Local dynamics and shade 2.0 - Semantic Scholar

1 downloads 0 Views 418KB Size Report
Local dynamics of the coffee rust disease and the potential effect of shade. John Vandermeer,1 .... Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling ...
 

1   Local  dynamics  of  the  coffee  rust  disease  and  the  potential  effect  of  shade     John  Vandermeer,1,2    Pej  Rohani,  3  and  Ivette  Perfecto2  

    1.  Department  of  Ecology  and  Evolutionary  Biology,  University  of  Michigan,  Ann  Arbor,  MI,  48109,  USA.   2.  School  of  Natural  Resources  and  Environment,  University  of  Michigan,  Ann  Arbor,  MI,  48109,  USA.   3.    Odum  School  of  Ecology,  University  of  Georgia,  Athens  GA  30602,  USA.  

    In   this   paper   we   present   a   mode   that   incorporates   two   levels   of   dynamic   structuring   of   the   coffee   rust   disease   (caused   by   the   rust   fungus,   Hemileia   vastatrix).     First,   two   distinct   spatial   scales   of   transmission   dynamics   are   interrogated   with   respect   to   the   resultant   structure   of   catastrophic   transitions  of  epidemics.    Second  the  effect  of  management  style,  especially  the  well-­‐known  issue  of   shade   management,   is   added   to   the   base-­‐line   model.   The   final   structure   includes   a   simple   one-­‐to-­‐one   functional   structure   of   disease   incidence   as   a   function   as   well   as   a   classical   critical   transition   structure,   and   finally   a   hysteretic   loop.     These   qualitative   structures   accord   well   with   the   recent   history  of  the  coffee  rust  disease.  

    Coffee   is   reported   to   be   one   of   the   most   traded   commodities   in   the   world,   (Pendergast,   1999)   and   the   base   of   economic   support   for   millions   of   small   farmers   (Bacon,   2004)   and   many   national   economies.     The   coffee   rust   disease   (Ccaused   by   the   rust   fungus,   Hemileia   vastatrix)  had  been  a  chronic  but  relatively   mild   problem   in   Latin   America,   from   its   appearance  in  the  early  1980s.    But,  in  2012   an   epidemic   began   extending   from   Mexico   to  Perú,  with  some  reports  of  as  much  as  a   40%   -­‐   50%   reduction   in   yield   over   the   region,   potentially   affecting   many   coffee   producing   nations   in   Latin   America   (Cressey,   2013).   Memories   of   the   devastation   caused   in   south   Asia   in   the   nineteenth   century   (Monaco,   1977;   McCook,   2006),   causes   continuing   concern   in   the   region   (Schieber   and   Zentmyer,   1984;    Fulton,  1984).         Dealing   with   the   disease   is   a   challenging  practical  problem,  with  current   recommendations   focused   on   fungicides,   search   for   resistant   varieties,   and   phytosanitation   procedures   based   on   uncertain   understanding   of   the   ecological   dynamics.     Indeed,   the   complexity   of   this   disease   has   been   arguably   the   reason   for   failure   of   most   conventional   disease   control   strategies   (Avelino   et   al.,   2004;   2012,   Kushalappa   and   Eskes,   1989).   Rather,  

drawing   on   work   by   both   ecologists   (Vandermeer   et   al.,   2009;   Jackson   et   al.,   2009;   2012;   Soto-­‐Pinto   et   al.,   2002)   and   phytopathologists   (Kushalappa   and   Eskes,   1989;  Avelino  et  al.,  2004;  2012),  it  could  be   the   larger   ecological   structure   of   the   agroecosystem  that  needs  to  be  considered,   echoing   the   many   recent   calls   for   a   more   nuanced   approach   to   the   management   of   ecosystem  services  in  general  (Vandermeer   and   Perfecto,   2012;   Perfecto   and   Vandermeer,  2010;  Tscharntke  et  al.,  2012),   and   pest   control   specifically   (Vandermeer   et   al.,   2010;   Lewis   et   al.,   1997).     In   the   present   case,   specific   ecological   complications   are   well-­‐known,   forming   a   complex  dynamical  system  that  predicts  the   possibility  of  both  sustained  maintenance  of   control   and   occasional   escape   from   control   under   the   same   ecological   structures   (Vandermeer   and   Rohani,   2014;   Vandermeer  et  al.,  2013).         Spatial   complexity   is   acknowledged   as   an   important   feature   of   transmission   dynamics   in   disease   ecology   (Kitron,   1998;   Rohani   et   al.,   1999;   Grenfell   et   al.,   2001;   Ostfeld  et  al,  2005;  Smith  et  al.,  2005;  Riley,   2007).   Nevertheless,   the   consequences   of   transmission   processes   acting   in   potentially   different   ways   at   different   scales   has   not   been   common   in   the   analysis   of   most   disease   systems   (exceptions   include   Thrall  

