaceous,
when smaller plutons o f t o n a l i t i c
composition i n t r u d e d along N-S-trending Steep t o n e a r l y v e r t i c a l
to granodioritic
faults.
f a u l t s are the most c h a r a c t e r i s t i c t e c t o n i c f e a t u r e of the
Coastal Range. Some o f them are young and seem t o be s t i l l
a c t i v e . The most important
System of f a u l t s c o n s t i t u t e s the N-S
t r e n d i n g Atacama Fault Zone (AFZ) which can
traced
(19°S)
over
displacements occurred
1000 km along
from these
Iquique faults
along the El Way
can
be
to
La
very
Serena
Fault (RÖSSLING e t a l . 1986)
blocks between the main l o n g i t u d i n a l
faults
( 30°S).
important, e.
are s t r o n g l y
g.
after
a
The
be
vertical
12.5 km
throw
the Barremian.
The
i n c l i n e d i n some places,
thus c o n t r a s t i n g w i t h the i n c l i n a t i o n of the neighbouring blocks
(SCHEUBER e t a l .
1986). The
Post-Neocomian v e r t i c a l
displacements
along
the
faults
o f the
Coastal
Range
r e s u l t e d i n the phenomenon t h a t rocks t h a t formed i n a deep c r u s t a l l e v e l are exposed over
a large
(Bolfin
area.
The
rocks
Complex, RÖSSLING,
(1987)
showed t h i s
period
of wrenching
show features o f metasomatism and
1987)
as
shear deformation along
the AFZ.
well
as
ductile
partial
melting
shear deformation. SCHEUBER
belonged t o a Jurassic t o Early Cretaceous The
deformation
was
closely
related
t o the
i n t r u s i o n o f p l u t o n i c bodies o f t h a t time. P e t r o l o g i c a l data i n d i c a t e medium t o high grade
c o n d i t i o n s f o r Jurassic
shear
zones
and
low
grade
c o n d i t i o n s f o r Early
Cretaceous mylonites w i t h metamorphic pressures intermediate between low pressure and medium pressure
series
(35-70°C/km).
The
decreasing
metamorphic
grade
indicates
c r u s t a l u p l i f t i n the Coastal Range at l e a s t since the Early Cretaceous. The sense o f shear i n the d u c t i l e shear zones i s u n i f o r m l y s i n i s t r a l
and
corresponds
t o r e c o n s t r u c t i o n s of p l a t e c o n f i g u r a t i o n s and the d i r e c t i o n s of movement f o r the SEP a c i f i c (LARSON & PITMAN I I I ,
1972, ENGEBRETSON e t a l . , 1985, f i g . 6 ) . Because o f the
close r e l a t i o n between the arc magmatism o f the Coastal Range and the wrenching the AFZ,
along
t h i s f a u l t zone can be viewed as an a r c - r e l a t e d s t r u c t u r e or as a "trench-
l i n k e d s t r i k e - s l i p f a u l t " sensu W00DC0CK (1986). It
can
be presumed t h a t the Jurassic t o Early Cretaceous f a u l t s were r e a c t i v a t e d
l a t e r i n the f o r e a r c s t r e s s regime when the subsequent magmatic arcs had developed f a r t h e r t o the east. The
Neogene t o recent a c t i v i t y of the f a u l t s o f the Coastal
Range does not reveal any s t r i k e - s l i p movements and r e f l e c t s the v e r t i c a l of the s t r u c t u r a l
high at the outer r i m o f the f o r e a r c region. The
cause the huge scarp
along the coast
segment) mark the t r a n s i t i o n
(about 2000 m i n the southern
tectonics
faults,
which
p a r t o f the
t o the inner trench slope which as a consequence o f
f i g . 6: Reconstructions o f p l a t e c o n f i g u r a t i o n s and d i r e c t i o n s o f spreading. L e f t : Early Cretaceous, r i g h t : Palaeogene (Modified a f t e r LARSON & PITMAN I I I , 1972 ( l e f t ) and WHITMAN e t a l . , 1983 ( r i g h t ) ) .
252 t e c t o n i c erosion has i t s own Special s t r u c t u r e s (BOURGOIS e t a l . , 1988). The Pliocene t o recent f a u l t Systems o f the M e j i l l o n e s Peninsula may
be considered as an example
of these slope t e c t o n i c s exposed on the c o n t i n e n t . The
crustal
structure
of the Coastal
Range was
r e f r a c t i o n measurements c a r r i e d out i n 1987 running along the coast and velocity distribution
investigated
by
detailed
seismic
(WIGGER, pers. comm.). Reversed p r o f i l e s
i n an inland d i r e c t i o n also give an impression of the
of the area under study. Well expressed
first
a r r i v a l s show
very c l e a r l y t h a t i n the upper c r u s t o f the Coastal Range at an average i n a depth of between 5 and
15 km s u r p r i s i n g l y h i g h - v e l o c i t y material
km/s.
The
e x i s t s w i t h values between
6.5
and 6.8
rocks must be i n t e r p r e t e d as u p l i f t e d deeper c r u s t a l
The
r e l a t i v e g r a v i t y high observed by GÖTZE (1986) along the Coastal
levels.
