–Supporting Information for–
Binary fluorous tagging enables the synthesis and separation of a sixteen-stereoisomer library of macrosphelides Dennis P. Curran,* Mantosh K. Sinha, Kai Zhang, Jesse J. Sabatini, and Dae-Hyun Cho
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
[email protected]
Curran and coworkers
FMS of Macrosphelides
Table of Contents General......................................................................................................................................................... 3 Synthesis of isomers of 2 ............................................................................................................................. 4 F
PMB and FTIPS tagged precursors, Figure 3 of paper ............................................................................. 10
Fluorous mixture synthesis, Figure 4 of paper .......................................................................................... 16 Figure S1. Chromatogram of a preparative HPLC demixing of M-8a-d/a-d .......................................... 21 Detaggings ................................................................................................................................................. 22 Table S1. Tagging pattern for the macrosphelide library ......................................................................... 38 Figure S2. Structures of the macrosphelide stereoisomer library members ............................................. 39 Synthesis of fragments for macrosphelide D candidate structures ............................................................ 40 Scheme S1. Synthesis of fragment 19 ...................................................................................................... 40 Scheme S2. Synthesis of fragment 14 ...................................................................................................... 45 Synthesis of macrosphelide D 10, Figure 6 of paper ................................................................................. 47 Scheme S3. Synthesis of macrosphelide M 11 ......................................................................................... 51 Scheme S4. Synthesis of iso-macrosphelide D 12 and ent-iso-macrosphelide M 13............................... 55 Table S2. NMR spectral data of macrosphelides D and M in CD3COCD3 .............................................. 63 Table S3. NMR spectral data of macrosphelides D and M in CDCl3 ....................................................... 63 Copies of 1H NMR spectra of macrosphelide A/E isomers ....................................................................... 64 Overlays of expanded 1H NMR spectra of macrosphelide A/E isomers ................................................. 112 Copies of 13C NMR spectra of macrosphelide A/E isomers .................................................................... 118 Copies of 1H and 13C NMR spectra of macrosphelide D/M intermediates and final products ................ 118
There are also two separate excel files of tabular data of 1H and
13
C NMR resonances of the 16
macrosphelide isomers compared to all published data for macrosphelides A, D and E
S2
Curran and coworkers
FMS of Macrosphelides
Experimental Procedures and Compound Characterization
General: All reactions were performed under an atmosphere of argon unless otherwise noted. Reaction solvents were freshly dried either by distillation or by passing through an activated alumina column. THF and toluene were freshly distilled from Na/benzophenone. Methylene chloride and Et2O were dried by activated alumina. All other reagents were purchased commercially and used without further purification unless stated otherwise. Mixtures were magnetically stirred and progress was monitored by TLC with 0.25 mm E. Merck precoated silica gel plates. Flash chromatography was performed with silica gel 60 (particle size 0.040-0.063 mm) supplied by Sorbent Technologies. Products were analyzed by 1H NMR,
13
C NMR,
19
F NMR, FT-IR, high and low resolution mass
spectroscopy, and HPLC. NMR spectra were taken on a Bruker AvanceTM 300 or a Bruker AvanceTM 700 spectrometer. Spectra were recorded at room temperature in the indicated deuteriated solvents and chemical shifts are reported in parts per million (ppm) downfield relative to TMS using the residual solvent proton resonance of CDCl3 (7.26 ppm) or central CDCl3 carbon peak (77.0 ppm) as the internal standard. In reporting spectral data, the following abbreviations were used: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet doublet, dt = doublet triplet, td = triplet double, ddt = doublet double triplet, dtd = doublet triplet doublet. Infrared spectra were taken on a Mattson Genesis Series FTIR using thin film on NaCl plate. Peaks are reported in wavenumbers (cm–1 ). High resolution mass spectra were obtained on a V/G 70/70 double focusing machine and are reported in units of m/e. MS data for fluorous compounds were generally obtained by LCMS analysis of mixture samples. HPLC analysis was performed on a Waters 600 E system with a UV detector.
S3
Curran and coworkers
FMS of Macrosphelides
Synthesis of isomers of 2 O
CCl3
O
(2E,4E)-2,2,2-Trichloroethyl hexa-2,4-dienoate (S1). To a stirring solution of sorbic acid (34.4 g, 228 mmol) and 2,2,2-trichloroethanol (51.0 g, 341 mmol) in CH2Cl2 (350 mL) was sequentially added DCC (70.4 g, 341 mmol), and DMAP (4.17 g, 34.2 mmol). The reaction mixture was stirred for 1 h, concentrated in vacuo, diluted with hexanes, and the DCU precipitate was removed by Buchner filtration. The mother liquor was concentrated in vacuo and the product was purified by flash chromatography on silica gel (elution with 5% EtOAc/hexanes) to yield ester S1 (51.0 g, 92%) as a white solid: 1H NMR (300 MHz, CDCl3) δ 7.40-7.32 (m, 1 H), 6.23-6.19 (m, 2 H), 5.84 (d, J = 14.7 Hz, 1 H), 4.78 (s, 2 H), 1.86 (d, J = 5.1 Hz, 3 H). 13C NMR (75 MHz, CDCl3) δ 165.64, 147.52, 141.39, 129.59, 116.90, 76.18, 73.87, 15.77. OH O OH
CCl3
O
(4R,5R,E)-2,2,2-Trichloroethyl 4,5-dihydroxyhex-2-enoate (S2). A solution of AD-mix β (208 g, 1.40 g/mmol) and methanesulfonamide (21.2 g, 223 mmol) in t-BuOH/H2O (1:1) (1.48 L) was stirred vigorously for 15 min until one phase was present. The reaction mixture was cooled to 0 °C and diene S1 (36.2 g, 149 mmol) was added in one portion. The reaction mixture was stirred overnight at 0 °C, quenched with a saturated solution of Na2SO3 and stirred for 1 h. The aqueous phase was extracted with CH2Cl2, and the combined organic extracts were dried over MgSO4, filtered and concentrated under reduced pressure. The product was purified by flash chromatography on silica gel (elution with 10-40% EtOAc/hexanes) to give diol S2 (35.9 g, 87 %) as a viscous colorless oil: [α]20D –0.41 (c 2.00 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.09 (dd, J = 10.2, 4.8 Hz, 1 H), 6.27 (dd, J = 8.7, 1.8 Hz, 1 H), 4.81 (s, 2 H), 4.14-4.10 (m, 1 H), 3.78-3.3.68 (m, 1 H), 3.45 (broad s, 1 H), 3.10 (broad s, 1 H), 1.26 (d, J = 6.3 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 164.61, 149.29, 120.73, 94.85, 75.56, 74.11, 70.30, 19.23; IR (film) cm–1 2307, 1741, 1111.
S4
Curran and coworkers
FMS of Macrosphelides
OH O OH
CCl3
O
(4S,5S,E)-2,2,2-Trichloroethyl 4,5-dihydroxyhex-2-enoate (S3). The procedure described for diol S2 was followed with AD-mix α (200 g, 1.40 g/mmol) and methanesulfonamide (20.2 g, 214 mmol) in tBuOH/H2O (1:1) (1.42 L). A solution of diene S1 (34.7 g, 142 mmol) in t-BuOH/H2O (1:1) (1 mL) was added. The product was purified by flash chromatography on silica (elution with 10-40 % EtOAc/hexanes) to give diol S3 (34.4 g, 87%) as a viscous colorless oil: [α]20D +0.41 (c 1.30 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.09 (dd, J = 10.2, 4.8 Hz, 1 H), 6.27 (dd, J = 8.7, 1.8 Hz, 1 H), 4.81 (s, 2 H), 4.14-4.10 (m, 1 H), 3.78-3.68 (m, 1 H), 3.45 (broad s, 1 H), 3.10 (broad s, 1 H), 1.26 (d, J = 6.3 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 164.59, 149.29, 120.71, 94.84, 75.54, 74.09, 70.29, 19.21; IR (film) cm–1 2307, 1741, 1111. OH O OTES
CCl3
O
(4R,5R,E)-2,2,2-Trichloroethyl 4-hydroxy-5-(triethylsilyloxy)hex-2-enoate ((4R,5R)-2). To a stirring solution of diol S2 (13.3 g, 48.1 mmol) in CH2Cl2 (233 mL) was added Et3N (11.6 g, 115 mmol). The reaction mixture was cooled to 0 °C and chlorotriethylsilane (7.60 g, 50.5 mmol) was added in one portion. DMAP (294 mg, 2.40 mmol) was added, the ice bath was removed and the reaction mixture was allowed to stir for 12 h at room temperature. The reaction mixture was quenched with a saturated solution of NaHCO3, the aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with a saturated solution of brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 1-5% EtOAc/hexanes) to afford TES ether (4R,5R)-2 (11.8 g, 63%) as a viscous colorless oil: [α]20D +0.21 (c 1.21 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.07 (dd, J = 9.9, 4.2 Hz, 1 H), 6.24 (dd, J = 8.7, 1.8 Hz, 1 H), 4.79, (s, 2 H), 4.05 (d, J = 4.2 Hz, 1 H), 3.80 (quin, J = 6.0 Hz, 1 H), 7.47 (d, J = 6.0 Hz, 1 H), 1.22 (d, J = 6.3 Hz, 3 H), 0.93 (t, J = 7.8 Hz, 9 H), 0.56 (q, J = 7.5 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.49, 150.08, 120.22, 94.99, 75.20, 73.99, 70.74, 20.31, 6.75, 4.87; IR (film) cm–1 2998, 2901, 2382, 2349, 1746, 1512, 1046.
S5
Curran and coworkers
FMS of Macrosphelides
OH O OTES
(4S,5S,E)-2,2,2-Trichloroethyl
CCl3
O
4-hydroxy-5-(triethylsilyloxy)hex-2-enoate
((4S,5S)-2).
