c. 1). Energy Profile and Wells (b 1,γtilde 0.05, β J. 0. 2). Initial Condition X 1 ....
Alexandros Sopasakis. Part II. Stochastic Closures. We define the coarse random
...
A treatment of multi-scale hybrid systems involving deterministic and stochastic approaches, coarse graining and hierarchical closures
Alexandros Sopasakis Department of Mathematics and Statistics University of North Carolina at Charlotte
Collaborators:
Markos Katsoulakis, Andy Majda, Dion Vlachos, Peter Plechac, Richard Jordan Work partially supported by NSF-DMS-0606807 and DOE-FG02-05ER25702
Outline •
Motivation – climate modeling, catalysis, traffic flow
•
The prototype hybrid system introduction and examples
•
Part I. Deterministic closures: stochastic averaging, local mean field models
•
Part II. Stochastic closures: coarse-graining in hybrid systems
•
The role of rare events and phase transitions
•
Intermittency and metastability phenomena.
•
Conclusions
Alexandros Sopasakis
Motivation Pure Stochastic • Micromagnetics (P. Plechac) • Traffic Flow (N. Dundon, T. Alperovich) • Epidemiology (R. Jordan)
Coupled Systems • Catalytic Reactors (M. Katsoulakis, D. Vlachos) • Climate Modeling (A. Majda, B. Khouider) • General Biological Systems • …
Alexandros Sopasakis
Surface processes:
[Vlachos, Schmidt, Aris, J. Chem. Phys 1990] [Lam, Vlachos, Phys. Review B 2001]
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Alexandros Sopasakis
Some challenges and questions: •
Disparity in scales and models; DNS require ensemble averages for large systems
•
Model reduction, however no clear scale separation; need hierarchical coarse-graining
•
Deterministic vs stochastic closures; when is stochasticity important?
•
Error control, stability of the hybrid algrithm; efficient allocation of computational resources adaptivity, model and mesh refinement
Alexandros Sopasakis
A mathematical prototype hybrid model •
We introduce the microscopic spin flip stochastic Ising process
•
Coupled to a PDE/ODE that serves as a caricature of an overlying gas phase dynamics.
Alexandros Sopasakis
The Stochastic Component: •
We assume a lattice Λ and denote by σ(x) the value of the spin at location x
•
A spin configuration σ is an element of the configuration space and we write
•
The stochastic process is a continuous time jump Markov process on with generator L
Alexandros Sopasakis
0 1
0
1
1
The Stochastic Component:
Arrhenius Spin-Flip Dynamics
The Arrhenius spin-flip rate c(x,s) at lattice site x and spin configuration s is given by
with interaction potential and local interaction via Parameters/Constants: • • •
where
is the characteristic time of the stochastic process
L denotes the interaction radius V is usual taken to be some uniform constant
Alexandros Sopasakis
The Stochastic Component: Equilibrium states of the stochastic model are described by the Gibbs measure at the prescribed temperature T
where
and
is the energy Hamiltonian for
with
Alexandros Sopasakis
The Stochastic Component: The probability of a spin-flip at x during time [t, t+Dt] is
The dynamics as described here leave the Gibbs measure invariant since they satisfy detailed balance,
where
Alexandros Sopasakis
The Stochastic Component In the case of a surface diffusion process we implement spin-exchange Arrhenius dynamics
where
We can mix spin-flip and spin-exchange dynamics based on the requirements/physics of the model. In this case the corresponding generator of the combined mechanism for the dynamics comprised of spin-flip and spin exchange is given via,
Alexandros Sopasakis
The Deterministic Component: We consider the following type of Complex Ginzburg Landau ODE
where The Jacobian of the linearized system has eigenvalues
Alexandros Sopasakis
The Deterministic Component: Some examples for the ODE CGL: Bistable: Saddle: Linear: where
depends linearly on
Some examples for the PDE
Alexandros Sopasakis
Hybrid System Coupling
The stochastic system and the ODE are coupled via, respectively: •
The external field,
•
The area fraction
(or total coverage) defined as the spatial average
of the stochastic process s,
Alexandros Sopasakis
Part I. Deterministic Closure The main requirement is the ergodicity property of the stochastic process
where Due to special structure of g (depends linearly on we have
Where
s)
can be found from the known Gibbs equilibrium measure
Alexandros Sopasakis
Part I. Deterministic Closure The main requirement is the ergodicity property of the stochastic process
Due to special structure of g (depends linearly on we have
Where
)
can be found from the known Gibbs equilibrium measure
Alexandros Sopasakis
Part I. Deterministic Closure Suppose
is the solution of the hybrid system:
And
is the solution of the
(reduced) averaged system:
•
On an arbitrary bounded time interval [0, T] with fixed N and tc we have:
Alexandros Sopasakis
Part I. Deterministic Closure Calculate
Numerically
For a given external potential h we calculate by Monte Carlo
In fact in the nearest neighbor case
can be calculated explicitly
Alexandros Sopasakis
Calculate
Part I. Deterministic Closure analytically
In the long range interaction limit, we obtain the usual mean-field formula where ,-./01../23.145/6737879.1/: ;-
79=>7?3/@
%&)
%&(
%&'
%&!