  and  Burdon,  1999;  Read  and  Keeling,  2003;   2006;   Watts   et   al.,   2005).     The   medical   framework   effectively   works   at   the   spatial   scale   of   individuals,   pursuing   the   understanding   of   how   a   disease   spreads   through   the   host   body.   The   classical   epidemiological   framework   focuses   at   the   level   of   the   population,   usually   elaborating   on   the   mean   field   approach   to   the   classical   susceptible/infected/recovered   structure.     The   landscape   level   must   consider   the   effect  of  movement  or  migration  over  larger   scales,  from  city  to  city,  from  river  valley  to   river   valley,   and   has   received   very   little   attention   in   the   disease   ecology   literature   (see   for   example   Kitron,   1998   and   Keeling   et   al.   2010).     Transmission   processes   are   clearly   distinct   within   each   of   these   frameworks,   yet   the   majority   of   disease   studies   focus   on   a   single   spatial   scale.   Understanding   first,   the   nature   of   transmission   processes   specific   to   each   of   these   scales,   and   second,   the   consequences   of  their  interactions,  an  third,  the  influence   of   management   strategies   may   require   qualitative   theory   for   educating   the   intuition  of  possible  general  patterns.       Conceptualizing   the   ecology   of   transmission   as   a   coupling   of   distinct   spatial   scales   permits   an   evaluation   of   environmental   factors   as   “modifiers”   of   transmission   parameters.   Such   an   approach   is  especially  important  in  the  age  of  climate   change,   since   many   of   those   modifiers   are   likely   to   exert   an   important   effect   with   expected  transformation  of  climate  forcings   (Patz,   1996).   Our   approach   in   the   present   work   is   organized   around   the   ecological   factors   that   modify   baseline   parameters,   specifically  effects  of  management  intensity   through  shade  tree  density.     There   are   two   spatial   scales   of   the   dynamics   relevant   to   the   current   discussion,   transmission   among   leaves   within  a  plant  and  transmission  from  plant   to   plant   on   a   farm.     The   relevant   equations   are   (based   on   Vandermeer   and   Rohani,   2014):    

2   dx = m1 x (1− x ) + m2 y (1− x ) − e1 x dt dy   = m3 xy (1− y ) − e2 y   dt

  At  equilibrium,  we  have,      

y=

e1 x mx − 1 m2 (1− x ) m2

     

     

y = 1−

e2 m3 x  

 

     

   

1a

                1b       which   can   be   used   to   analyze   the   stability   conditions  as  presented  in  Vandermeer  and   Rohani  (2015).     The   question   of   shade   in   coffee   has   long  been  an  important  management  issue.     Specifically   with   regard   to   the   coffee   rust   disease,  shade  does  two  important  things:  it   reduces  wind  currents  that  are  responsible   for   spore   dispersal,   and   it   increases   humidity,   which   is   necessary   for   spore   germination.     Thus,   at   least   theoretically,   we   might   propose   that   full   sun   coffee   (no   shade   trees   at   all)   will   be   inhospitable   for   the   rust   because   of   a   lack   of   moisture   (the   sun   drying   out   the   farm),   while   full   shade   is   also   inhospitable   because   of   lack   of   wind   currents   (resulting   in   limited   spore   transmission).         Supposing   that   we   can   ignore   equation   1a   (fix   x=1)   and   deal   with   only   equation   1b,   the   parameter   m3   is   most   likely  affected  by  shade,  in  a  negative  (from   the   rust’s   point   of   view)   fashion.     Thus   we   might  propose:     m3  =  f3(S)     Where  S  is  shade,  which  here  we  formulate   as  ranging  from  0  to  1,  and  we  presume,    

 