The
procedure described for TES ether (4R,5R)-2 was followed with diol S3 (13.0 g, 47.0 mmol), Et3N (11.4 g, 113 mmol), chlorotriethylsilane (7.59 g, 49.4 mmol) and DMAP (287 mg, 2.35 mmol) in CH2Cl2 (238 mL). The product was purified by flash chromatography on silica gel (1-5% EtOAc/hexanes) to afford TES ether (4S,5S)-2 (11.6 g, 63%) as a colorless oil: [α]20D –0.12 (c 1.36 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.07 (dd, J = 9.9, 4.2 Hz, 1 H), 6.24 (dd, J = 8.7, 1.8 Hz, 1 H), 4.79, (s, 2 H), 4.05 (d, J = 4.2 Hz, 1 H), 3.80 (quin, J = 6.0 Hz, 1 H), 7.47 (d, J = 6.0 Hz, 1 H), 1.22 (d, J = 6.3 Hz, 3 H), 0.93 (t, J = 7.8 Hz, 9 H), 0.56 (q, J = 7.5 Hz, 6 H); 13C NMR (75 MHz, CDCl3) 164.50, 150.10, 120.24, 95.01, 75.23, 74.00, 70.76, 20.35, 6.77, 4.88; IR (film) cm–1 2892, 2318, 1747, 1219. OH O OTBS
CCl3
O
(4R,5R,E)-2,2,2-Trichloroethyl 5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate (S4). To a solution of diol S2 (13.4 g, 48.3 mmol) in CH2Cl2 (245 mL) cooled to –78 oC was added TBSOTf (14.1 g, 53.1 mmol) over a 30 min period via syringe pump. The reaction mixture was stirred at –78 oC for 1 h. The reaction mixture was poured into a stirring saturated NH4Cl solution, and the aqueous phase was extracted with CH2Cl2. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 15% EtOAc/hexanes) to afford TBS ether S4 (17.8 g, 94%) as a viscous colorless oil: [α]20D +0.81 (c 4.02 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.10 (dd, J = 9.80, 4.20 Hz, 1 H), 6.26 (dd, J = 8.7, 1.8 Hz, 1 H), 4.82 (AB, J AB = 12.0, 0.9 Hz, 2 H), 4.13-4.07 (m, 1 H), 3.84 (quin, J = 6.0 Hz, 1H), 2.66 (d, J = 1.5 Hz, 1 H), 1.25 (d, J = 6.0 Hz, 3 H), 0.90 (s, 9 H), 0.09 (d, J = 8.1 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.60, 149.36, 120.68, 94.85, 75.55, 74.10, 70.27, 25.70, 25.64, 19.20, –2.94, –3.59; IR (film) cm–1 2912, 1742, 1339, 1075.
S6
Curran and coworkers
FMS of Macrosphelides
OH O OTBS
(4S,5S,E)-2,2,2-Trichloroethyl
CCl3
O
5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate
(S5).
The
procedure described for TES ether S4 was followed with diol S3 (13.6 g, 49.1 mmol), and TBSOTf (14.3 g, 53.4 mmol) in CH2Cl2 (249 mL). The product was purified by flash chromatography on silica gel (elution with 1-5% EtOAc/hexanes) to afford TBS ether S5 (17.7 g, 92%) as a viscous colorless oil: [α]20D –0.69 (c 1.27 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.10 (dd, J = 9.80, 4.20 Hz, 1 H), 6.26 (dd, J = 8.7, 1.8 Hz, 1 H), 4.82 (AB, J AB = 12.0, 0.9 Hz, 2 H), 4.13-4.07 (m, 1 H), 3.84 (quin, J = 6.0 Hz, 1 H), 2.66 (d, J = 1.5 Hz, 1 H), 1.25 (d, J = 6.0 Hz, 3 H), 0.90 (s, 9 H), 0.09 (d, J = 8.1 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.47, 150.35, 120.21, 95.01, 75.15, 73.99, 70.81, 25.75, 20.29, 18.00,–4.32, –4.84; IR (film) cm–1 2931, 1743, 1144. OH O OTBS
CCl3
O
(4S,5R,E)-2,2,2-Trichloroethyl 5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate (S6). To a stirring solution of TBS ether S4 (17.1 g, 43.7 mmol) in benzene (285 mL) was added Ph3P (45.9 g, 175 mmol) and formic acid (8.65 g, 188 mmol). DIAD (35.4 g, 175 mmol, 4.00 eq) was added to the reaction mixture over 45 min via syringe pump and the reaction mixture was stirred for 14 h. The reaction mixture was quenched with H2O, the aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with a saturated solution of brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The crude reaction mixture was dissolved in CH3CN/H2O (3:1) (338 mL), and trichloroethanol (21.5 g, 144 mmol) was added. NH4OH (221 mL) was added, and the reaction mixture was stirred for 30 min. The reaction mixture was quenched with a saturated solution of NaHCO3, the aqueous phase was extracted with Et2O, and the combined organic extracts were washed with brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford TBS ether S6 (15.1 g, 88%) as a viscous colorless oil: [α]20D +0.41 (c 1.12 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.08 (dd, J = 10.1, 4.5 Hz, 1 H), 6.25 (dd, J = 8.7, 1.8 Hz, 1 H), 4.83 (s, 2 H), 4.31-4.28 (m, 1 H), 4.01-3.93 (m, 1 H), 2.49 (d, J = 3.9 Hz, 1 H), 1.16 (d, J = 6.0 Hz, 3 H), 0.92 (s, 9 H), 0.11 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ S7
Curran and coworkers
FMS of Macrosphelides
164.53, 148.46, 120.08, 95.00, 74.86, 74.02, 70.63, 25.76, 18.02, –4.42, –4.90; IR (film) cm–1 2380, 1692, 1113. OH O OTBS
CCl3
O
(4R,5S,E)-2,2,2-Trichloroethyl 5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate (S7). The procedure described for TBS ether S6 was followed with the addition of Ph3P (47.4 g, 181 mmol), and formic acid (8.94 g, 191 mmol) to TBS ether S5 (17.7 g, 45.2 mmol) in benzene (295 mL). Following dropwise addition of DIAD (36.5 g, 181 mmol), the reaction mixture was quenched with H2O, the aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with a saturated solution of brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The crude reaction mixture was dissolved in CH3CN/H2O (3:1) (338 mL), and trichloroethanol (21.5 g, 144 mmol) was added. NH4OH (221 mL) was added, and the reaction mixture was stirred for 30 min. The reaction mixture was quenched with a saturated solution of NaHCO3, the aqueous phase was extracted with Et2O, and the combined organic extracts were washed with brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford TBS ether S7 (15.6 g, 88%) as a viscous colorless oil: [α]20D –0.35 (c 1.03 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.05 (dd, J = 10.1, 4.5 Hz, 1 H), 6.22 (dd, J = 8.7, 1.8 Hz, 1 H), 4.80 (s, 2 H), 4.31-4.26 (m, 1 H), 4.01-3.93 (m, 1 H), 2.46 (d, J = 3.9 Hz, 1 H), 1.09 (d, J = 4.8 Hz, 3 H), 0.88 (s, 9 H), 0.08 (s, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.50, 148.44, 120.07, 94.99, 74.85, 74.01, 70.63, 25.74, 18.01, –4.44, –4.92; IR (film) cm–1 2380, 1692, 1113. OH O OH
CCl3
O
(4S,5R,E)-2,2,2-Trichloroethyl 4,5-dihydroxyhex-2-enoate (S8). To a stirring solution of TBS ether S6 (10.2 g, 26.1 mmol) in THF (629 mL) was added 2 M HCl (152 mL). The reaction mixture was stirred for 10 h and was quenched with a saturated solution of NaHCO3. The aqueous phase was extracted with EtOAc and the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel S8
Curran and coworkers
FMS of Macrosphelides
(elution with 40% EtOAc/hexanes) to afford diol S8 (7.05 g, 97%) as a viscous colorless oil: [α]20D +0.31 (c 1.54 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.13 (dd, J = 10.1, 4.8 Hz, 1 H), 6.28 (dd, J = 8.9, 1.8 Hz, 1 H), 4.83 (s, 2 H), 4.43-4.38 (m, 1 H), 4.07-3.97 (m, 1 H), 2.63 (d, J = 4.8 Hz, 1 H), 2.21 (d, J = 5.1 Hz, 1 H), 1.21 (d, J = 6.6 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 164.59, 148.23, 120.79, 94.88, 74.45, 74.10, 69.93, 17.50; IR (film) cm–1 2366, 1745, 1130. OH O OH
CCl3
O
(4R,5S,E)-2,2,2-Trichloroethyl 4,5-dihydroxyhex-2-enoate (S9). The procedure described for diol S8 was followed with the addition of 2 M HCl (152 mL) to a solution of TBS ether S7 (10.2 g, 26.1 mmol) in THF (629 mL). The product was purified by flash chromatography on silica gel (elution with 40% EtOAc/hexanes) to afford diol S9 (6.74 g, 93%) as a viscous colorless oil: [α]20D –0.28 (c 0.052 CHCl3); 1
H NMR (300 MHz, CDCl3) δ 7.12 (dd, J = 10.2, 4.8 Hz, 1 H), 6.27 (dd, J = 8.7, 1.8 Hz, 1 H), 4.83 (s, 2
H), 4.39 (d, J = 2.1 Hz, 1 H), 4.02 (t, J = 2.7 Hz, 1 H), 2.90 (d, J = 4.2 Hz, 1 H), 2.48 (d, J = 4.2 Hz, 1 H), 1.20 (d, J = 6.6 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 164.52, 148.19, 120.81, 94.89, 74.45, 74.10, 69.92, 17.52; IR (film) cm–1 2951, 2366, 1745, 1066. OH O OTES
(4S,5R,E)-2,2,2-Trichloroethyl
CCl3
O
4-hydroxy-5-(triethylsilyloxy)hex-2-enoate
((4S,5R)-2).
The
procedure described for TES ether (4R,5R)-2 was followed with diol S8 (7.05 g, 25.3 mmol), Et3N (6.16 g, 60.9 mmol), chlorotriethylsilane (4.40 g, 29.2 mmol) and DMAP (155 mg, 1.27 mmol) in CH2Cl2 (253 mL). The product was purified by flash chromatography on silica gel (1-5% EtOAc/hexanes) to afford TES ether (4S,5R)-2 (6.17 g, 62%) as a colorless oil: [α]20D +0.01 (c 2.34 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.08 (dd, J = 10.2, 4.5 Hz, 1 H), 6.26 (dd, J = 8.7, 1.8 Hz, 1 H), 4.83 (s, 2 H), 4.34-4.29 (m, 1 H), 4.02-3.94 (m, 1 H), 2.57 (d, J = 3.6 Hz, 1 H), 1.13 (d, J = 6.3 Hz, 3 H), 0.98 (t, J = 7.8 Hz, 9 H), 0.65 (q, J = 7.8 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.56, 148.42, 120.02, 95.00, 74.87, 74.02, 70.33, 17.89, 6.80, 4.84; IR (film) cm–1 2993, 2312, 1749, 1068. OH O OTES
O S9
CCl3
Curran and coworkers
FMS of Macrosphelides
(4R,5S,E)-2,2,2-Trichloroethyl
4-hydroxy-5-(triethylsilyloxy)hex-2-enoate
((4R,5S)-2).
The
procedure described for TES ether (4R,5R)-2 was followed with diol S9 (6.70 g, 24.1 mmol), Et3N (5.85 g, 57.9 mmol), chlorotriethylsilane (3.82 g, 25.3 mmol) and DMAP (147 mg, 1.21 mmol) in CH2Cl2 (225 mL). The product was purified by flash chromatography on silica gel (1-5% EtOAc/hexanes) to afford TES ether (4R,5S)-1 (5.96 g, 63%) as a colorless oil: [α]20D –0.01 (c 2.16 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.08 (dd, J = 9.9, 4.5 Hz, 1 H), 6.26 (dd, J = 8.9, 1.8 Hz, 1 H), 4.83 (s, 2H), 4.34-4.29 (m, 1 H), 4.02-3.94 (m, 1 H), 2.56 (d, J = 3.6 Hz, 1 H), 1.13 (d, J = 6.3 Hz, 3 H), 0.98 (t, J = 7.8 Hz, 9 H), 0.64 (q, J = 7.8 Hz, 6 H);
13
C NMR (75 MHz, CDCl3) δ 164.56, 148.43, 120.01, 95.00, 74.87,
74.02, 70.34, 17.90, 6.80, 4.84; IR (film) cm–1 2956, 2878, 1739, 1095.