Range i s i n
agreement w i t h t h i s seismic r e s u l t . The geophysical anomalies c o i n c i d e p e r f e c t l y w i t h the
area
i n which
the B o l f i n
complex mentioned above, a probable element o f the
middle or lower c r u s t (RÖSSLING, 1987) i s s i t u a t e d . This S i t u a t i o n r a i s e s the question o f the mechanism t h a t caused the u p l i f t
of the
Chilean Coastal Range w i t h respect t o the c e n t r a l u n i t s o f the Andes. I f the B o l f i n complex represents a c r u s t a l crust
i n Jurassic times,
element which
and
which
formed a p a r t of the lower ( o r middle)
i s now
situated
i n the
upper
part
of
the
C o n t i n e n t a l c r u s t o f normal t h i c k n e s s , u n d e r p l a t i n g must have occurred. F i s s i o n - t r a c k dating
of
apatites
i n a Jurassic amphibolite S
of Antofagasta
provided
an
age
estimate o f 118 + 13 Ma (ANDRIESSEN, pers. comm.). This age designates the time when the
temperature of the rock f e i l
below 100°C. Thus, a great p a r t o f the u p l i f t
and
consequently of the u n d e r p l a t i n g probably took place i n Early Cretaceous times and so t h i s phenomenon may also be r e l a t e d t o the arc t e c t o n i c s .
CONCLUSIONS
In
a
converging
plate
System,
the
greatest
amount
of
crustal
shortening i s
accommodated i n the subduction zone, i . e . at the i n t e r f a c e between the upper p l a t e and
the downgoing
plate,
and
i n the subduction
between the trench and the s t r u c t u r a l
complex
forming the
inner slope
high (DICKINSON & SEELY, 1979). At the a c t i v e
Continental margin of the Central Andes, these s t r u c t u r e s are not exposed above sea l e v e l , perhaps w i t h the exception of some blocks near the coast Peninsula).
Due
to
the
consequence o f t e c t o n i c
displacement
of
the
arc
system
erosion of the Continental border
towards
(e.g. M e j i l l o n e s the
east
(RUTLAND, 1971;
as
a
HILDE,
1983) the subduction complexes o f the e a r l y stages o f the Andean Cycle cannot have been preserved.
253 The
v i s i b l e s t r u c t u r e s of the Andes owe
still
t h e i r existence
t o Stresses which were,
are, t r a n s m i t t e d through the subduction zone i n t o the Continental
and
c r u s t of the
upper p l a t e . The t e c t o n i c m o b i l i z a t i o n of the c r u s t i s supposed t o be achieved by i t s decoupling
from the
underlying
mantle wedge by magmatic processes. The
s e t t i n g s o f the arc c o n f i g u r a t i o n s t h a t developed during t h a t t h e i r formation was
influenced not only by the i n h e r i t e d c r u s t a l c o n d i t i o n s but
also by the v a r i a b l e conditions of p l a t e motion, e.g. of
plate
motion
structural
relative
to
the
trench
development shows t h a t intense
subduction complex, but transpressive shortening
different
the Andean Cycle suggest
also
the
axis,
convergence r a t e , obliqueness
subduction
tectonic a c t i v i t y
area of the
dip not
magmatic arc,
and
others.
The
only
affected
the
where compressive
or
s t r u c t u r e s generated. During some stages i n the backarc area c r u s t a l
was
also accomodated i n f o l d and
t h r u s t b e l t s . The
backarc outside
f o l d and t h r u s t b e l t and e s p e c i a l l y the forearc between the s t r u c t u r a l
high and
the the
magmatic arc were r e l a t i v e l y stable areas or subject only t o slow v e r t i c a l movements. Amounts and v e l o c i t i e s of t e c t o n i c t r a n s p o r t i n the mobilized part of the Continental crust o f the upper p l a t e are
important, although
c e r t a i n l y much less than those i n
the subduction zone and complex.
In the backarc area, according may
t o the present S i t u a t i o n , a huge c r u s t a l t h r u s t System
be developed caused by underthrusting of the f o r e l a n d under the mobilized
o f the c e n t r a l parts of the orogen. This A-subduction (BALLY, 1975)
crust
confers a c e r t a i n
b i l a t e r a l symmetry t o the orogenic System. According t o i t s nature as a f l a t dipping shear zone, only d i p s l i p movement i s possible, hence strong c r u s t a l shortening
can
take place here. The magmatic arc also shows e f f e c t s o f c r u s t a l shortening. I t s c r u s t i s d e s t a b l i l i z e d by i n t r u s i o n s , by which the upper s t i l l
r i g i d part o f the c r u s t i s enabled t o react
by f o l d i n g and steeply dipping conjugate t h r u s t s while the lower p a r t may
be deformed
by
necessarily
more or
less
viscous
flow.
Important
low
angle
thrusts
are
not
developed and a t h i c k e n i n g of the c r u s t i s achieved by an i n t e r n a l s o r t of pure shear deformation
and
not
by
crustal
underthrusting.
The
weak c r u s t
and
the
tectonic
s t r u c t u r e s of the magmatic arc also allow the accommodation of stresses p a r a l l e l t o the
trench
Jurassic
and
axis
resulting
from
oblique
subduction
(W00DC0CK,
1986).
