R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin Inc.,. New York ... 133-164. M. Hirsch, C. Pugh and M. Shub, Invariant Manifolds, Bull.
REFERENCES I.
R. Abraham and J. Robbin, Transversal Mappings and Flows, Benjamin I n c . , New York, 1967, pp. 120-131.
2.
R. Abraham and S. Smale, Nongenericity of Axiom A and a - S t a b i l i t y , Global A n a l y s i s - P r o c . Symp. in Pure Math., vol. 14, AMS, Providence, R . I . , 1970.
3.
D. Anosov, Geodesic Flows on Closed Riemann Manifolds with Negative Curvature, Proc. of the Stecklov Inst. of Math., No. 90 (1967). English t r a n s l a t i o n , AMS, Providence, R . I . , 1969.
4.
D. Anosov and Ya. S i n a i , Some Smooth Ergodic Systems, Upseki Mat. Nauk 22, No. 5 (1967), 103-167. English t r a n s l a t i o n , Russian Math. Surveys 22,
5.
V. Arnold and A. Avez, Probl~mes Ergodique de la M~chanique Classique, GauthierV i l l a r s , Paris, 1967, pp. 7-8.
6.
L. Auslander and R. MacKenzie, Introduction to Differentiable Manifolds~ McGraw-Hill, New York, 1963, p. 184.
7.
G.D. B i r k h o f f , Dynamical Systems, AMS, Providence, R . I . , 1927.
8.
N. Bogoliubov and Y. Mitropolsky, Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1961, Chapters 5, 64
9.
,
I0.
R. Bowen, Periodic Orbits for Hyperbolic Flows, Amero J. Math. 94 (1972), 1-37.
II.
D. C h i l l i n g w o r t h , unpublished.
12.
J. Dieudonn~, Foundations of ModernAnalysis, Academic Press, New York, 1960, p. 157.
13.
So D i l i b e r t o , Perturbation Theorems f o r Periodic Surfaces I , I I , Rend. Cir. Mat. Palermo 9, 10 (1960-61), 265-299, 111-161.
14.
N. Fenichel, Persistence and Smoothness of I n v a r i a n t Manifolds of Flows, Indiana U n i v e r s i t y Math. J. 21 (1971-72), 193-226.
15.
A. G o t t l i e b , Converses to the a - S t a b i l i t y and I n v a r i a n t Lamination Theorem, Trans. Amer. Math. Soc. 202 (1975), 369-383.
16.
J. Hadamard, Sur l ' i t & r a t i o n et les solutions asymptotiques des ~quations d i f f ~ r e n t i e l l e s , B u l l . Soc. Math. France 29 (1901), 224-228.
17.
J. Hale, Integral Manifolds of Perturbed D i f f e r e n t i a l Systems, Ann. Math. 73 (1961), 496-531.
18. 19. 20.
The Methods of Integral Manifolds in Nonlinear Mechanics, Contributions to D i f f e r e n t i a l Equations 2 (1963), 123-196.
, On the Method of Krylov-Bogoliubov-Metropolsky for the Existence of Integral Manifolds, Bol. Soc. Mex. (1960). , Ordinary Differential Equations,
Interscience, New York, p. 121.
P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.
146 21.
M. Hirsch, F o l i a t i o n s and Noncompact Transformation Groups, B u l l . AMS 76 (1970), 1020-1023.
22.
M. Hirsch and C. Pugh, Stable Manifolds and Hyperbolic Sets, Proc. Symp. in Pure Math., vol. 14, AMS, Providence, R . I . , 1970, pp. 133-164.
23.
M. Hirsch, C. Pugh and M. Shub, I n v a r i a n t Manifolds, B u l l . AMS 76 (1970), 1015-1019.
24.
M. Hirsch, J. Palis, C. Pugh and M. Shub, Neighborhoods of Hyperbolic Sets, Inv. Math. 9 (1970), 121-134.
25.
R. Holmes, A Formula for the Spectral Radius of an Operator, Amer. Math. Monthly 75 (1968), 163-166.
26.
M. I r w i n , A C l a s s i f i c a t i o n of Elementary Cycles, Topology 9 (1970), 35-48.
27.
, On the Stable Manifold Theorem, B u l l . London Math. Soc. 2 (1970), 196-198.
28.
A. Kelley, The Stable, Center-Stable, Center, Center-Unstable, Unstable Mani~ folds. An appendix in Transversal Mappings and Flows by R. Abraham and J. Robbin, Benjamin, New York, 1967.
29.
I. Kupka, S t a b i l i t ~ des vari#t&sinvariantes d'un champ de vecteurs pour les petites perturbations, C.R. Acad. Sc. Paris 258 (1964), 4197-4200.
30.
W. Kyner, I n v a r i a n t Manifolds, Rend. Cir. Mat. Palermo 10 (1961), 98-100.
31.