F
PMB and FTIPS tagged precursors, Figure 3 of paper
C2F5
O
O O OH
(4R,5R,E)-2,2,2-Trichloroethyl
CCl3
O
5-hydroxy-4-(4-(4,4,5,5,5-pentafluoropentyloxy)benzyloxy)hex-2-
enoate (3a). To a stirring solution of alcohol (4R,5R)-2 (2.80 g, 7.14 mmol) in toluene (15 mL) was sequentially added fluorous PMB trichloroacetimidate (10.2 g, 23.8 mmol), followed by La(OTf)3 (628 mg, 1.07 mmol). The reaction mixture was stirred for 12 h and was concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford the fluorous PMB ether (4.42 g) as a colorless oil contaminated with some inseparable acetimidate impurities. To a stirring solution of the aforementioned fluorous PMB ether (4.42 g, 6.72 mmol) in CH3CN (30 mL) cooled to 0 oC was sequentially added Et3N (115 mg, 1.14 mmol), followed by H2SiF6 (813 mg, 5.64 mmol). The reaction mixture was stirred for 30 min, and was poured into a stirring saturated solution of NaHCO3. The aqueous phase was extracted with EtOAc, and the combined organic extracts were washed with brine, dried over MgSO4, and concentrated in vacuo. The product was purified by flash S10
Curran and coworkers
FMS of Macrosphelides
chromatography on silica gel (elution with 10-25% EtOAc/hexanes) to afford alcohol 2a (2.97 g, 70%) as a white solid: [α]20D –1.28 (c 1.40 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 2 H), 7.02 (dd, J = 11.0, 6.3 Hz, 1 H), 6.90 (d, J = 8.4 Hz, 2 H), 6.22 (dd, J = 8.4, 1.2 Hz, 1 H), 4.85 (s, 2 H), 4.62 (dd, J = 11.1 Hz, 1 H), 4.37 (dd, J = 11.1 Hz, 1 H), 4.05 (t, J = 5.7 Hz, 2 H), 3.84-3.72 (m, 2 H), 2.64 (broad s, 1 H), 2.38-2.22 (m, 2 H), 2.20-2.06 (m, 2 H), 1.19 (d, J = 6.0 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 163.97, 158.55, 147.39, 129.77, 122.66, 114.53, 94.87, 83.08, 74.15, 71.55, 69.46, 66.32, 27.95, 27.66, 27.36, 20.67, 18.41; 19F NMR (CDCl3) δ –85.43 (3 F), –118.31 (t, J = 1.2 Hz, 2 F); IR (film) cm–1 2981, 2915, 2884, 2865, 2365, 1748, 1366, 1131, 1102. C4F9
O
O O OH
(4S,5S,E)-2,2,2-Trichloroethyl
CCl3
O
5-hydroxy-4-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-
hex-2-enoate (3b). To a stirring solution of alcohol (4S,5S)-2 (2.43 g, 6.19 mmol) in toluene (6 mL) was sequentially added fluorous PMB trichloroacetimidate (10.8 g, 20.6 mmol), followed by La(OTf)3 (182 mg, 0.310 mmol). The reaction mixture was stirred for 12 h and was concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford the fluorous PMB ether (5.05 g) as a colorless oil contaminated with some inseparable acetimidate impurities. The procedure described for alcohol 3a was followed with the addition of Et3N (114 mg, 1.13 mmol), and H2SiF6 (787 mg, 5.46 mmol) to a stirring solution of the aforementioned fluorous PMB ether (5.05 g, 6.66 mmol) in CH3CN (30 mL) cooled to 0 oC. The product was purified by flash chromatography on silica gel (elution with 10-25% EtOAc/hexanes) to afford alcohol 3b (2.79 g, 70%) as a white solid: [α]20D +0.79 (c 0.099 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 2 H), 7.02 (dd, J = 11.0, 6.3 Hz, 1 H), 6.90 (d, J = 8.4 Hz, 2 H), 6.22 (dd, J = 8.4, 1.2 Hz, 1 H), 4.85 (s, 2 H), 4.62 (dd, J = 11.1 Hz, 1 H), 4.37 (dd, J = 11.1 Hz, 1 H), 4.05 (t, J = 5.7 Hz, 2 H), 3.84-3.72 (m, 2 H), 2.64 (d, J = 2.7 Hz, 1 H), 2.38-2.22 (m, 2 H), 2.20-2.06 (m, 2 H), 1.19 (d, J = 6.0 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 163.97, 158.55, 147.38, 129.77, 122.68, 114.53, 94.86, 83.10, 74.15, 71.55, 69.47, 66.32, 27.82,
S11
Curran and coworkers
FMS of Macrosphelides
20.54, 18.41; 19F NMR (CDCl3) δ –81.06 (3 F), –114.67 (m, 2 F), –124.41 (s, 2 F), –126.06 (t, J = 12.3 Hz, 2 F); IR (film) cm–1 2379, 1746, 1520, 1505, 1331, 1105, 1053. C6F13
O
O O OH
(4S,5R,E)-2,2,2-Trichloroethyl
CCl3
O
5-hydroxy-4-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)-
benzyloxy)hex-2-enoate (3c). To a stirring solution of alcohol (4S,5R)-2 (2.80 g, 7.14 mmol) in toluene (7 mL) was sequentially added fluorous PMB trichloroacetimidate (6.74 g, 23.7 mmol), followed by La(OTf)3 (209 mg, 0.357 mmol). The reaction mixture was stirred for 12 h and was concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford the fluorous PMB ether (5.00 g) as a colorless oil contaminated with some inseparable acetimidate impurities. The procedure described for alcohol 3a was followed with the addition of Et3N (120 mg, 1.19 mmol), and H2SiF6 (827 mg, 5.74 mmol) to a stirring solution of the aforementioned fluorous PMB ether (6.01 g, 7.00 mmol) in CH3CN (35 mL) cooled to 0 oC. The product was purified by flash chromatography on silica gel (elution with 10-25% EtOAc/hexanes) to afford alcohol 3c (3.72 g, 70%) as a white solid: [α]20D –0.16 (c 4.60 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.30 (d, J = 8.4 Hz, 2 H), 7.11 (dd, J = 11.0, 6.0 Hz, 1 H), 6.91 (d, J = 8.7, Hz, 2 H), 6.22 (dd, J = 8.4, 0.9 Hz, 1 H), 4.85 (s, 2 H), 4.62 (dd, J = 11.4 Hz, 1 H), 4.41 (dd, J = 11.4 Hz, 1 H), 4.06 (t, J = 5.7 Hz, 2 H), 4.02-3.96 (m, 2 H), 2.43-2.25 (m, 2 H), 2.19-2.08 (m, 2 H), 1.18 (d, J = 6.3 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 164.02, 158.48, 147.27, 129.96, 129.59, 122.57, 119.11, 118.67, 118.45, 114.45, 111.48, 111.05, 94.91, 81.65, 74.09, 71.31, 69.13, 66.29, 28.18, 27.88, 27.59, 20.52, 18.07; 19F NMR (CDCl3) δ –81.07 (d, J = 10.5 Hz, 3 F), – 114.58 (m, 2 F), –122.08 (s, 2 F), –123.06 (s, 2 F), –123.63 (s, 2 F), –126.38 (s, 2 F); IR (film) cm–1 2349, 2309, 1748, 1391, 1106.