As
fossil
Palaeogene s t r u c t u r e s show (SCHEUBER, 1987), the magmatic arc can
a f f e c t e d by l o n g i t u d i n a l
almost v e r t i c a l l y dipping s t r i k e s l i p f a u l t s and
s t r u c t u r e s p e r t a i n i n g t o t h i s type of
be
secondary
deformation.
In the segment under c o n s i d e r a t i o n , f o u r d i f f e r e n t stages of formation o f Continental arc Systems, one developing
a f t e r the other, can be recognized f o r the time from the
Jurassic t o the present ( f i g . 7 ) . As f a r as the magmatic arc i s concerned, each stage involved
the
deformation;
formation i t was
of
a
volcanic
chain,
intrusion
followed by a period of t e c t o n i c and
of
plutonic
bodies
and
magmatic quiescence w i t h
254
• A .A • A • A • A !
I + ++ + k + + + + I ± +± +
V 7
Ii /// 8
9
— 10
f i g . 7: Schematic presentation o f the Central Andes s t r u c t u r a l e v o l u t i o n since the Jurassic (Andean Cycle). 1. T r i a s s i c volcanics and c o n t i n e n t a l deposits, 2. arc magmatism, 3. backarc magmatism, 4. marine deposits (backarc), 5. c o n t i n e n t a l backarc Sedimentation, 6. intramontane deposits, 7. compressional arc t e c t o n i c s , 8. wrenching, 9. f o l d and t h r u s t b e l t t e c t o n i c s , 10. u n c o n f i r m i t y .
255 u p l i f t and
erosion before, once again, a new
volcanic chain i n a new
magmato-tectonic stage
S i t e , t o the east o f the preceding
started with a
chain. I f the volcanic
a c t i v i t y i s regarded i n i s o l a t i o n , these stages are (1) Jurassic, (2) Mid-Cretaceous, (3)
Latest Cretaceous - Eocene, and (4) Neogene-Quarternary (see COIRA et a l . , 1982).
Not only the s i t e s but also the c o n f i g u r a t i o n s of these
arc Systems as well as the
accompanying deformations d i f f e r e d from each other (COIRA et a l . , 1982 also i n d i c a t e d differences
of the magmatic products). Nevertheless,
there seems t o be
a regulär
trend o f e v o l u t i o n i n the arc Systems and the c o n t i n e n t a l c r u s t where they developed from a marine environment t o a c o n t i n e n t a l environment and, f i n a l l y , t o high plateau conditions. The
Jurassic magmatic arc, the f i r s t
of the Andean Cycle,
was
installed within
subsiding e n s i a l i c marine basin i n the area o f the present Coastal Range. I t may
a
have
d i v i d e d the basin i n t o a marine forearc region and a l i k e w i s e marine backarc basin. These marine c o n d i t i o n s may flattening
under the load
have been a consequence of some c r u s t a l of the
f o r e a r c , but i f the subduction
volcanics. Nothing
spreading
i s known about the
and
Jurassic
System t h a t gave r i s e t o the Andean Cycle came i n t o
being a f t e r a long period (Permian and T r i a s s i c ?) without p l a t e convergence, i t i s possible t h a t oceanic c r u s t was subduction
adhered by the newly formed f o r e a r c . A backarc
A-
i n the e n s i a l i c backarc basin cannot be i n f e r e d from the s t r u c t u r e s of the
exposed marine Jurassic Sediments. On the c o n t r a r y , some volcanic extrusions a t t e s t local
tensional regimes. However, the basin was
crustal
uplift,
the
connection
t e c t o n i c s cannot a p r i o r i
of
which
be excluded.
l i m i t e d t o the east by
with
possible
Jurassic
important
compressional
Intense t e c t o n i c a c t i v i t y took place i n the
magmatic arc, where, as a consequence of oblique subduction 1972), transpression caused
a zone of
left
lateral
strike
(LARSON & PITMAN I I I , slip
motion (SCHEUBER,
1987) and compressional warping and block t i l t i n g . As r a d i o m e t r i c age determinations
i n the considered
segment are scarce, only
little
is known about a Cretaceous magmatic arc t h a t i s supposed t o have developed t o the east o f the Jurassic arc. Some c a l c - a l k a l i n e volcanic formations and p l u t o n i c rocks of
the S i e r r a de Moreno have been dated as
"Mid"
Cretaceous and
may
t h e r e f o r e be
a t t r i b u t e d t o an arc of t h a t time. There i s no evidence of a Cretaceous A-subduction in
the
backarc, but pre-Maastrichtian u p l i f t ,
leading t o the erosion
of
Jurassic
Sediments i n the area o f the present Preandean Depression and the Western C o r d i l l e r a may
be seen i n t h i s context.