3  

∂f3 < 0   ∂S

  whence   it   is   obvious   that   the   equilibrium   value  of  equation  1b  becomes,    

e y = 1− 2 f3 (S)  

with  shade,  such  that  if  m1  =  f1(S),  we  assert   that,    

∂f1 > 0 .   ∂S

  If   we   take   f1   to   be   an   increasing   linear   function  of  S,  and  let  f3  be;    

f3 (S) = a +

and,  

# e & ∂% 2 ( e ∂f3 ∂y $ f3 (S) ' 2 ∂S =− = ∂S ∂S f 23     which   is   always   negative,   a   result   that   follows   elementarily   from   the   assumption   that   shade   reduces   wind   currents   that   are   responsible   for   dispersal   of   spores   of   the   rust.     However,   if   we   add   equation   1a   to   the   analysis,   we   assume   the   reverse   relationship   with   shade   for   m1,   since   it   is   affected  mainly  by  the  moisture  that  comes        

bS   c+S

  there   appear   to   be   three   qualitatively   distinct  patterns  that  may  form  (other  than   the  two  trivial  solutions  where  y  =  1  for  all  S   or   y   =   0   for   all   S).     These   three   forms   are   illustrated   in   figure   1,   along   with   the   changing   structure   of   the   isoclines   that   produce   them.     We   note   the   existence   of   either   a   hysteretic   loop   (figure   1c)   or   a   simple   critical   transition   situation   (figure   1b),   along   with   what   might   be   the   initial   expectation   of   a   “humped-­‐shaped”   curve   associated  with  the  effects  of  shade.      

  Figure     1.     The   three   qualitatively   distinct   outcomes   of   adding   shade   to   the   basic   mean   field   transmission   model.   Graphs     below   illustrate   the   arrangement   of   the   basic   model’s   isoclines   at   particular  points  on  the  x  axis,  red  isocline  is  equation  1a,  blue  is  equation  1b.        

 

4  

  In   sum,   this   simple   model   incorporates   distinct   transmission   mechanisms  at  distinct  spatial  scales,  along   with   expected   patterns   associated   with   shade   management   in   the   system.   The   qualitative   patterns   that   emerge   (figure   1)   may   be   thought   of   as   a   combination   of   the   “humped-­‐shaped”   curve   expected   from   the   assumed  response  of  the  disease  to  distinct   levels   of   shade,   coupled   with   the   critical   transition   behavior   emerging   from   two   distinct   spatial   scales   of   transmission   dynamics   (Vandermeer   and   Rohani     2014).     It   is   not   unusual   for   disease   systems   to   contain   this   sort   of   behavior   (Liu   et   al.,   2012;   Earn   et   al.,   2000).     The   general   history   of   this   disease   (McCook   and   Vandermeer,  2015),  with  a  seemingly  long-­‐ term   presence   followed   by   a   sudden,   and   frequently   unexpected,   epidemic,   concords   with   the   qualitative   expectations   that   emerge   from   this   model.   The   model   treats  

“deforestation”   of   traditional   coffee   farms   as   an   effective   driver   of   the   critical   transition  to  an  epidemic.    It  is  worth  noting   that   landscape   level   deforestation   has   also   been   empirically   associated   with   the   incidence   of   this   disease   (Avelino   et   al.,   2012),   lending   support   to   the   idea   that   shade   trees   are   likely   beneficial   as   buffers   against   the   emergence   of   epidemics   of   the   coffee  rust  disease.    

     

References   Avelino J, Romero-Gurdian A, Cruz-Cellar HF, Declerck FAJ. (2012) Landscape context and scale differentially impact coffee leaf rust, coffee berry borer, and coffee root-knot nematodes. Ecol. Applications 22:584-596. Avelino J, Willocquet L, Savary S (2004) Effects of crop management patterns on coffee rust epidemics. Plant Pathology 53:541-547. Bacon, C. (2005). Confronting the coffee crisis: can fair trade, organic, and specialty coffees reduce smallscale farmer vulnerability in northern Nicaragua?. World Development, 33(3), 497-511. Cressey, D. (2013). Coffee rust regains foothold. Nature, 493(7434), 587. Earn, D. J., Rohani, P., Bolker, B. M., & Grenfell, B. T. (2000). A simple model for complex dynamical transitions in epidemics. Science, 287(5453), 667-670. Fulton, R. H. (1984). Coffee Rust in the Americas. Grenfell, B. T., Bjørnstad, O. N., & Kappey, J. (2001). Travelling waves and spatial hierarchies in measles epidemics. Nature, 414(6865), 716-723. Jackson D, Vandermeer J, & Perfecto I (2009) Spatial and temporal dynamics of a fungal pathogen promote pattern formation in a tropical agroecosystem. The Open Ecology Journal 2:62-73. Jackson D, Skillman J, & Vandermeer J. (2012) Indirect biological control of the coffee leaf rust, Hemileia vastratrix, by the entomogenous fungus Lecanicillium lecanii in a complex coffee agroecosystem. Biological Control, 61:89-97. Keeling, M. J., Danon, L., Vernon, M. C., & House, T. A. (2010). Individual identity and movement networks for disease metapopulations. Proceedings of the National Academy of Sciences, 107(19), 88668870.