S12
Curran and coworkers
FMS of Macrosphelides
C8F17
O
O O OH
CCl3
O
(4R,5S,E)-2,2,2-Trichloroethyl 4-(4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyloxy)-benzyloxy)-5-hydroxyhex-2-enoate (3d). To a stirring solution of alcohol (4R,5S)-2 (3.04 g, 7.75 mmol) in toluene (7 mL) was sequentially added fluorous PMB trichloroacetimidate ( 7.89 g, 25.8 mmol), followed by La(OTf)3 (227 mg, 0.387 mmol). The reaction mixture was stirred for 12 h and was concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 10% EtOAc/hexanes) to afford the fluorous PMB ether (6.49 g) as a colorless oil contaminated with some inseparable acetimidate impurities. The procedure described for alcohol 3a was followed with the addition of Et3N (123 mg, 1.22 mmol), and H2SiF6 (845 mg, 5.86 mmol) to a stirring solution of the aforementioned fluorous PMB ether (6.49 g, 7.15 mmol) in CH3CN (35 mL) cooled to 0 oC. The product was purified by flash chromatography on silica gel (elution with 10-25% EtOAc/hexanes) to afford alcohol 3d (4.30 g, 70%) as a white solid: [α]20D +0.13 (c 1.70 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.28 (d, J = 8.4 Hz, 2 H), 7.10 (dd, J = 11.0, 6.0 Hz, 1 H), 6.91 (d, J = 8.7, Hz, 2 H), 6.20 (dd, J = 7.7, 0.6 Hz, 1 H), 4.85 (s, 2 H), 4.62 (dd, J = 11.4 Hz, 1 H), 4.41 (dd, J = 11.4 Hz, 1 H), 4.06 (t, J = 5.7 Hz, 2 H), 4.03-3.96 (m, 2 H), 2.40-2.25 (m, 2 H), 2.18-2.08 (m, 3 H), 1.18 (d, J = 6.3 Hz, 3 H); 13C NMR (75 MHz, CDCl3) δ 163.99, 158.48, 150.92, 147.10, 129.93, 129.60, 122.67, 118.46, 114.48, 94.90, 81.53, 74.12, 71.33, 69.15, 66.33, 27.93, 20.57, 18.03; 19F NMR (CDCl3) δ –80.81 (d, J = 9/8 Hz, 3 F), –114.44 (m, 2 F), –121.86 (m, 6 F), –122.76 (s, 2 F), –123.46 (s, 2 F), –126.16 (s, 2 F); IR (film) cm–1 2382, 1746, 1360, 1130. OSi(iPr)2(CH2)2C2F5 O CCl3 OTES
O
(4R,5R,E)-2,2,2-Trichloroethyl 4-(diisopropyl(3,3,4,4,4-pentafluorobutyl)silyloxy)-5-(triethylsilyloxy)hex-2-enoate (S10). TfOH (1.38 g, 9.20 mmol) was added dropwise to neat HSi(iPr)2(CH2)2C2F5 (3.34 g, 12.7 mmol) with stirring at 0 oC. The ice bath was removed, the reaction mixture was stirred for 3 h, and the reaction mixture was again cooled to 0 oC. To the reaction mixture was added 2,6-lutidine S13
Curran and coworkers
FMS of Macrosphelides
(2.28 g, 21.2 mmol), followed by alcohol (4R,5R)-2 (2.77 g, 7.08 mmol) in CH2Cl2 (8 mL). The reaction mixture was stirred for 30 min and was quenched with a saturated solution of NH4Cl. The aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with a saturated solution of brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 2.5% EtOAc/hexanes) to afford fluorous TIPS ether S10 (4.24 g, 92%) as a colorless oil: [α]20D +1.33 (c 2.03 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.28 (dd, J = 9.8, 3.9 Hz, 1 H), 6.15 (dd, J = 8.9, 1.8 Hz, 1 H), 4.83 (AB, JAB = 14.6, 12.0 Hz, 2 H), 4.45-4.42 (m, 1 H), 3.93 (quin, J = 6.0 Hz, 1 H), 2.20-1.99 (m, 2 H), 1.13-1.08 (m, 19 H), 1.05-0.87 (m, 9 H), 0.62 (q, J = 7.8 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.32, 150.21, 120.11, 95.06, 75.39, 73.94, 70.77, 25.17, 17.47, 17.41, 17.37, 17.25, 12.62, 12.52, 12.42, 6.76, 4.81, 0.62; 19F NMR (CDCl3) δ –85.00 (m, 3 F), –120.33 (m, 2 F); IR (film) cm–1 2901, 2260, 1746, 1219, 1018. OSi(iPr)2(CH2)2C4F9 O CCl3 OTES
(4S,5S,E)-2,2,2-Trichloroethyl
O
4-(diisopropyl(3,3,4,4,5,5,6,6,6-nonafluorohexyl)silyloxy)-5-(tri-
ethylsilyloxy)hex-2-enoate (S11). The procedure described for fluorous TIPS ether S10 was performed with the addition of TfOH (1.21 g, 8.09 mmol) to neat HSi(iPr)2(CH2)2C4F9 (4.06 g, 11.2 mmol) with stirring at 0 oC. After in situ formation of the fluorous TIPS triflate, 2,6-lutidine (2.00 g, 18.7 mmol), and alcohol (4S,5S)-2 (2.44 g, 6.23 mmol) in CH2Cl2 (6 mL) were added to the reaction mixture. The product was purified by flash chromatography on silica gel (elution with 2.5% EtOAc/hexanes) to afford fluorous TIPS ether S11 (4.58 g, 98%) as a colorless oil: [α]20D –1.80 (c 1.77 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.29 (dd, J = 9.9, 3.9 Hz, 1 H), 6.15 (dd, J = 8.9, 1.8 Hz, 1 H), 4.83 (AB, JAB = 14.4, 12.0 Hz, 2 H), 4.46-4.42 (m, 1 H), 3.93 (quin, J = 6.0 Hz, 1 H), 2.22-2.04 (m, 2 H), 1.13-1.05 (m, 17 H), 1.01-0.95 (m, 11 H), 0.62 (q, J = 7.8 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.33, 150.21, 120.11, 95.05, 75.39, 73.95, 70.76, 25.60, 25.58, 17.47, 17.40, 17.33, 12.64, 12.55, 6.75, 4.80, 0.33.
19
F
NMR (CDCl3) δ –81.12 (d, J = 9.0 Hz, 3 F), –116.95 (t, J = 15.9 Hz, 2 F), –124.38 (s, 2 F), –126.14 (t, J = 11.7, 2 F); IR (film) cm–1 2959, 2377, 1743, 1220, 1136.
S14
Curran and coworkers
FMS of Macrosphelides
OSi(iPr)2(CH2)2C6F13 O CCl3 OTES
O
(4S,5R,E)-2,2,2-Trichloroethyl 4-(diisopropyl(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluorooctyl)silyloxy)5-(triethylsilyloxy)hex-2-enoate (S12). The procedure described for fluorous TIPS ether S10 was performed with the addition of TfOH (1.42 g, 9.48 mmol) to neat HSi(iPr)2(CH2)2C6F13 (6.07 g, 13.1 mmol) with stirring at 0 oC. After in situ formation of the fluorous TIPS triflate, 2,6-lutidine (2.35 g, 21.9 mmol), and alcohol (4S,5R)-2 (2.86 g, 7.30 mmol) in CH2Cl2 (7 mL) were added to the reaction mixture. The product was purified by flash chromatography on silica gel (elution with 2.5% EtOAc/hexanes) to afford fluorous TIPS ether S12 (6.22 g, 99%) as a colorless oil: [α]20D –0.01 (c 1.64 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.09 (dd, J = 10.7, 5.7 Hz, 1 H), 6.11 (dd, J = 8.4, 1.2 Hz, 1 H), 4.83 (s, 2 H), 4.29-4.25 (m, 1 H), 3.84-3.76 (m, 1 H), 2.21-2.05 (m, 2 H), 1.17 (d, J = 6.0 Hz, 3 H), 1.06, (broad s, 14 H), 1.02-0.89 (m, 11 H), 0.62 (q, J = 7.8 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.19, 150.91, 94.95, 77.61, 73.97, 71.52, 25.35, 19.04, 17.53, 17.50, 12.72, 12.64, 6.75, 4.76, 0.55; 19F NMR (CDCl3) δ –80.89 (d, J = 18.3 Hz, 3 F), –116.70 (t, J = 15.9 Hz, 2 F),–122.00 (s, 2 F), –122.95 (s, 2 F), –123.35 (s, 2 F), –126.18 (s, 2 F); IR (film) cm–1 2381, 2310, 2192, 2131, 1748, 1549, 1511, 1143, 1092. OSi(iPr)2(CH2)2C8F17 O CCl3 OTES
(4R,5S,E)-2,2,2-Trichloroethyl
O
4-((3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)diiso-
propylsilyloxy)-5-(triethylsilyloxy)hex-2-enoate (S13). The procedure described for fluorous TIPS ether S10 was performed with the addition of TfOH (1.59 g, 10.7 mmol) to neat HSi(iPr)2(CH2)2C8F17 (8.27 g, 14.7 mmol) with stirring at 0 oC. After in situ formation of the fluorous TIPS triflate, 2,6lutidine (2.63 g, 24.5 mmol), and alcohol (4R,5S)-2 (3.20 g, 8.17 mmol) in CH2Cl2 (8 mL)were added to the reaction mixture. The product was purified by flash chromatography on silica gel (elution with 2.5% EtOAc/hexanes) to afford fluorous TIPS ether S13 (7.78 g, 99%) as a colorless oil: [α]20D +0.01 (c 0.088 CHCl3); 1H NMR (300 MHz, CDCl3) δ 7.09 (dd, J = 11.0, 6.0 Hz, 1 H), 6.11 (dd, J = 8.4, 1.2 Hz, 1 H), 4.83 (s, 2 H), 4.29-4.25 (m, 1 H), 3.84-3.76 (m, 1 H), 2.21-2.05 (m, 2 H), 1.17 (d, J = 6.0 Hz, 3 H), 1.08, (broad s, 13 H), 1.02 (m, 11 H), 0.63 (q, J = 7.8 Hz, 6 H); 13C NMR (75 MHz, CDCl3) δ 164.19, 150.90, 120.36, 94.94, 77.62, 73.96, 71.52, 19.04, 17.52, 17.48, 12.72, 12.64, 6.73, 4.75, 0.55;
S15
19
F NMR
Curran and coworkers
FMS of Macrosphelides
(CDCl3) δ –80.87 (d, J = 8.1 Hz, 3 F), –116.70 (t, J = 13.8 Hz, 2 F), –121.97 (s, 6 F), –122.78 (s, 2 F), –123.32 (s, 2 F), –126.18 (s, 2 F); IR (film) cm–1 2304, 1777, 1563, 1549, 1143.