Starting
i n the
latest
Cretaceous
and
during
the
Paleocene
important magmatic arc developed i n the area of the present (Cordillera
Domeyko,
Cretaceous arc. Cretaceous and
Due
Sierra t o the
de
Moreno),
m i g r a t i n g arc
somewhat
to
the
and
Eocene,
a
new
Chilean P r e c o r d i l l e r a east
t e c t o n i c s , i n the
of
western
the
supposed
part
Palaeogene lavas o v e r l i e folded Jurassic backarc Sediments and
latest rocks
256 belonging t o t h e supposed Cretaceous arc. I n t h e eastern part o f t h e new arc, the volcanics o v e r l i e o r i n t e r f i n g e r w i t h Palaeogene c o n t i n e n t a l backarc Sediments. South o f 24°S, t h e volcanics o f t h i s age extend i n t o the L o n g i t u d i n a l V a l l e y and even i n t o the Coastal
Range, which formed t h e f o r e a r c o f t h i s arc System. Consequently these
volcanics were not a f f e c t e d by the well developed arc t e c t o n i c s o f t h e P r e c o r d i l l e r a . Oblique
subduction
i n a northeastern d i r e c t i o n
( c f . WHITMAN e t a k , 1983, f i g . 6)
during the Palaeogene i s revealed by f o l d s w i t h v e r t i c a l due
t o N-S
directed
Maastrichtian throughout
marine
right
lateral
Sediments
t h e Palaeogene,
slip
i n t h e backarc
lowland
axial
displacements area
show
conditions prevailed.
plunge and Z-arrays
i n that that
magmatic a r c . there,
The mostly
probably
continental
Sediments o f the backarc were i n t e n s e l y folded during t h e Late Eocene and Oligocene (Incaic
Phase)
i n t h e region comprising
Eastern C o r d i l l e r a . thrust
belt,
t h e present
These t e c t o n i c s c e r t a i n l y
similar
t o that
described
Preandean Depression
t o the
l e d t o t h e formation o f a f o l d and
by MEGARD (1984)
from
t h e northwestern
A l t i p l a n o , although there i s no proof o f a s i g n i f i c a n t A - s u b d u c t i o n System ( f i g . 3 ) . The
present
arc regime which has taken over
since t h e Early Miocene upon folded
Palaeogene backarc rocks developed several new f e a t u r e s .
I n t h e segment studied,
volcanism extends
from the V i r t u a l magmatic arc o f the Western C o r d i l l e r a f o r more
than
t h e backarc.
200 km i n t o
There,
an important and, w i t h
shortening, e f f e c t i v e A-Subduction i s a c t i v e and, f i n a l l y ,
respect
t o crustal
the Andes are much more
upwarped than during t h e previous arc stages, which i s c e r t a i n l y a consequence o f an enormous
crustal
thickening.
Also
t h e area
o f arc t e c t o n i c s ,
c h a r a c t e r i z e d by
conjugate inverse f a u l t Systems (SCHWAB, 1985), i s probably broader than t h a t o f the preceding arcs, as i t comprises the young s t r u c t u r e s o f t h e Preandean Depression, t h e Western C o r d i l l e r a and t h e Altiplano-Puna region ( f i g . 7 ) . This c r u s t a l
shortening
w i t h i n the upper p l a t e i s probably much more e f f e c t i v e than before. A l l these e f f e c t s may be due t o a higher p l a t e convergence v e l o c i t y than before w i t h no or only s l i g h t obliquity
(PARDO CASAS & MOLNAR, 1987).
Furthermore,
f o r t h e present
configuration
some f i n a l remarks about the subduction complex a t t h e inner slope o f t h e trench can be made. According t o t h e postulated t e c t o n i c erosion o f t h e c o n t i n e n t a l border, no accretionary wedge e x i s t s , however, blocks separated by f a u l t s are t i l t e d and subside until
t h e i r remainders
are underthrust together w i t h t h e subducting slab (ARABASZ,
1971; EMAIS e t a l . , 1988; B0URG0IS e t a l . , 1988). Thus t e c t o n i c erosion i n t h e outer f o r e a r c and u p l i f t i n t h e inner f o r e a r c seem t o be interdependent. The
foregoing considerations show t h a t throughout the Andean Cycle t h e c o n t i n e n t a l
c r u s t on which t h e Andean arc Systems were i n s t a l l e d underwent intense defortnations. One o f t h e main e f f e c t s was t h e shortening o f the c o n t i n e n t a l c r u s t and, as pointed out,
i t occurred
i n three t e c t o n i c a l l y
a c t i v e p a r t s o f t h e upper p l a t e :
(1)
the
subduction complex, ( 2 ) the magmatic arc, and (3) t h e backarc. The t e c t o n i c erosion o f the c o n t i n e n t a l margin by subduction since the Jurassic may be aproximately 200 km
257
f i g - 8: Diagram i l l u s t r a t i n g c r u s t a l shortening during t h e f o u r arc stages since the Lias i n a s e c t i o n through the Central Andes from the trench t o t h e eastern border o f the Subandean Ranges. Shortening i s achieved by t e c t o n i c erosion i n t h e subduction zone, compression i n the subsequent magmatic arcs and, during the l a s t two stages, by the i n s t a l l a t i o n o f f o l d and t h r u s t b e l t s i n the backarc areas. Tectonic erosion i s considered t o amount t o 200 km corresponding t o the distance between the Jurassic and the present v o l c a n i c , a r c s . shortening during the f i r s t three stages i s estimated w i t h 10 km i n each case (about 17%) and w i t h 40 km between the eastern border o f the Chilean P r e c o r d i l l e r a and t h e center o f t h e Eastern C o r d i l l e r a (about 11%). Crustal shortening i n t e backarc f o l d and t h r u s t b e l t o f t h e p r e s e n t l y a c t i v e arc System i s c a l c u l a t e d w i t h 80 km (ALLMENDINGER, 1983), while f o r the Late Cretaceous - Eocene stage an amount o f 50 km i s p o s t u l a t e d . The r e s u l t i n g c r u s t a l thickness i s conformable w i t h t h a t obtained from geophysical research.