%&"
%
%&$
!/D%E/( !/D%E/! !/D E/# %
% !!
!"
!#
!$
%
$
2A>.13=B/C?>.3>7=B/-
Alexandros Sopasakis
#
"
!
Stability and Potential Wells 5.7>?@?.A/18,1*9-.)@9% !
"!
#!!
#"!
012-.3.4!,5!%#.6%
$!!
$!!!
78131+9.
)*+,-./
&!!!
'!!!
(!!!
#!!!!
(!!!
#!!!!
4.".C!.5.!$D.EF3%
[email protected]."/!#6
A-2+1818B.%%%
!%(
!%(
!%'
!%'
!%&
!%&
!%$
!%$
!
!
:;) %.?>18,1*9-.)@9% !
"!
#!!
#"!
012-.3.4!,5#.6%
$!!
$!!!
&!!!
'!!!
4.".C!.5.!$D.EF3%
[email protected]."/!#6 Alexandros Sopasakis
!
A Rare Event Direct Numerical Simulation vs Deterministic Closure 78131+9.
78131+9. :;83-.+3+ ?@-=&.A=18,1*9-.>+3+
"
!&(
!&(
!&(
!&'
!&'
!&'
!&%
)*+,-./
"
)*+,-./
)*+,-./
:;83-.+3+ ?@-=&.A=18,1*9-.>+3+ "
G-2+1818H.&&& G-2+1818H.&&&
!&%
!&%
!
!
!
!
!
!
!! #!!! !
$!!! "!!!
012-.3.4! 5".6& ,
#!!! %!!!
$!!!
012-.3.4! 5".6& ,
!! %!!! %!!!
!! '!!! %!!! (!!! '!!!
"!!!! (!!!
"!!!! "#!!!"#!!!
4.".B .5.!&!"C.DE3&.A;3.5.F/!"6 4.".B .5.!&!"C.DE3&.A;3.5.F/!"6 !
!
Deterministic closures can fail in extended time simulations. Alexandros Sopasakis
Another example: Coupled system with Hopf ODE Direct Numerical Simulation vs Deterministic Closure ()*+,-.*/01+2/34.56#7.8.96#78'
(/01+2/3*.56+7
# !' !$"#
!%##
!%"#
!#
!&"#
!!##
!#4" !' !$##
!$"#
!%##
!%"#
!#
!&"#
:2-,.+.6!;8"=?.!#4"77
!!##
#4&" #4& !$"#
!%##
!%"#
!#
!&"#
:2-,.+.6!G8',+=8H6"
3.M/C,@>D,*
!"%#
!#4:
!"##
#4!
!"$#
'
!!"#
#4!"
!$##
# !' !"##
(+/;A=*+2;.()*+,BC,?=D23D.E?23;2F0,
#
'
!!"#
Fast Stochastic Case
#4"
!""#
L,=3.M/C,?=D,*
!$##
L,>3.M/C,@>D,*
(/01+2/3*.96+7
!""# '
(/01+2/3*.96+7
(/01+2/3*.56+7
()*+,-.*/01+2/34.56#7.8.96#78' '
!!"$
!!"%
!!""
!!!&
!!!#
;2-,.+.6!8#=.I&8'=.J8#&=.K8'&&&7
!!!%
H
Alexandros Sopasakis
!!!"
!!"#
Part II. Stochastic Closures We define the coarse random process, and
for k=1, … m
with
where
(naturally
and N=mq )
Fine Lattice Λ
Micro cells: 1 2 3 4
Coarse cells
1
2
Coarce Lattice Λc
3
4
Total number of micro cells: N Alexandros Sopasakis
N
…
m
Part II. Stochastic Closures The coarse grained generator for the Markovian process h is defined to be,
For any test function desorption rates are,
where the coarse level adsorption/
With a corresponding coarse potential
Alexandros Sopasakis
Alexandros Sopasakis
Compare Stochastic Transient and Equilibrium Dynamics.