Fluorous mixture synthesis, Figure 4 of paper O O FPMBO
Me
(E)-2,2,2-Trichloroethyl
CCl3 Me
O O
OTBS
5-((S)-3-(tert-butyldimethylsilyloxy)butanoyloxy)-4-(4-(perfluoroloxy)-
benzyloxy)hex-2-enoate (M-6a-d). To a stirring solution of PMB ethers 3a (2.11 g, 3.88 mmol), 3b (2.50 g, 3.88 mmol), 3c (2.89 g, 3.88 mmol) and 3d (3.28 g, 3.88 mmol) and (S)-3-(tertbutyldimethylsilyloxy)butanoic acid S-5 (4.40 g, 20.2 mmol) in CH2Cl2 (155 mL) was sequentially added DMAP (284 mg, 2.33 mmol), CSA (361 mg, 1.55 mmol) and DCC (12.8 g, 62.1 mmol). The reaction mixture was stirred for 12 h. The reaction mixture was concentrated in vacuo, diluted with hexanes, and the DCU precipitate was removed by Buchner filtration. The hexanes was removed in vacuo and the product was purified by flash chromatography on silica gel (elution with 5% EtOAc/hexanes) to yield diester M-6a-d (13.9 g, 100%) as a viscous colorless oil: 19F NMR (CDCl3) δ – 81.36 (d, J = 9.3 Hz, 6 F), –81.61 (d, J = 8.8 Hz, 3 F), –85.98 (s, 3 F), –114.81(m, 4 F), –115.09 (m, 2 F), –118.78 (t, J = 18.4 Hz, 2 F), –122.31 (m, 8 F), –123.21 (s, 2 F), –123.38 (s, 2 F), –123.93 (s, 4 F), – 124.91 (s, 2 F), –126.59 (m, 6 F); LC-MS (APCI) m/z 761.7 (M1 + H2O)+, m/z 861.7 (M2 + H2O)+, m/z 961.6 (M3 + H2O)+, m/z 1061.5 (M4 + H2O)+. O O FPMBO
Me
(E)-2,2,2-Trichloroethyl
O O
CCl3 Me OH
5-((S)-3-hydroxybutanoyloxy)-4-(4-(perfluoroloxy)benzyloxy)hex-2-en-
oate (S14). The procedure described for diol S8 was followed with the addition of 2 M HCl (80 mL) to a solution of TBS ether M-6a-d (13.9 g, 15.5 mmol) in THF (155 mL). The product was purified by flash chromatography on silica gel (elution with 40% EtOAc/hexanes) to afford alcohol S14 (11.7 g, 97%) as a viscous colorless oil: 19F NMR (CDCl3) δ –81.42 (s, 6 F),–81.60 (t, J = 8.8 Hz, 3 F), –85.99 S16
Curran and coworkers
FMS of Macrosphelides
(t, J = 20.3, 3 F), –114.84 (t, J = 13.3, 4 F), –115.09 (t, J = 15.5 Hz, 2 F), –118.78 (t, J = 18.4, 2 F), – 122.42 (s, 8 F), –123.22 (s, 2 F), –123.39 (s, 2 F), –123.93 (s, 4 F), –124.91 (s, 2 F), –126.59 (m, 6 F); LC-MS (APCI) m/z 645.8 (M1 + H2O)+, m/z 745.7 (M2 + H2O)+, m/z 845.7 (M3 + H2O)+, m/z 945.6 (M4 + H2O)+. OTIPSF OH OTES
O
(E)-2,2,2-Trichloroethyl 4-(perfluoroalkyldiisopropylsilyloxy)-5-(triethylsilyloxy)hex-2-enoate (M4a-d). To a stirring solution of trichloroethyl esters S10 (1.78 g, 2.72 mmol), S11 (2.05 g, 2.72 mmol), S12 (2.33 g, 2.72 mmol), and S13 (2.60 g, 2.72 mmol) in THF (838 mL) was added NaOAc/HOAc buffer solution (254 mL), followed by zinc dust (7.24 g, 109 mmol). The reaction mixture was stirred vigorously at room temperature for 16 h. The reaction mixture was cooled to room temperature, and the zinc dust was removed by Buchner filtration. The mother liquor was transferred to a separatory funnel and the aqueous phase was extracted with EtOAc. The combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 2-10% EtOAc/hexanes) to afford carboxylic acid M-4a-d (6.76 g, 92%) as a colorless oil: 19F NMR (CDCl3) δ –81.76 (d, J = 9.0 Hz, 6 F), –81.82 (t, J = 9.9 Hz, 3 F), –85.64 (m, 3 F), –117.24 (m, 4 F), –117.44 (m, 2 F), –120.92 (m, 2 F), –122.54 (s, 8 F), –123.33 (s, 2 F), –123.50 (s, 2 F), –123.91 (s, 4 F). –124.95 (s, 2 F), –126.65 (s, 6 F). Me R1 FPMBO
Me
OTIPSF
R2O O O
Me O
O
R1 = CO2CH2CCl3, R2 = TES
(E)-((2S)-4-Oxo-4-((E)-6-oxo-3-(4-(perfluoroloxy)benzyloxy)-6-(2,2,2-trichloroethoxy)hex-4-en-2yloxy)butan-2-yl) 4-(perfluoroalkyldiisopropylsilyloxy)-5-(triethylsilyloxy)hex-2-enoate (M-7a-d/ad). The procedure described for diester M-6a-d was carried out with the sequential addition of DMAP (235 mg, 1.92 mmol), CSA (298 mg, 1.28 mmol) and DCC (5.28 g, 25.6 mmol) to a stirring solution of alcohol S14 (9.99 g, 3.20 mmol) and carboxylic acid M-4a-d (11.2 g, 4.16 mmol) in CH2Cl2 (128 mL). The product was purified by flash chromatography on silica gel (elution with 5% EtOAc/hexanes) to S17
Curran and coworkers
FMS of Macrosphelides
afford triester M-7a-d/a-d (17.7 g, 95%) as a colorless oil: 19F NMR (CDCl3) δ –81.46 (d, J = 8.2 Hz, 12 F), –81.70 (s, 6 F), –85.56 (d, J = 15.0 Hz, 3 F), –86.09 (s, 3 F), –114.92 (s, 4 F), –115.17 (t, J = 14.1 Hz, 2 F), –117.36 (s, 4 F), –117.40 (t, J = 14.7 Hz, 2 F), –118.35 (t, J = 18.4 Hz, 2 F), –120.26 (m, 2 F), –122.50 (s, 16 F), –123.31 (s, 4 F), –123.46 (s, 4 F), –123.82 (s, 4 F), –124.01 (s, 4 F), –124.87 (s, 2 F), –124.90 (s, 2 F), –126.12 (d, J = 7.6 Hz, 12 F); LC-MS (APCI) m/z 1133.8 (M1–Me + H2O)+, m/z 1233.8 (M2–Me + H2O)+, m/z 1333.7 (M3–Me + H2O)+, m/z 1433.7 (M4–Me + H2O)+, m/z 1533.6 (M5– Me + H2O)+, m/z 1633.6 (M6–Me + H2O)+, m/z 1733.6 (M7–Me + H2O)+. Me FPMBO
Me
OTIPSF
R HO O O
Me O
O
R = CO2CH2CCl3
(E)-((2S)-4-Oxo-4-((E)-6-oxo-3-(4-(perfluoroloxy)benzyloxy)-6-(2,2,2-trichloroethoxy)hex-4-en-2yloxy)butan-2-yl)
4-(perfluoroalkyldiisopropylsilyloxy)-5-hydroxyhex-2-enoate
(S15).
The
procedure described for alcohol 2a was followed with the addition of Et3N (207 mg, 2.05 mmol), and H2SiF6 (591 mg, 4.11 mmol) to a stirring solution of TES ether M-7a-d/a-d (17.5 g, 12.1 mmol) in CH3CN (121 mL) cooled to 0 oC. The product was purified by flash chromatography on silica gel (elution with 15% EtOAc/hexanes) to afford alcohol S15 (13.7 g, 85%) as a viscous colorless oil: 19F NMR (CDCl3) δ –80.78 (s, 12 F), –81.03 (s, 6 F), –84.89 (s, 3 F), –85.46 (s, 3 F), –114.41 (s, 4 F),– 114.63 (m, 2 F), –116.67 (s, 4 F), –116.80 (m, 2 F), –118.35 (t, J = 14.7 Hz, 2 F), –120.35 (t, J = 18.4 Hz, 2 F), –121.96 (s, 16 F), –122.76 (s, 4 F), –122.91 (s, 4 F),–123.34 (s, 4 F), –123.46 (s, 4 F), –124.27 (s, 2 F), –124.45 (s, 2 F), –126.08 (s, 12 F); LC-MS (APCI) m/z 1035.5 (M1 + H2O)+, m/z 1135.7 (M2 + H2O)+, m/z 1235.7 (M3 + H2O)+, m/z 1335.6 (M4 + H2O)+, m/z 1435.6 (M5 + H2O)+, m/z 1535.6 (M6 + H2O)+, m/z 1635.6 (M7 + H2O)+.
S18
Curran and coworkers
FMS of Macrosphelides
Me
FPMBO
Me
OTIPSF
R HO Me
O O
O
O
R = CO2H
(8E,12S,18E)-Perfluoro-7-(1-hydroxyethyl)-5,5-diisopropyl-12,16-dimethyl-10,14-dioxo-17-(4(perfluoroloxy)benzyloxy)-6,11,15-trioxa-5-silaicosa-8,18-dien-20-oic acid (S16). The procedure described for alcohol M-4a-d was followed with the addition of NaOAc/HOAC (62 mL) buffer solution and zinc dust (6.80 g, 103 mmol) to a stirring solution of trichloroethyl ester S15 (13.7 g, 10.3 mmol) in THF (245 mL). The product was purified by flash chromatography on silica gel (elution with 50% MeOH/50% acetone) to afford hydroxyl acid S16 (11.1 g, 90%) as a viscous colorless oil: 19F NMR (CDCl3) δ –80.89 (s, 12 F), –81.16 (s, 6 F), –84.98 (s, 3 F), –85.58 (s, 3 F), –114.51 (s, 4 F), –114.72 (d, J = 13.3 Hz, 2 F), –116.73 (t, J = 12.4 Hz, 4 F), –116.90 (d, J = 17.5 Hz, 2 F), –118.44 (t, J = 17.8 Hz, 2 F), –120.40 (m, 2 F), –122.04 (s, 16 F),–122.86 (s, 4 F), –122.98 (s, 4 F), –123.29 (s, 4 F), –123.52 (s, 4 F), –124.34 (s, 2 F),–124.51 (s, 2 F),–126.07 (s, 12 F). Me
O
OTIPSF
O FPMBO
Me
O O
Me O
O
Macrosphelide mixture (M-8a-d/a-d). To a stirring solution of hydroxy acid S16 (5.02 g, 4.16 mmol) in THF (35 mL) was sequentially added iPr2Net (3.23 g, 25.0 mmol), and 2,4,6-trichlorobenzoyl chloride (5.23 g, 20.8 mmol). The reaction mixture was stirred at room temperature for 1 h, and was added in one portion to a stirring solution of DMAP (5.09 g, 41.6 mmol) in toluene (2 mL). The reaction mixture was stirred at room temperature for 16 h and was quenched with a saturated solution of NaHCO3. The aqueous phase was extracted with Et2O, and the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 5-15% EtOAc/hexanes) to afford macrosphelide M-8a-d/a-d (4.33 g, 88%) as a viscous light green oil: 19F NMR (CDCl3) δ –80.95 (s, 12 F), –81.17 (s, 6 F), –85.00 (t, J = 13.9 Hz, 3 F), –85.56 (s, 3 F), –114.50 (s, 4 F), –114.73 (s, 2 F), –116.80 (m, 6 F), –118.43 (t, J = 17.2 Hz, 2 F), –120.38 (t, J = 16.1 Hz, 2 F), –122.03 (s, 16 F), –122.97 (s, 8 F), –123.30 (s, 4 F), – S19
Curran and coworkers
FMS of Macrosphelides
123.57 (s, 4 F), –124.35 (s, 2 F), –124.52 (s, 2 F), –126.24 (s, 12 F); LC-MS (APCI) m/z 885.9 (M1 + H2O)+, m/z 985.9 (M2 + H2O)+, m/z 1086.0 (M3 + H2O)+, m/z 1186.0 (M4 + H2O)+, m/z 1286.0 (M5 + H2O)+, m/z 1386.0 (M6 + H2O)+, m/z 1486.0 (M7 + H2O)+.