258 which corresponds t o the present distance between t h e Coastal
Range and the Western
C o r d i l l e r a . The t e c t o n i c erosion mainly a f f e c t e d the Continental c r u s t which, a f t e r some subduction a t the surface o f the downgoing oceanic c r u s t , may have been added t o the present
Andean c r u s t by melting and u n d e r p l a t i n g . Tectonic
magmatic arc can roughly minimum),
be estimated
and f o r t h e Latest
shortening
i n the
only f o r the Puna (SCHWAB, 1985: 14% as a
Cretaceous
- Eocene
arc s i t u a t e d
i n t h e Chilean
P r e c o r d i l l e r a (CHONG & REUTTER, 1985: 25%) Underthrusting i n t h e backarc r e l a t e d t o the Miocene - Holocene arc stage amounts t o a minimum value o f 80 km (ALLMENDINGER 1983). Based on these values
i n f i g . 8 assumptions o f shortening are made f o r the
four arc stages which sum up t o a t o t a l
shortening o f 400 km between t h e trench and
the eastern border o f the Subandean Ranges, i . e . w i t h i n a present width o f 775 km. I f an o r i g i n a l
c r u s t a l thickness o f 35 km i s assumed t h i s amount o f c r u s t a l
shortening
s u f f i c e s t o explain the present c r u s t a l thicknes o f the Central Andes. A crosscheck based on a p l a n i m e t r i c c a l c u l a t i o n o f the present c r u s t a l volume i n the same section 775 km Wide leads a f t e r an extension o f 400 km t o a medium o r i g i n a l c r u s t a l thickness of 36,7 km. These estimations demonstrate t h a t the present thickness o f the Andean c r u s t can p e r f e c t l y be explained merely by c r u s t a l shortening. The f o u r arc stages and t h e i r respective t e c t o n i c s can only roughly be r e l a t e d t o the numerous t e c t o n i c events (phases) which have been described i n t h a t region (CHARRIER, 1981,; FRUT0S, 1981). Thus, the two Quechua phases probably belong magma-tectonic episode, and
t h e two d i f f e r e n t
t o the youngest
Incaic phases t o t h e Palaeogene
episode,
the Laramien (Peruvian) and Subhercynian phases t o the Mid o r Late Cretaceous
episode.
E a r l i e r phases are less well defined. FRUT0S (1981), BUSSEL (1983), PARD0-
CASAS & MOLNAR (1987)
and other authors
phases
convergence
and high
plate
rates.
see a r e l a t i o n s h i p I f this
i s true,
between t h e t e c t o n i c t h e magmato-tectonic
episodes o f t h i s region would be independent o f , or only i n d i r e t l y l i n k e d w i t h , the changing r a t e s o f p l a t e convergence.
REFERENCES ACEN0LAZA, F.G. & T0SELLI, A.J. (1976) Consideraciones e s t r a t i g r a f i c a s y tectonicas sobre el Paleozoico i n f e r i o r del Noroeste Argentino.- Mem. I I . Congr. Latinoamer. Geol. (1973), 755-763, Caracas. ACENOAZA, F.G. & TOSELLI, A.J. (1981): Geologia del noroeste A r e n t i n o . - Univ. Nac. de Tucuman, Publ. N°1287, pp 212, Tucuman. ALLMENDINGER, R.W. (1986): Tectonic development, southeastern border o f the Puna Plateau, northwest Argentine Andes.- Geol. Soc. Amer. B u l l . , 97: 1070-1082, Boulder. ALLMENDINGER, R.W.; RAMOS, V.A.; JORDAN, T.E.; PALMA, M. & ISACKS, B.L. (1983): Paleogeography and Andean s t r u c t u r a l Geometry, Northwest Argentina.- Tectonics, 2, 1-16, Washington D.C.. ARABASZ, W.J. (1971): Geological and geophysical studies o f the Atacama f a u l t zone i n northern C h i l e . - unpubl. Diss. C a l i f . I n s t . Techn., pp 264, Pasadena/Calif..