637/89:/0-20,-./ 637/89:/0-20,-./ $ $
;-8"0-;83?;3@-;0119?9!@?A:;%9!@?A1!#7&::
#7!& #7! #7)& #7)
=50/1.19"C;*>1@/.?;">1I#;*>1J;"#>1K;*###:
Alexandros Sopasakis
Hopf Bifurcation Microscopic System vs CGMC Closure (/01+2/3*.56+7
()*+,-.*/01+2/34.56#7.8.96#7.8.' ' # !'
A,>3.C/J,@>K,*
(/01+2/3*.96+7
!"##
!"$#
!"%#
!"
!""#
!!##
!!$#
!!%#
!!
!!"#
!!%#
!!
!!"#
!!%#
!!
!!"#
#4: A223,E.6F8$#7
# !#4: !' !"##
!"$#
!"%#
!"
!""#
!!##
;2-,.+.6! 8#4'=.>6"
0?@A-0513-53B-C8 "+!&
,-./01.02-.34563704/1839/4-5863:;30?@A-0513D >0?@A-0513D
"+! "+!
"+"&
"+"&
" "
!"+"&
;
!"+!
!"+!
!"+!&
!"+!&
!""" !"""
#""" #"""
$""" $"""
%""" %"""
&""" &"""
'""" '"""
E-FF8/85.8130F3>0?@A-051G3D E-FF8/85.8130F3>0?@A-051G3D
)""" )"""
*""" *"""
!D
!D79 ,-./0 ,-./0 79
"+"%
>0?@A-053E-FF8/85.81 >0?@A-053E-FF8/85.81
(""" ("""
"3H"
!"""
#"""
#"""
$"""
%"""
&"""
'"""
("""
$""" B-C83:505!6-C=+3!3
)"""
*"""
)"""
*"""
E-FF8/85.8130F3>0?@A-051G3D,-./0!D79
>0?@A-053E-FF8/85.81
"+"%
"+"#
"
!"+"# "3H"
"
!"""
#"""
$"""
%"""
&"""
'"""
Alexandros Sopasakis B-C83:505!6-C=+3!30?@A-0513-53B-C8
"+"& " !"+"&
;
"+"& " !"+"& ;
!"+!
!"+!&
!"+!& !"""
#"""
$"""
%"""
&"""
'"""
("""
E-FF8/85.8130F3>0?@A-051G3D
!D
)"""
*"""
!"""
#"""
,-./0 79 "+&
"3H
!"+&
"
!"""
#"""
$"""
%"""
&"""
'"""
B-C83:505!6-C=+3!3
!"""
#"""
$"""
%"""
&"""
'"""
B-C83:505!6-C=+3!3E9!F9== ./012+34/5
#'" #'" #') #') ?@! ?@!#
#'( #'( #'& #'& #
!#'&
#
!##
# !"##
B##!"$#
(##
$## !%##
)##
C## !%$#
"####
%##
!### $#
D/3 *+,!
?@! ?@!#
6>E9!F9==
#'" #') #'( #'& # !#'&
#
!##
#
B##
Alexandros Sopasakis (## $## )## D/3
C##
"##
%##
!###
53.467*70890:;07*23.40980?@!0.3A0?@!# 53.467*70890:;07*23.40980?@!0.3A0?@!#
-./01*23.4 -./01*23.4
(# (#
?@! ?@! ?@!# ?@!#
$$ $$
$# $#
'$ '$ !"## !"##
!"$# !"$#
!%## !%##
)*+, )*+,
!%$# !%$#
## ##
?@! ?@! ?@!# ?@!#
#>" #>"
5EF8!G8' #>' #>& #>& # # !#>& !#> #
!## !##
# #
B## B##
'## $## (## Alexandros Sopasakis '## $## (##
D.2 D.2
C## C##
"## "##
%## %##
!### !###
60/>7?7@/A< 1=# 1=#!
!"!!* !"!!( !"!!& !"!!$ !
!
!"!#
!"!$
!"!%
!"!&
!"!'
!"!(
!"!)
!"!*
!"!+
!"#
!%
,-#! *
6780/-9:04;/2
.13=B/C?>.3>7=B/"'# !""
#"""
#!""
$"""
$!""
847/395-5!:47; Alexandros Sopasakis