S20
Curran and coworkers
FMS of Macrosphelides
Figure S1. Chromatogram of a preparative HPLC demixing of M-8a-d/a-d
Conditions: FluoroFlash Column, 30 mg M-8a-d/a-d in 1 mL ACN/injection, 10 mL/min; gradient, 020 min: 25% ACN and 75% MeOH; 20-25 min: 25% ACN and 75% MeOH to 100% CAN; 25-50 min: 100% ACN; 50-55 min: 100% ACN to 30% ACN and 70% H2O; 55-120 min: 30% ACN and 70% H2O
Approximate preparative fraction collections times: Fraction 1: 8–9 min Fraction 2: 9.5–10.5 min Fraction 3: 14–15 min Fraction 4: 20–26 min Fraction 5: 35–41 min Fraction 6a: 59–60 min Fraction 6b: 62–63 min Fraction 7: 88–91 min S21
Curran and coworkers
FMS of Macrosphelides
Detaggings
Me
O C2F5(CH2)3O
OH
O O Me
Me
O O
O
O
(4S,7E,9R,10R,13E,15R,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,5-pentafluoropentyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S17). To a stirring solution of doubly tagged macrosphelide fraction 1 (25.6 mg, 0.0295 mmol) in THF (3 mL) was added HOAc (147 μL), followed by TBAF (147 μL, 0.147 mmol). The reaction mixture was stirred at room temperature for 12 h and was quenched with a saturated solution of NaHCO3. The aqueous phase was extracted with EtOAc, and the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 525% EtOAc/hexanes) to afford alcohol S17 (15.4 mg, 86%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.26-7.24 (m, 2 H), 6.92-6.85 (m, 3 H), 6.76-6.68 (m, 1 H), 6.04-5.95 (m, 2 H), 5.345.21 (m, 1 H), 5.14-5.02 (m, 2 H), 4.63-4.59 (m, 1 H), 4.70-4.57 (m, 1 H), 4.42-4.38 (m, 1 H), 4.06-4.02 (m, 3 H), 2.85-2.78 (m, 1 H), 2.52-2.45 (m, 1 H), 2.30-1.95 (m, 4 H), 1.50-1.35 (m, 9 H); 19F NMR (CDCl3) δ –85.42 (3 F), –118.28 (2 F). Me
O C2F5(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9S,10S,13E,15R,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,5-pentafluoropentyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S18 = 9a). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (272 μL) and TBAF (272 μL, 0.272 mmol) to a stirring solution of doubly tagged macrosphelide fraction 2 (52.6 mg, 0.0543 mmol) in THF (5 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S18 (30.0 mg, 84%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25-7.22 (m, 2 H), 7.00-6.94 (m, 1 H), 6.88-6.85 (m, 2 H), 6.85-6.60 (m, 1 H), 6.20-6.04 (m, 2 H), 5.28-5.26 (m, 1 H), 5.06-5.02 (m, 2 H), 4.58-4.54 (m, S22
Curran and coworkers
FMS of Macrosphelides
1 H), 4.47-4.37 (m, 2 H), 4.23-4.21 (m, 1 H), 4.06-4.01 (m, 2 H), 2.64-2.63 (m, 2 H), 2.40-2.07 (m, 4 H), 1.51-1.14 (m, 9 H); 19F NMR (CDCl3) δ –85.42 (3 F), –118.28 (2 F). Me
O C4F9(CH2)3O
OH
O O Me
Me
O
O
O
O
(4S,7E,9R,10R,13E,15S,16S)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione
(S19
=
9b).
The
procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (272 μL) and TBAF (272 μL, 0.272 mmol) to a stirring solution of doubly tagged macrosphelide fraction 2 (52.6 mg, 0.0543 mmol) in THF (5 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S19 (30.0 mg, 84%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.26-7.22 (m, 2 H), 6.92-6.80 (m, 4 H), 6.04-5.95 (m, 2 H), 5.34-5.21 (m, 1 H), 5.14-5.02 (m, 2 H), 4.63-4.59 (m, 1 H), 4.70-4.57 (m, 1 H), 4.42-4.38 (m, 1 H), 4.06-4.02 (m, 3 H), 2.85-2.78 (m, 1 H), 2.52-2.45 (m, 1 H), 2.30-1.95 (m, 4 H), 1.50-1.15 (m, 9 H); 19F NMR (CDCl3) δ –81.04 (3 F), –114.63 (2 F), –124.49 (2 F), –126.02 (2 F). Me
O C2F5(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9S,10R,13E,15R,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,5-pentafluoropentyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S20). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (430 μL) and TBAF (430 μL, 0.430 mmol) to a stirring solution of doubly tagged macrosphelide fraction 3 (92.0 mg, 0.0861 mmol) in THF (9 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S20 (54.8 mg, 86%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.27-7.25 (m, 2 H), 7.11-7.05 (m, 1 H), 6.89-6.86 (m, 2 H), 6.78-6.71 (m, 1 H), 6.18-6.02 (m, 2 H), 5.34-5.21 (m, 1 H), 5.14-5.05 (m, 2 H), 4.64-4.60 (m, 1 H), 4.44-4.40 (m, 2 H), 4.10-4.02 (m, 3 H), 2.86-2.80 (m, 1 H), 2.53-2.51 (m, 1 H), 2.30-2.07 (m, 4 H), 1.46-1.18 (m, 9 H); 19F NMR (CDCl3) δ –85.42 (3 F), –118.29 (2 F).
S23
Curran and coworkers
FMS of Macrosphelides
Me
O C4F9(CH2)3O
OH
O O Me
Me
O O
O
O
(4S,7E,9S,10S,13E,15S,16S)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,7nonafluoroheptyl-oxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S21). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (430 μL) and TBAF (430 μL, 0.430 mmol) to a stirring solution of doubly tagged macrosphelide fraction 3 (92.0 mg, 0.0861 mmol) in THF (9 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S21 (54.8 mg, 86%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.26-7.24 (m, 2 H), 6.99-6.72 (m, 4 H), 6.10-5.99 (m, 2 H), 5.37-5.02 (m, 3 H), 4.72-4.65 (m, 1 H), 4.58-4.31 (m, 3 H), 4.07-4.03 (m, 2 H), 2.73-2.47 (m, 2 H), 2.40-2.05 (m, 4 H), 1.50-1.30 (m, 9 H); 19F NMR (CDCl3) δ –81.04 (3 F), – 114.60 (2 F), –124.42 (2 F), –126.02 (2 F). Me
O C6F13(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9R,10R,13E,15S,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9tridecafluorononyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S22). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (430 μL) and TBAF (430 μL, 0.430 mmol) to a stirring solution of doubly tagged macrosphelide fraction 3 (92.0 mg, 0.0861 mmol) in THF (9 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S22 (54.8 mg, 86%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25-7.22 (m, 2 H), 6.89-6.76 (m, 4 H), 6.09-6.04 (m, 2 H), 5.27-5.25 (m, 1 H), 5.15-5.12 (m, 1 H), 4.97-4.93 (m, 1 H), 4.56-4.49 (m, 2 H), 4.36-4.32 (m, 1 H), 4.06-4.02 (m, 2 H), 3.86-3.84 (m, 1 H), 2.70-2.64 (m, 1 H), 2.55-2.48 (m, 1 H), 2.45-2.05 (m, 4 H), 1.50-1.35 (m, 9 H); 19F NMR (CDCl3) δ –80.78 (3 F), –114.35 (2 F), –121.90 (2 F), –122.87 (2 F), –123.45 (2 F), –126.12 (2 F).
S24
Curran and coworkers
FMS of Macrosphelides
Me
O C2F5(CH2)3O
OH
O O Me
Me
O
O
O
O
(4S,7E,9R,10S,13E,15R,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,5-pentafluoropentyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S23). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (603 μL) and TBAF (603 μL, 0.603 mmol) to a stirring solution of doubly tagged macrosphelide fraction 4 (141 mg, 0.121 mmol) in THF (12 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S23 (85.3 mg, 93%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25-7.22 (m, 2 H), 6.90-6.83 (m, 3 H), 6.70-6.64 (m, 1 H), 6.07-6.00 (m, 2 H), 5.30-5.27 (m, 1 H), 5.14-5.06 (m, 1 H), 4.92-4.87 (m, 1 H), 4.58-4.55 (m, 1 H), 4.41-4.37 (m, 1 H), 4.24-4.20 (m, 2 H), 4.05-4.01 (m, 2 H), 2.63-2.61 (m, 2 H), 2.40-2.06 (m, 4 H), 1.49-1.14 (m, 9 H); 19F NMR (CDCl3) δ –85.42 (3 F), –118.29 (2 F). Me
O C4F9(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9S,10R,13E,15S,16S)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S24). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (603 μL) and TBAF (603 μL, 0.603 mmol) to a stirring solution of doubly tagged macrosphelide fraction 4 (141 mg, 0.121 mmol) in THF (12 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S24 (85.3 mg, 93%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.26-7.24 (m, 2 H), 6.98-6.75 (m, 4 H), 6.126.04 (m, 2 H), 5.40-5.32 (m, 1 H), 5.20-5.05 (m, 2 H), 4.68-4.62 (m, 1 H), 4.45-4.35 (m, 2 H), 4.12-4.02 (m, 3 H), 2.71-2.65 (m, 1 H), 2.60-2.52 (m, 1 H), 2.42-2.08 (m, 4 H), 1.45-1.15 (m, 9 H); 19F NMR (CDCl3) δ –81.05 (3 F), –114.63 (2 F), –124.43 (2 F), –126.05 (2 F).
S25
Curran and coworkers
FMS of Macrosphelides
Me
O C6F13(CH2)3O
OH
O O Me
Me
O
O
O
O
(4S,7E,9S,10S,13E,15S,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione
(S25).
The
procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (603 μL) and TBAF (603 μL, 0.603 mmol) to a stirring solution of doubly tagged macrosphelide fraction 4 (141 mg, 0.121 mmol) in THF (12 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S25 (85.3 mg, 93%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.25-7.22 (m, 2 H), 6.97-6.86 (m, 3 H), 6.70-6.61 (m, 1 H), 6.14-5.92 (m, 2 H), 5.21-5.10 (m, 3 H), 4.54-4.38 (m, 3 H), 4.06-4.03 (m, 2 H), 3.79-3.77 (m, 1 H), 2.64-2.63 (m, 2 H), 2.43-2.12 (m, 4 H), 1.55-1.15 (m, 9 H); 19F NMR (CDCl3) δ–80.78 (3 F), –114.35 (2 F), –121.91 (2 F), –122.87 (2 F), –123.46 (2 F), –126.13 (2 F). Me
O C8F17(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9R,10R,13E,15R,16S)-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heptadecafluoroundecyloxy)benzyloxy)-9-hydroxy-4,10,16-trimethyl-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S26). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (603 μL) and TBAF (603 μL, 0.603 mmol) to a stirring solution of doubly tagged macrosphelide fraction 4 (141 mg, 0.121 mmol) in THF (12 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S26 (85.3 mg, 93%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.22 (m, 2 H), 6.89-6.74 (m, 4 H), 6.03-5.95 (m, 2 H), 5.23-4.96 (m, 3 H), 4.57-4.27 (m, 3 H), 4.06-4.03 (m, 2 H), 3.83-3.75 (m, 1 H), 2.75-2.45 (m, 2 H), 2.45-2.05 (m, 4 H), 1.55-1.15 (m, 9 H); 19F NMR (CDCl3) δ – 80.74 (3 F), –114.33 (2 F), –121.70 (2 F), –121.87 (2 F), –121.90 (2 F),–122.69 (2 F), –123.40 (2 F), – 126.08 (2 F).
S26
Curran and coworkers
FMS of Macrosphelides
Me
O C4F9(CH2)3O
OH
O O Me
Me
O O
O
O
(4S,7E,9R,10S,13E,15S,16S)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S27). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (516 μL) and TBAF (516 μL, 0.516 mmol,) to a stirring solution of doubly tagged macrosphelide fraction 5 (131 mg, 0.103 mmol,) in THF (10 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S27 (83.5 mg, 99%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.27-7.25 (m, 2 H), 6.90-6.71 (m, 4 H), 6.09-5.95 (m, 2 H), 5.50-5.35 (m, 1 H), 5.20-5.02 (m, 1 H), 4.98-4.89 (m, 1 H), 4.72-4.67 (m, 1 H), 4.45-4.20 (m, 2 H), 4.06-4.02 (m, 2 H), 3.91-3.89 (m, 1 H), 2.85-2.45 (m, 2 H), 2.45-2.08 (m, 4 H), 1.55-1.15 (m, 9 H); 19F NMR (CDCl3) δ –81.05 (3 F), –114.63 (2 F), –124.43 (2 F), –126.03 (2 F). Me
O C6F13(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9S,10R,13E,15S,16R)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione
(S28).