S. Lang, Introduction to Differentiable Manifolds, Interscience Publishers, New York, 1962, p. I02.
32.
R. Ma~, Persistent Manifolds are Normally Hyperbolic, B u l l . Amer. Math. Soc. 80 (1974), 90-91.
33.
J. Munkres, Elementary Differential Topology, Annals of Math. Studies, Princeton U n i v e r s i t y Press, Princeton, N.J., 1963, pp. 37-42.
34.
K. Nomizu, Lie Groups and D i f f e r e n t i a l Geometry, Math. Soc. Japan, 1956.
35.
J. Palis, On Morse Smale Dynamical Systems, Topology 8 (1969), 385-405.
36.
W. Parry, Dynamical Systems on Nilmanifolds, B u l l . London Math. Soc. 2 (1970), 37-40.
37.
O. Perron, Uber S t a b i l i t ~ t und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen, Math. Z. 29 (1928), 129-160.
38.
, Uber S t a b i l i t ~ t und asymptotisches Verhalten der L~sungen eines Systems endlicher Differenzengleichungen, J. Reine Angew. Math. 161 (1929), 41-64.
39.
, Die S t a b i l i t ~ t s f r a g e bei D i f f e r e n t i a l g l e i c h u n g e n , Math. Z. 32 (1930), 703-728.
40.
C. Pugh, I n v a r i a n t Manifolds, Actes, Congr~s Intern. Math., 1970, Tome 2, 925-928.
41.
C. Pugh and M. Shub, L i n e a r i z a t i o n of Normally Hyperbolic Diffeomorphisms and Flows, Inv. Math. 1o (1970), 187-198.
42.
, The a - S t a b i l i t y Theorem for Flows, Inv. Math. 11 (1970), 150-158.
147 43.
,
Axiom A Actions, Inventiones Math. 29 (1975), 7-38.
44.
F. Riesz and B. Sz.-Nagy, F u n c t i o n a l A n a l y s i s , Frederick Ungar, New York, 1955.
45.
J. Robbin, A Structural S t a b i l i t y Theorem, Ann. of Math. 94 (1971), 447-493.
46.
R.C. Robinson, Structured S t a b i l i t y , preprint, Northwestern University, Evanston, I I I .
47.
R. Sacker, A Perturbation Theorem for Invariant Riemannian Manifolds, Proc. Symp. at Univ. of Puerto Rico, edited by J. Hale and J. LaSalle, Academic Press, 1967, pp. 43-54.
48.
S. Smale, D i f f e r e n t i a l Dynamical Systems, Bull. AMS 73 (1967), 747-817.
49.
F. Takens, P a r t i a l l y Hyperbolic Fixed Points, Topology 10 (1971), 133-147.
50.
R.F. Williams, One Dimensional Nonwandering Sets, Topology 6 (1967), 473-487.
Index Page adapted Finsler
...............................
69
addable vectors
...............................
88
backward p - a s y m p t o t i c Banach b u n d l e
85, 88
......................................
equivariant
fibration
contraction
Finsler
22 II
...........................
137
.........................
30, 31, 80
....................................
flattening
chart
foliation
......................................
graph t r a n s f o r m Grassmannian lamination
..............................
leaf
immersion
.................................
graph t r a n s f o r m
17,
jet
III,
Lyapunov s t a b l e ,
68 17 26, 27
......................
132
............................. unstable
132
....................
65
.................................
nonwandering set
3
............................
normal h y p e r b o l i c i t y r-contractive
..................... .........................
115 115
..............................
maximal
25 74
.........................
product structure
normally
61
................................. ................................
minimum norm
115
.............................
conjugacy
locally
91
............................
leaf
Lipschitz
8 , 68, 69
...............................
forward p-asymptotic
local
137
..................................
.....................................
linear
III
.........................
connector
fiber
8
............................
fibration
Cr - u n i f o r m centrum
61
.................................
branched lamination Cr - r e g u l a r
..........................
136 3,
4, 69, 116 82
149
Page overflowing
..............................
30
plaquation
..............................
72
plaque
.................................
plaque-expansive
.........................
pre-foliation
.............................
pre-lamination
..............................
pseudo-hyperbolic pseudo-orbit
.................................
self
coherent
self
tangent
shadowing sharpness
............................
If6 61 61 53 ll6
................................
61
...............................
68
................................. .....................................
slope of a section
.............................
smoothable lamination
..........................
stable, strong stable, strong unstable manifold ................................ structural
62, 72
stability
.......................
117, 133 30 29 123
39, 60 ll5
topological
transitivity
..................
139
topological
~-stability
....................
136
unbranched
.................................
unique path lifting unstable manifold well
branched
a-stability
........................ ...........................
................................ ..................................
III 127 39, 60 III 136