and Si-(ali aZi ... conjectured algorithm in Fig. 1 can be stated as. Then the Massey's i'. MASSEY'S CONJECTUREr Assume that (fi,li) is the SLF'SR which ...
PBOOF OF WASSEY'S CONJECTURED ALCORITHH C w s h e n g Ding Department o f Applied Mathematics N o r t h w e s t Telecommunication Engineering I n s t i t u t e X i a n , P e o p l e ' s Republic o f China ABSTRACT: Massey's c o n j e c t u r e d a l g o r i t h m f o r multi-sequence
shift register
s y n t h e s i s i s p r o v e d , a n d i t s s u i t a b i l i t y for t h e minimal r e a l i z a t i o n o f any l i n e a r system is also v e r i f i e d .
I
.
INTRODUCTION
It i s well known that t h e SLFSR(shortest l i n e a r feedback s h i f t r e g i s t e r ) is o f great importance i n p r a c t i c e ( 1)(2 ) . The a l g o r i t h m gives an e f f i c i e n t one( 2). The problem o f s y n t h e -
s y n t h e s i s o f single-sequence Berlekamp-Nassey
s i z i n g m u l t i - s e q u e n c e w i t h LZSR has been g i v e n much concern by many s c h o l a r s in Wassey gave a c o n j e c t u r e d a l g o r i t h m
i n f o r m a t i o n and c o n t r o l s o c i e t y . J.L.
for
t h e SLFSRsyntheais of m u l t i - s e q u e n c e i n 1972. I n 1985 Fen C u e i l i a n g and K.K. Tzeng also gave a n o t h e r o n e ( 3 ) . I n t h i s paper we are g o i n g t o prove Massey's c o n j e c t u r e d a l g o r i t h m , and v e r i f y that it is an u n i v e r s a l one and i s s u i t e d f o r t h e minimal r e a l i z a t i o n o f any l i n e a r system.
I1
.
PROOF OF MASSEY'S CONJECTURED ALGOBITl33
L e t Bi=
and Si-(ali
ail...
aZi
as,
... , M ,
ill,
... sri)t , %(B1
B2
be H sequences of l e n g t h N i n t h e f i e l d F
... B M ) t , Si=S I...S
Then t h e Massey's
i'
c o n j e c t u r e d a l g o r i t h m in F i g . 1 can be s t a t e d as MASSEY'S CONJECTUREr Assume t h a t ( f i , l i ) and d i = f i ( S i + l )
i s t h e ith d i s c r e p a n c y , i - 0 ,
i s t h e SLF'SR which g e n e r a t e s Si,
... , n.
Then
( i ) i f dn=O, t h e n l n + l = land fn+l=fn.
n
'
\,be
( 1 1 ) if d 3 0 , and i s a l i n e a r combination o f di, a basis of
and (kl, k2,
dn =
-
d.
:
... , kr )
2
ui&Ki
OSiSn-1
... ,
i-0,
s u c h t h a t max{n-ki+lki
n-l, l e t
: 1SiSx-r)is minimal
i s m a x i m a l i n a l p h a b e t i c o r d e r . Let
,
I=
ti
: uiko,
%, ,...
16isr)
i=1
C.G. Guenther (Ed.): Advances in Cryptology - EUROCRYPT '88, LNCS 330, pp. 345-349, 1988. 0 Springer-Verlag Berlin Heidelberg 1988
346 ( i i i ) i f dn i s not a l i n e a r combination o f d i , L O ,
n+l and fn+l can be any p o l y n o m i a l i n F[x]
... , n-1,
t h e n ln+l=
o f degree n+1.
F i r s t , w e give some n o t a t i o n s and simple r e s u l t s :
L e t fi= l + f i , l s +
=**
+
fi,li
,Ii,
be a v e c t o r of l e n g t h n+l. Denote Dn+l=(do dl
and Fn+I=(ffO f f l
...
... 0 fiYl ... f i , l i l ... dn) t , An+l-(sl
and ffi-(O
82
...
0
6
a .
0)
n+ 1 )t
f f n ) t . Then it i s e a s y t o know that
(i) Fn+l i s a l o w e r t r i a n g u l a r matrix, and i s i n v e r t a b l e . (1')
Dn+1 = F n + l *n+1- An+l Cn+l Dn+l' -1 and is a l s o a lower triangular matrix.
where Cn+l= Fn+l,
Let us s p l i t t h e m a t r i o e e Fn+l,
Cn+l,
Dn+l
and p a r t i t i o n them by u r i t i n g
[n-L )xn where B-(0
... 0 '4. ...ul) t , 0
c
(0
t h e f o l l o w i n g t h e o r e m 1 holds. Theorem 1. L e t f ( x ) = 1 + ulx +
-
S n + l i f and o n l y if U(n-L)x(n)GnDn
Theorem 2,
... O)t.
By d e f i n i t i o n , it i s a p p a r e n t that
... + uLxL ( L < n + l ) , 0 and BGnD,
f
g,Dn
then (f,L) generates + dn
= 0-
If ( f , L ) can g e n e r a t e S n + l , L d n + l , t h e n t h e r e must e x i s t a v e c t o r
u such t h a t
Theorem 3. A s s u m e that ( f i , L )
i s t h e SLFSR u h i c h g e n e r a t e s S
i
Then ln+l=n+l if and o n l y i f dn i s n o t a l i n e a r combination of di,
, GO, 160,
n*
.a.
... ,
n-1. Theorem 4. Assume t h a t g
c
fn +
ZCl ui
x
n-ki
fki, uifO,
Let 1; be t h e s h o r t e s t L s u c h t h a t ( f i , L ) can g e n e r a t e S
i
. If
i=l,
... ,
B.
(g,L) g e n e r a t e s
347
Sn+',
then we have
Lzmax
4 1;)
, ..., n-ks+%,>
n-kl+l&
, ... , n-ks+\,}
m a { ln, n-kl+\,
I n o r d e r t o prove theorem 4, we now prove t h e following lemma: Lemma: Assume 0
-
m-k f m + ulx ' fk,
, ulfO,
kl,ln-
80
.;1
. Let
1$,
Suppose lksL,j.Put LLGm+kl and
1) i f j+m-k1sY, h(x)-l+hlx+ ..+
h x j , where h f ill, j i' kt ,i'
g(x)=fn+ P ~ X " - ~ ' h( I), js LL
...,
(5,.
... -g(S
Because (g,L) g e n e r a t e s Sm and L 2 1 m , so g(S")= k Thus h(S '
-f(Sbl)-O.
Sk', b u t LL