The
procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (516 μL) and TBAF (516 μL, 0.516 mmol,) to a stirring solution of doubly tagged macrosphelide fraction 5 (131 mg, 0.103 mmol,) in THF (10 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S28 (83.5 mg, 99%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.21 (m, 2 H), 7.05-6.98 (m, 1 H), 6.88-6.85 (m, 1 H), 6.81-6.73 (m, 1 H), 6.13-5.98 (m, 2 H), 5.23-5.00 (m, 3 H), 4.54-4.50 (m, 1 H), 4.35-4.30 (m, 2 H), 4.06-4.02 (m, 2 H), 3.80-3.75 (m, 1 H), 3.48-3.45 (m, 1 H), 2.71-2.70 (m, 1 H), 2.53-2.51 (m, 1 H), 2.48-2.08 (m, 4 H), 1.46-1.22 (m, 9 H); 19F NMR (CDCl3) δ –80.80 (3 F), –114.40 (2 F), –121.97 (2 F), –122.92 (2 F), –123.50 (2 F), –126.18 (2 F).
S27
Curran and coworkers
FMS of Macrosphelides
Me
O C8F17(CH2)3O
OH
O O Me
Me
O
O
O
O
(4S,7E,9S,10S,13E,15R,16S)-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heptadecafluoroundecyloxy)benzyloxy)-9-hydroxy-4,10,16-trimethyl-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S29). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (516 μL) and TBAF (516 μL, 0.516 mmol,) to a stirring solution of doubly tagged macrosphelide fraction 5 (131 mg, 0.103 mmol,) in THF (10 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) follow by second demixing to afford alcohols S29 (83.5 mg, 99%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.21 (m, 2 H), 6.90-6.76 (m, 4 H), 6.06-5.98 (m, 2 H), 5.40-5.30 (m, 1 H), 5.23-5.12 (m, 1 H), 5.06-4.98 (m, 1 H), 4.60-4.56 (m, 1 H), 4.48-4.40 (m, 1 H), 4.34-4.28 (m, 1 H), 4.06-4.03 (m, 2 H), 3.77-3.73 (m, 1 H), 2.55-2.50 (m, 2 H), 2.45-2.10 (m, 4 H), 1.49-1.25 (m, 9 H); 19F NMR (CDCl3) δ –80.74 (3 F), –114.33 (2 F), –121.68 (2 F), –121.87 (4 F), –122.66 (2 F), –123.36 (2 F), –126.08 (2 F). Me
O C6F13(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9S,10R,13E,15R,16S)-9-Hydroxy-4,10,16-trimethyl-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluorononyloxy)benzyloxy)-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione
(S30).
The
procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (153 μL) and TBAF (153 μL, 0.153 mmol) to a stirring solution of doubly tagged macrosphelide fraction 6a (41.9 mg, 0.0306 mmol) in THF (3 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) to afford alcohol S30 (21.0 mg, 75%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.21 (m, 2 H), 6.95-6.87 (m, 3 H), 6.79-6.71 (m, 1 H), 6.07-5.95 (m, 2 H), 5.41-5.32 (m, 1 H), 5.18-5.14 (m, 1 H), 5.08-5.03 (m, 1 H), 4.57-4.53 (m, 1 H), 4.33-4.29 (m, 2 H), 4.07-4.03 (m, 2 H), 3.78-3.76 (m, 1 H), 2.73-2.68 (m, 1 H), 2.50-2.44 (m, 1 H), 2.42-2.09 (m, 4 H), 1.44-1.23 (m, 9 H); 19F NMR (CDCl3) δ –80.78 (3 F), –114.40 (2 F), –121.97 (2 F), –122.92 (2 F), –123.48 (2 F), –126.16 (2 F).
S28
Curran and coworkers
FMS of Macrosphelides
Me
O C8F17(CH2)3O
OH
O O Me
Me
O
O
O
O
(4S,7E,9R,10S,13E,15S,16R)-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heptadecafluoroundecyloxy)benzyloxy)-9-hydroxy-4,10,16-trimethyl-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S31). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (170 μL) and TBAF (170 μL, 0.170 mmol) to a stirring solution of doubly tagged macrosphelide fraction 6b (46.4 mg, 0.0339 mmol) in THF (4 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) to afford alcohol S31 (22.5 mg, 82%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.24-7.22 (m, 2 H), 6.93-6.86 (m, 3 H), 6.75-6.67 (m, 1 H), 6.07-5.90 (m, 2 H), 5.25-5.23 (m, 1 H), 5.16-5.14 (m, 1 H), 4.99-4.95 (m,1 H), 4.554.51 (m, 1 H), 4.39-4.35 (m, 1 H), 4.27-4.26 (m, 1 H), 4.06-4.02 (m, 2 H), 3.76-3.74 (m, 1 H), 2.76-2.72 (m, 1 H), 2.63-2.61 (m, 1 H), 2.45-2.05 (m, 4 H), 1.50-1.16 (m, 9 H); 19F NMR (CDCl3) δ –80.75 (3 F), –114.37 (2 F), –121.95 (6 F), –122.74 (2 F), –123.44 (2 F), –126.13 (2 F). Me
O C8F17(CH2)3O
OH
O O Me
O O
Me O
O
(4S,7E,9R,10S,13E,15R,16S)-15-(4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heptadecafluoroundecyloxy)benzyloxy)-9-hydroxy-4,10,16-trimethyl-1,5,11-trioxacyclohexadeca-7,13-diene-2,6,12-trione (S32). The procedure described for monotagged macrosphelide S17 was followed with the sequential addition of HOAc (214 μL) and TBAF (214 μL, 0.214 mmol) to a stirring solution of doubly tagged macrosphelide fraction 7 (63.0 mg, 0.0429 mmol) in THF (4 mL). The product was purified by flash chromatography on silica gel (elution with 5-25% EtOAc/hexanes) to afford alcohol S32 (37.8 mg, 97%) as a viscous colorless oil: 1H NMR (300 MHz, CDCl3) δ 7.22-7.25 (m, 2 H), 6.78-6.90 (m, 4 H), 6.00-6.07 (m, 2 H), 5.35-5.48 (m, 1 H), 4.93-4.98 (m, 2 H), 4.54-4.58 (m, 1 H), 4.26-4.40 (m, 2 H), 4.03-4.07 (m, 2 H), 3.75-3.78 (m, 1 H), 2.56-2.62 (m, 1 H), 2.52-2.54 (m, 1 H), 2.05-2.42 (m, 4 H), 1.26-1.50 (m, 9 H); 19F NMR (CDCl3) δ –80.75 (3 F), –114.37 (2 F), –121.95 (6 F), –122.75 (2 F), – 123.44 (2 F), –126.13 (2 F).
S29
Curran and coworkers
FMS of Macrosphelides
Me
O
OH
O HO Me
Me
O O
O
O
(3S,8R,9R,14R,15R)-isomer of Macrosphelides A and E (288). To a stirring solution of fluorous PMB ether S17 (12.0 mg, 0.0197 mmol) in CH2Cl2 (500 μL) at 0 oC was added thioanisole (200 μL), followed by TFA (200 μL). The reaction mixture was stirred at 0 oC for 30 min and was quenched with a saturated solution of NaHCO3. The aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with brine, dried over MgSO4, filtered and concentrated in vacuo. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 288 (4.60 mg, 68%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.886 (dd, J = 16.1, 4.2 Hz, 1 H), 6.788 (dd, J = 16.1, 4.2 Hz, 1 H), 6.050-6.005 (m, 2 H), 5.315-5.301 (m, 1 H), 5.183-4.174 (m, 1 H), 4.999-4.986 (m, 1 H), 4.435-4.432 (m, 1 H), 4.331-4.325 (m, 1 H), 2.725 (dd, J = 16.1, 3.5 Hz, 1 H), 2.549 (dd, J = 16.1, 7.0 Hz, 1 H), 2.485-2.498 (m, 1 H), 2.026-2.011 (m, 1 H), 1.422 (d, J = 6.3 Hz, 3 H), 1.401 (d, J = 6.3 Hz, 3 H), 1.358 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.51, 165.45, 164.89, 147.74, 146.16, 122.63, 121.64, 74.30, 72.52, 72.37, 72.17, 66.96, 39.70, 19.07, 15.66, 14.94. Me
O
OH
O HO Me
O
Me O
O
O
(3S,8S,9S,14R,15R)-isomer of Macrosphelides A and E (289). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (135 μL) and TFA (135 μL) to a stirring solution of fluorous PMB ether S18 (8.20 mg, 0.0135 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 289 (3.50 mg, 76%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.949 (dd, J = 16.1, 3.5 Hz, 1 H), 6.716 (dd, J = 16.1, 3.5 Hz, 1 H), 6.138 (dd, J = 16.1, 2.1 Hz, 1 H), 6.079 (dd, J = 16.1, 2.1 Hz, 1 H), 5.254-5.248 (m, 1 H), 5.015-4.999 (m, 2 H), 4.450-4.431 (m, 2 H), 2.684 (dd, J = 16.1, 3.5 Hz, 1 H), 2.577 (dd, J = 16.1, 8.4 Hz, 1 H), 2.281 (d, J = 8.4 Hz, 1 H), 1.892 (d, J = 7.7 Hz, 1 H), 1.490 (d, J = 7.0 Hz, 3 H), 1.414 (d, J = 7.0 Hz, 3 H), 1.271 (d, J = 6.3 Hz, 3 H); 13C
S30
Curran and coworkers
FMS of Macrosphelides
NMR (175 MHz, CDCl3) δ 169.27, 165.47, 165.05, 147.55, 145.94, 122.56, 121.27, 73.13, 72.97, 72.86, 71.30, 66.88, 40.32, 19.65, 15.81, 14.90. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8R,9R,14S,15S)-isomer of Macrosphelides A and E (290). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (100 μL) and TFA (100 μL) to a stirring solution of fluorous PMB ether S19 (6.50 mg, 0.00918 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 290 (2.00 mg, 65%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.791 (dd, J = 16.1, 3.5 Hz, 1 H), 6.744 (dd, J = 16.1, 4.9 Hz, 1 H), 6.102 (dd, J = 16.1, 2.1 Hz, 1 H), 5.982 (dd, J = 16.1, 2.1 Hz, 1 H), 5.426-5.409 (m, 1 H), 5.154-5.142 (m, 1 H), 5.117-5.093 (m, 1 H), 4.507-4.481 (m, 1 H), 4.322-4.298 (m, 1 H), 2.591-2.526 (m, 2 H), 1.951 (d, J = 7.7 Hz, 1 H), 1.877 (d, J = 9.1 Hz, 1 H), 1.387 (d, J = 6.3 Hz, 3 H), 1.356 (d, J = 6.3 Hz, 3 H), 1.316 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.62, 164.96, 164.74, 147.45, 145.14, 123.21, 122.02, 72.58, 72.57, 72.28, 71.34, 67.50, 40.85, 19.64, 16.31, 14.54. Me