259 ARANEDA, M.; CHONG, G.; GÖTZE, H.-J.; LAHMEYER, B.; SCHMIDT, S. & STRUNK, S. (1985): Gravimetric modelling o f the Northern Chilean l i t h o s p h e r e (20°-26° Lat. South).4. Congr. Geol. Chileno Actas, 1: 2/18 - 2/34, Antofagasta. BALLY, (1975): A geodynamic scenario f o r hydrocarbon occurences.- 9 ' world petroleum congress, Tokyo 1975, 33-44, London. BOURGOIS, J.; PAUTOT, G.; BANDY, W.; BOINET, T.; CHOTIN, P.; HUCHON, P.; MERCIER DE LEPINAY, B.; MONGE, F.; PELLETIER, B.; SOSSON, M. & V.HUENE, R. (1988): Seabeam and seismic r e f l e c t i o n imaging o f the t e c t o n i c regime o f the Andean C o n t i n e n t a l margin o f f Peru (4°S t o 10°S).- Earth Planet. Sei. L e t t . , 87: 111-126, Amsterdam. BREITKREUZ, C. (1986): Das Paläozoikum i n den K o r d i l l e r e n Nordchiles.- Geotekt. Forsch., 70: pp 88, S t u t t g a r t . BUNESS, F.; WETZIG, E. & WIGGER, P. (1986): Seismologisehe Studien i n den zentralen Anden.- B e r l . geow. Abh. A 66, 5-33, B e r l i n . BUSSEL, M.A. (1983): Timing o f t e c t o n i c and magmatic events i n the Central Andes o f Peru.- J. geol. Soc. London, 140: 279-286, London. CHARRIER, R. (1981): Mesozoic an Cenozoic s t r a t i g r a p h y o f t h e Central A r g e n t i n i a n Chilean Andes (32°-35°S) and chronology o f t h e i r t e c t o n i c e v o l u t i o n . - Z b l . Geol. Paläont. T e i l I , 1981: 344-355, S t u t t g a r t . CHONG, G. (1973): Reconocimiento geolögico del ärea C a t a l i n a - S i e r r a de Varas y e s t r a t i g r a f i a del Juräsico del Profeta.- unpubl. Thesis, pp 294, Santiago. CHONG, G. & REUTTER, K.-J. (1985): Fenomenos de t e c t o n i c a compresiva en l a s Sierras de Varas y de Argomedo, P r e c o r d i l l e r a Chilena, en e l ambito del p a r a l e l o 25° sur.- IV. Congr. Geol. Chileno Actas 2: 2-219 - 2-238, Antofagasta. C0IRA, B.; DAVIDSON, J.; MPODOZIS, C. & RAMOS, V. (1982): Tectonic and magmatic e v o l u t i o n o f the Andes o f northern Argentina and C h i l e . - Earth-Sc. Rev., 18: 303332, Amsterdam. DALMAYRAC, B.; LAUBACHER, G. & MAR0CC0, R. (1977): Caracteres generaux de 1'evolution geologique des Andes peruviennes.- Thesis U.S.T.L., pp 36, M o n t p e l l i e r . DALMAYRAC, B.; LAUBACHER, G.; MAR0CC0, R.; MARTINEZ, C. & TOMASI, P. (1980): La chaine hereynienne d' Amerique du sud, s t r u e t u r e e t e v o l u t i o n d' un orogene i n t r a c r a t o n i q u e . - Geol. Rdsch., 69: 1-21, S t u t t g a r t . DAMM, K.-W.; PICHOWIAK, S. & TODT, W. (1986): Geochemie, P e t r o l o g i e und Geochronologie der P l u t o n i t e und des metamorphen Grundgebirges i n Nordchile.B e r l i n e r geowiss. Abh., A 66: 73-146, B e r l i n . DIAZ, M.; CORDANI, U.G.; KAWASHITA, K.; BAEZA, L.; VENEGAS, R.; HERVE, F. & MUNIZAGA, F. (1985): Prelimnary r a d i o m e t r i c ages from t h e M e j i l l o n e s Peninsula, Northern C h i l e . - Comunicaciones, 35: 59-67, Santiago. DICKINSON, W.R. & SEELY, D.R. (1979): Strueture and s t r a t i g r a p h y o f f o r e a r c regions.Bull Am. Assoc. Pet. Geol., 63: 2-31, Tulsa. DONATO, E.O. & VERGANI, G. (1976): Geologia del Devonico y Neopaleozoico de l a zona del Cerro Rincön, Provincia de Salta, Argentina.- IV Congr. Geol. Chileno, Actas, I , 1-262 - 1-283, Antofagasta. EMAIS, K.-C; SUESS, E. & WEFER, G. (1988): Tektonik und Paläozeanographie im Vorland der Anden.- Die Geowissenschaften, 6: 1-7, Weinheim. ENGEBRETSON, D.C.; COX, A. & GORDON, R.G. (1985): R e l a t i v e motions between oceanic and c o n t i n e n t a l plateaus i n t h e P a c i f i c Basin.- Geol. Soc. Am., Special Paper, 206: 1-59, Boulder. FROIDEVAUX, C. & ISACKS, B.L. (1984): The mechanical S t a t e o f the l i t h o s p h e r e i n the Altiplano-Puna segment o f t h e Andes.- Earth Planet. Sei. L e t t . , 7 1 : 305-314, Amsterdam. FRUTOS, J. (1981): Andean t e c t o n i c s as a consequence o f s e a - f l o o r spreading.Tectonophysics, 72: T21-T32, Amsterdam. GALLISKI, M.A. & VIRAM0NTE,J.G. ( i n p r e s s ) : Cretaceous p a l e o r i f t i n northwestern Argentina - p e t r o l o g i c a l approach.- Journal o f South-American Earth Sciences, Amsterdam. GILL, J. (1981): Orogenic andesites and p l a t e t e c t o n i c s . - pp 390, Springer, Heidelberg, B e r l i n , New York. GÖTZE, H.-J. (1986): Schweremessungen und deren I n t e r p r e t a t i o n im m i t t l e r e n und östlichen T e i l der Anden-Geotraverse. Unpublished f i n a l r e p o r t , DFG P r o j e c t Go 380/1, Bonn. GÖTZE, H.-J.; LAHMEYER, B.; SCHMIDT, S.; & STRUNK, S. (1987): G r a v i t y f i e l d and megafault-system o f the Central Andes (20"-26° L.S.) A b s t r a c t s , Terra Cognita, 7: 57, Cambridge. t