 

5  

Kitron, U. (1998). Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. Journal of Medical Entomology, 35(4), 435-445. Kushalappa AC, & Eskes AB (1989) Advances in coffee rust research. Ann. Rev. of Phytopathology 27:503-531. Lewis, W. J., van Lenteren, J. C., Phatak, S. C. & Tumlinson, III, J. H. (1997). A total system approach to sustainable pest management. Proc. Nat. Accad. Sci. USA 94:12243-1248. Liu, R., Li, M., Liu, Z. P., Wu, J., Chen, L., & Aihara, K. (2012). Identifying critical transitions and their leading biomolecular networks in complex diseases. Scientific reports, 2. McCook,  S.,  and  Vandermeer,  J.  2015.  The  big  rust  and  the  red  queen:  Long  term  perspectives  on   coffee  rust  research.  Phytopathology  (in  press)   McCook, S. (2006). Global rust belt: Hemileia vastatrix and the ecological integration of world coffee production since 1850. Journal of Global History, 1(02), 177-195. Monaco, L. C. (1977). Consequences of the introduction of coffee rust into Brazil. Annals of the New York Academy of Sciences, 287(1), 57-71. Ostfeld, R. S., Glass, G. E., & Keesing, F. (2005). Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in ecology & evolution, 20(6), 328-336. Patz, J. A., Epstein, P. R., Burke, T. A., & Balbus, J. M. (1996). Global climate change and emerging infectious diseases. JAMA 275 (3): 217-223. Pendergast, M. Uncommon Groounds. (1999). Basic Books, NY. Perfecto,  I.,  &  J.  Vandermeer.  (2010).    The  agroecological  matrix  as  alternative  to  the  land-­‐ sparing/agriculture  intensification  model.    PNAS  107:5786-­‐5791.   Read, J. M., & Keeling, M. J. (2003). Disease evolution on networks: the role of contact structure. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1516), 699-708. Read, J. M., & Keeling, M. J. (2006). Disease evolution across a range of spatio-temporal scales. Theoretical population biology, 70(2), 201-213. Riley, S. (2007). Large-scale spatial-transmission models of infectious disease. Science, 316(5829), 12981301. Rohani, P., Earn, D. J., & Grenfell, B. T. (1999). Opposite patterns of synchrony in sympatric disease metapopulations. Science, 286(5441), 968-971. Schieber, E., & Zentmyer, G. A. (1984). Coffee rust in the Western Hemisphere. Plant Disease, 68(2), 8990. Smith, D. L., Waller, L. A., Russell, C. A., Childs, J. E., & Real, L. A. (2005). Assessing the role of longdistance translocation and spatial heterogeneity in the raccoon rabies epidemic in Connecticut. Preventive veterinary medicine, 71(3), 225-240. Soto-Pinto, L., Perfecto, I., Castillo-Hernandez, J., & Caballero-Nieto, J. (2000). Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agriculture, Ecosystems & Environment, 80(1), 61-69. Thrall, P. H., & Burdon, J. J. (1999). The spatial scale of pathogen dispersal: consequences for disease dynamics and persistence. Evolutionary Ecology Research, 1(6), 681-701. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., ... & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological Conservation, 151(1), 53-59. Vandermeer J, Perfecto I, & Liere H (2009) Evidence for hyperparasitism of coffee rust (Hemileia vastatrix) by the entomogenous fungus, Lecanicillium lecanii through a complex ecological web. Plant Pathology 58:636-64.

 

6  

Vandermeer, J., I. Perfecto & S. M. Philpott. (2010). Ecological complexity and pest control in organic coffee production: uncovering an autonomous ecosystem service. BioScience 60: 527-537. Vandermeer, J., & I. Perfecto. (2012). Syndromes of production in agriculture: Prospects for socioecological regime change. Ecology and Society, 17:39. Vandermeer J, Jackson D, & Perfecto I (2014) Qualitative dynamics of the coffee rust epidemic: Educating the intuition with theoretical ecology. BioScience, 64:210-218. Vandermeer, J. & P. Rohani. (2014). The interaction of regional and local in the dynamics of the coffee rust disease. arXiv at : http://arxiv.org/abs/1407.8247 Watts, D. J., Muhamad, R., Medina, D. C., & Dodds, P. S. (2005). Multiscale, resurgent epidemics in a hierarchical metapopulation model. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11157-11162