1
260 HERVE, M.; MARINOVIC, N.; MPODOZIS, C. & PEREZ DE ARCE, C. (1985): Geocronologia K-Ar de l a C o r d i l l e r a de l a Costa entre l o s 24° y 25° l a t i t u d sur. Antecedentes prelimnares.- IV Congreso Geologico Chileno, Resumenes, 4.19: 158, Antofagasta. HILDE, T.W.C. (1983): Sediment subduction versus a c c r e t i o n around the P a c i f i c . Tectonophysics, 99: 381-397, Amsterdam. HILLEBRANDT, A.v.; GRÖSCHKE, M.; PRINZ. P. & WILKE, H.-G. (1986): Marines Mesozoikum i n Nordchile zwischen 21° und 26°S.- B e r l i n e r geowiss. Abh., A 66: 169-190, Berlin. JORDAN, T. & ALONSO, R. (1987): Cenozoic s t r a t i g r a p h y and basin t e c t o n i c s o f the Andes mountains, 20°-28° south l a t i t u d e . - Am. Ass. P e t r o l . Geol. B u l l . , 7 1 : 4964, Tulsa. KUSSMAUL, S.; HÖRMANN, P.K.; PLOSKONKA, E. & SUBIETA, T. (1977): Volcanism and s t r u e t u r e o f southwestern B o l i v i a . - J. Volcanology and Geotherm. Res., 2: 73-111, Amsterdam. LAHSEN, A. (1982): Upper Cenozoic volcanism and tectonism i n t h e Andes o f Northern C h i l e . - Earth Sei. Rev., 18: 285-302, Amsterdam. LARSON, R.L. & PITMAN I I I , W.C. (1972): World-wide c o r r e l a t i o n o f Mesozoic magnetic anomalies, and i t s i m p l i c a t i o n s . - Geol. Soc. Am. Bull.,83: 3645-3662, Boulder. LEHMANN, B. (1978): A Precambrian core sample from the A l t i p l a n o / B o l i v i a . - Geol. Rdsch., 67: 270-278, S t u t t g a r t . LYON-CAEN, H.; MOLNAR, P. & SUAREZ, G. (1987): G r a v i t y anomalies and f l e x u r e o f the B r a z i l i a n s h i e l d beneath the B o l i v i a n Andes.- Geodynamique Andes Central es, Seminaire 14-16 j a n v i e r 1987, resumenes; 83, Bondy. MARINOVIC, S. & LAHSEN, A. (1984): Hoja Calama.- Serv. Nac. Geol. Min.: Carta Geol. de Chile N°'58, pp 140, Santiago. MARTINEZ, C. (1978): Geologie des Andes Boliviennes.- Travaux e t documents de l'O.R.S.T.O.M., 119: pp 352, Paris. MARTINEZ, C ; TOMASI, P.; SUBIETA, T. & BOTELLO, R. (1973): Mapa teetönico de B o l i v i a . - Univ. Mayor S. Andres, Serv. Geol. Bol., La Paz. MEGARD, F. (1984): The Andean orogenic period and i t s major s t r u e t u r e s i n c e n t r a l and northern Peru.- J. Geol. Soc. London, 141: 893-900, London. MENDEZ, V.; NAVARINI, A.; PLAZA, D. & VIERA, V. (1973): Faja Eruptiva de l a Puna O r i e n t a l . - Actas V° Congr. Geol. Arg., IV: 89-100, Cördoba. MINGRAMM, A.; RUSSO, A.; POZZO, A. & CAZAU, L. (1979): S i e r r a s subandinas.- Segundo Simp. Geol. reg. Argent.,Cördoba, Acad. nac. C i e n c , 1 : 95-137, Buenos A i r e s . MUNOZ, N (1986): E s t r a t i g r a f i a de l a s Hojas Baquedano y Pampa Union a l oeste de l a Quebrada del Rio Seco Region de Antofagasta.- T a l l e r de t i t u l o I I Univ. de Chile (unpubl.), pp 96, Santiago. PALMA, M.A.; PARICA, P.D. & RAMOS, V.A. (1986): El g r a n i t o Archibarca: su edad y s i g n i f i c a d o teetönico, Provincia de Catamara.- Asoc. Geol. Argentina, Rev., 41: 414-419, Buenos A i r e s . PARDO-CASAS, F. & MOLNAR, P. (1987): Relative motion o f t h e Nazca ( F a r a l l o n ) and South American p l a t e s since Late Cretaceous time.- Tectonics, 6: 233-248, Washington D.C.. PICHOWIAK, S.; BUCHELT, M. & DAMM, K.-W. (1988): Mesozoic magmatic a c t i v i t y and t e c t o n i c s e t t i n g i n the N-Chile Central Andes Region: g r a n i t o i d magmagenesis and r e l a t i o n s t o volcanic a c t i v i t y during e a r l y stages o f t h e Andean Cycle.- Geol. Soc. Am. Memoir, manuscript submitted. PRICE, R.A. (1981): The C o r d i l l e r a n f o r e l a n d t h r u s t and f o l d b e l t i n the southern Canadian Rocky Mountains.- I n . McClay, K.R. & Price, N.J. (eds.): "Thrust and Nappe Tectonics": 427-448, London. RAMIREZ, C.F. & GARDEWEG, M. (1982): Hoja Toconao.- Serv. Nac. Geol. Min.: Carta Geol. de Chile N°-54, pp 121, Santiago. RIVANO, S.; SEPULVEDA, P.; HERVE. M. & PUIG, A. (1985): Geocronologia K-Ar de l a s Rocas I n t r u s i v a s Entre l o s 3 1 - 3 2 ° L a t i t u d Sur, C h i l e , Rev. Geol. Chile, No. 24_i 63-74, Santiago. ROEDER, D. 1986: Andean-Age s t r u e t u r e o f Eastern C o r d i l l e r a (Province o f La Paz, B o l i v i a ) . - L a t i n Amer.Coll. FU B e r l i n ; Denver, Colorado. ROGERS, G. (1985): A geochemical t r a v e r s e across t h e North Chilean Andes.- Ph.D. t h e s i s , Dept. Earth S c , Open U n i v e r s i t y , M i l t o n Keynes. RÖSSLING, R. (1987): Petrologie i n einem t i e f e n Stockwerk des jurassischen magmatischen Bogens i n der nordchilenischen Küstenkordillere südlich von Antofagasta.- Unpubl. Diss. FU B e r l i n , pp 165, B e r l i n .
261 RÖSSLING, R.; SCHEUBER, E. & REUTTER, K.-J. (1986): Strukturen und p e t r o l o g i s c h e Einheiten der nordchilenischen Küstenkordillere zwischen Antofagasta und Paposo.10. Geowissenschaftl. Lateinamerika-Kolloquium Berlin, 19.-21.11.1986, Kurzfassungen der Beiträge. B e r l i n e r geowiss. Abh., A Sonderband: 174-178, Berlin. RUTLAND, R.W.R. (1971): Andean orogeny and sea f l o o r spreading.- Nature, 233: 252255, London. SALFITY, J.A. (1985): Lineamentos Transversales a l Rumbo Andina en e l Noroeste Argentino.- IV Congr. Geol. Chileno, 2: 119-137, Antofagasta. SALFITY, J. & MARQUILLAS, R. (1981): Las Unidades E s t r a t i g r a f i c a s del Norte de l a Argentina.- Comite Sudamericano del Juräsico, 1: 303-317, Buenos A i r e s . SCHEUBER, E.; RÖSSLING, R. & REUTTER, K.-J. (1986): S t r u k t u r e n i n der chilenischen Küstenkordillere zwischen Paposo und Antofagasta.- B e r l i n e r geowiss. Abh., A 66: 209-224, B e r l i n . SCHEUBER, E. (1987): Geologie der nordchilenischen Küstenkordillere zwischen 24°30' und 25°S - unter besonderer Berücksichtigung d u k t i l e r Scherzonen im Bereich des Atacama-Störungssystems.- Unpubl. Diss. FU B e r l i n , pp 157, B e r l i n . SCHWAB, K. (1985): Basin formation i n a t h i c k e n i n g c r u s t - the intermontane basins i n the Puna and t h e Eastern C o r d i l l e r a o f NW-Argentina (Central Andes).- IV Congr. Geol. Chileno, 2: 138-158, Antofagasta. SCHWARZ, G.; HAAK, V.; MARTINEZ, E. & BANN ISTER, J. (1984): The e l e c t r i c a l c o d u c t i v i t y o f t h e Andean c r u s t i n northern Chile and southern B o l i v i a as i n f e r r e d from m a g n e t o t e l l u r i c measurements.- J. Geophys. 55, pp 169-178, Heidel berg. SCHWARZ, G.; MARTINEZ, E. & BANN ISTER, J. (1986): Untersuchungen zur e l e k t r i s c h e n Leitfähigkeit i n den zentralen Anden.- B e r l i n e r geowiss. Abh., A 66: 49-72, Berl i n . SKARMETA, J. & MARINOVIC, N. (1981): Hoja Quillagua.- Serv. Nac. Geol. Min.: Carta Geol. de Chile N°•51, pp 63, Santiago. STRUNK, S. (1985): Auswertung g r a v i m e t r i s c h e r Messungen und deren 3-D I n t e r p r e t a t i o n im Bereich der andinen Subduktionszone Nordchiles, unpubl. t h e s i s . - I n s t i t u t f . Geophysik; TU C l a u s t h a l . WHITMAN, J.M.; HARRISON, CG. & BRASS, G.W. (1983): Tectonic e v o l u t i o n o f the P a c i f i c Ocean since 74 Ma.- Tectonophysics, 99: 241-249, Amsterdam. WIGGER, P (1986): Krustenseismische Untersuchungen i n Nord-Chile und Süd-Bolivien.B e r l i n e r geowiss. Abh., A 66: 31-48, B e r l i n . W00DC0CK, N.H. (1986): The r o l e o f s t r i k e - s l i p f a u l t Systems a t p l a t e boundaries. P h i l . Trans. R. Soc. Lond., A 317: 13-29, London.