O
OH
O HO Me
O
Me O
O
O
(3S,8S,9R,14R,15R)-isomer of Macrosphelides A and E (291). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (200 μL) and TFA (200 μL) to a stirring solution of fluorous PMB ether S20 (12.0 mg, 0.0197 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 291 (4.39 mg, 65%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 7.016 (dd, J = 15.4, 3.5 Hz, 1 H), 6.900 (dd, J = 16.1, 3.5 Hz, 1 H), 6.098-6.071 (m, 2 H), 5.265-5.241 (m, 1 H), 5.073-5.045 (m, 2 H), 4.356-4.328 (m, 2 H), 3.589 (d, J = 9.1 Hz, 1 H), 2.772 (dd, J = 16.1, 3.5 Hz, 1 H), 2.525 (dd, J = 16.1, 6.3 Hz, 1 H), 2.192 (d, J = 9.1 Hz, 1 H), 1.443 (d, J = 6.3 Hz, 3 H),
S31
Curran and coworkers
FMS of Macrosphelides
1.439 (d, J = 7.0 Hz, 3 H), 1.345 (d, J = 7.0 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.19, 167.34, 165.51, 148.35, 145.63, 121.76, 121.26, 75.43, 73.12, 72.42, 67.11, 39.71, 19.14, 18.00, 15.92. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8S,9S,14S,15S)-isomer of Macrosphelides A and E (292). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (61 μL) and TFA (61 μL) to a stirring solution of fluorous PMB ether S21 (4.30 mg, 0.00607 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 292 (1.35 mg, 65%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.910 (dd, J = 15.4, 3.5 Hz, 1 H), 6.837 (dd, J = 16.1, 4.2 Hz, 1 H), 6.060 (dd, J = 16.1, 2.1 Hz, 1 H), 5.984 (dd, J = 16.1, 1.4 Hz, 1 H), 5.434-5.407 (m, 1 H), 5.238-5.192 (m, 2 H), 4.378-4.361 (m, 1 H), 4.280-4.264 (m, 1 H), 2.630-2.592 (m, 1 H), 2.484 (dd, J = 16.1, 2.1 Hz, 1 H), 2.022 (d, J = 14.7 Hz, 1 H), 1.959 (d, J = 9.1 Hz, 1 H), 1.439 (d, J = 6.3 Hz, 3 H), 1.385 (d, J = 6.3 Hz, 3 H), 1.292 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.65, 165.14, 164.86, 148.59, 146.82, 121.56, 120.73, 73.63, 72.92, 71.89, 71.07, 67.45, 41.20, 20.09, 17.26, 16.08. Me
O
OH
O HO Me
O
Me O
O
O
(3S,8R,9R,14S,15R)-isomer of Macrosphelides A and E (293). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (82 μL) and TFA (82 μL) to a stirring solution of fluorous PMB ether S22 (6.60 mg, 0.00817 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 293 (1.70 mg, 61%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.858-6.816 (m, 2 H), 6.101-6.066 (m, 2 H), 5.354-5.329 (m, 1 H), 5.128-5.113 (m, 1 H), 4.924-4.900 (m, 1 H), 4.502-4.477 (m, 1 H), 4.229-4.204 (m, 1 H), 3.099 (d, J = 7.7 Hz, 1 H), 2.663 (dd, J = 16.1, 3.5 Hz, 1 H), 2.606 (dd, J = 16.1, 7.7 Hz, 1 H), 2.034 (d, J = 7.0 Hz, 1 H), 1.432 (d, J = 6.3 Hz, 3 H),
S32
Curran and coworkers
FMS of Macrosphelides
1.359 (d, J = 6.3 Hz, 3 H), 1.317 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.97, 165.15, 164.53, 146.28, 144.91, 122.56, 122.42, 76.45, 73.69, 72.42, 72.19, 66.65, 40.55, 19.70, 17.57, 14.91. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8R,9S,14R,15R)-isomer of Macrosphelides A and E (294). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (329 μL) and TFA (329 μL) to a stirring solution of fluorous PMB ether S23 (20.0 mg, 0.0329 mmol) in CH2Cl2 (1 mL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 294 (7.60 mg, 68%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.879 (dd, J = 15.4, 3.5 Hz, 1 H), 6.778 (dd, J = 15.4, 3.5 Hz, 1 H), 6.065-6.023 (m, 2 H), 5.299-5.255 (m, 1 H), 5.107-5.075 (m, 1 H), 4.930-4.895 (m, 1 H), 4.402-4.378 (m, 1 H), 4.271-4.244 (m, 1 H), 2.850 (d, J = 7.0 Hz, 1 H), 2.704 (dd, J = 16.1, 3.5 Hz, 1 H), 2.573 (d, J = 16.1, 7.0 Hz, 1 H), 1.970 (d, J = 8.4 Hz, 1 H), 1.474 (d, J = 7.0 Hz, 3 H), 1.436 (d, J = 6.3 Hz, 3 H), 1.301 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.26, 165.83, 164.56, 146.74, 145.60, 122.55, 122.29, 75.42, 75.32, 72.55, 71.66, 66.96, 40.00, 19.40, 18.12, 15.37. Me
O
OH
O HO Me
O O
Me O
O
(3S,8S,9R,14S,15S)-isomer of Macrosphelides A and E (295). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (282 μL) and TFA (282 μL) to a stirring solution of fluorous PMB ether S24 (20.0 mg, 0.0282 mmol) in CH2Cl2 (1 mL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 295 (6.70 mg, 70%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.847-6.816 (m, 2 H), 6.107 (dd, J = 16.1, 2.1 Hz, 1 H), 6.009 (dd, J = 15.4, 1.4 Hz, 1 H), 5.441-5.415 (m, 1 H), 5.191-5.160 (m, 1 H), 5.122-5.090 (m, 1 H), 4.324-4.292 (m, 2 H), 3.468 (d, J = 7.7 Hz, 1 H), 2.593-2.541 (m, 2 H), 1.930 (d, J = 9.1 Hz, 1 H), 1.383 (d, J = 7.0 Hz, 3 H), 1.350 (d, J = 6.3 Hz, 3 H),
S33
Curran and coworkers
FMS of Macrosphelides
1.320 (d, J = 7.0 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.56, 166.65, 165.10, 147.83, 144.46, 122.51, 121.67, 76.19, 74.97, 72.65, 71.91, 67.32, 40.88, 19.73, 17.72, 16.34. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8S,9S,14S,15R)-isomer of Macrosphelides A and E (296). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (78 μL) and TFA (78 μL) to a stirring solution of fluorous PMB ether S25 (6.30 mg, 0.00779 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 296 (2.30 mg, 86%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.930 (dd, J = 15.4, 3.5 Hz, 1 H), 6.843 (dd, J = 15.4, 4.9 Hz, 1 H), 6.111-6.086 (m, 2 H), 5.230-5.208 (m, 2 H), 5.086-5.053 (m, 1 H), 4.429-4.408 (m, 1 H), 4.251-4.231 (m, 1 H), 3.598 (d, J = 7.0 Hz, 1 H), 2.702 (d, J = 16.1, 3.5 Hz, 1 H), 2.644 (dd, J = 16.1, 8.4 Hz, 1 H), 1.966 (d, J = 7.7 Hz, 1 H), 1.464 (d, J = 6.3 Hz, 3 H), 1.370 (d, J = 6.3 Hz, 3 H), 1.331 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 171.97, 165.38, 165.14, 147.81, 144.74, 122.93, 121.08, 76.57, 74.72, 73.23, 70.99, 66.92, 40.83, 19.74, 17.47, 16.02. Me
O
OH
O HO Me
O O
Me O
O
(3S,8R,9R,14R,15S)-isomer of Macrosphelides A and E (297). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (64 μL) and TFA (64 μL) to a stirring solution of fluorous PMB ether S26 (5.80 mg, 0.00639 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 297 (1.85 mg, 85%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.951 (dd, J = 15.4, 4.2 Hz, 1 H), 6.714 (dd, J = 15.4, 3.5 Hz, 1 H), 6.042-6.080 (m, 2 H), 5.368-5.392 (m, 1 H), 5.244-5.301 (m, 1 H), 4.846-4.861 (m, 1 H), 4.393-4.408 (m, 1 H), 4.199-4.211 (m, 1 H), 3.403-3.416 (d, J = 9.1 Hz, 1 H), 2.591-2.675 (m, 1 H), 2.551 (dd, J = 16.8, 2.1 Hz, 1 H), 1.865 (d, J = 8.4 Hz, 1 H), 1.415 (d, J = 6.3 Hz, 3 H), 1.387 (d, J = 7.0 Hz, 3 H), 1.316 (d, J = 7.0 Hz, 3 H); 13C NMR
S34
Curran and coworkers
FMS of Macrosphelides
(175 MHz, CDCl3) δ 171.43, 165.53, 164.64, 145.90, 145.83, 122.56, 122.33, 74.37, 72.33, 72.11, 66.99, 66.66, 40.29, 19.52, 18.15, 15.21. This isomer was accidentally contaminated with isomer 293 prior to recording the 700 MHz NMR spectrum that is reproduced in the section on Copies of Spectra. The peaks from 293 can readily be identified by comparing the two spectra. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8R,9S,14S,15S)-isomer of Macrosphelides A and E (298). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (106 μL) and TFA (106 μL) to a stirring solution of fluorous PMB ether S27 (7.50 mg, 0.0106 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 298 (3.15 mg, 87%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.864 (dd, J = 15.4, 4.2 Hz, 1 H), 6.793 (dd, J = 16.1, 4.9 Hz, 1 H), 6.032 (dd, J = 16.1, 2.1 Hz, 1 H), 5.982 (dd, J = 16.1, 2.1 Hz, 1 H), 5.430-5.402 (m, 1 H), 5.195-5.184 (m, 1 H), 4.928-4.910 (m, 1 H), 4.296-4.273 (m, 1 H), 4.179-4.151 (m, 1 H), 2.651 (d, J = 16.1, 4.2 Hz, 1 H), 2.537-2.484 (m, 2 H), 1.963 (d, J = 8.4 Hz, 1 H), 1.450 (d, J = 6.3 Hz, 3 H), 1.380 (d, J = 6.3 Hz, 3 H), 1.306 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.46, 165.73, 164.46, 148.24, 122.73, 120.92, 74.90, 74.13, 73.39, 71.71, 67.53, 40.97, 19.95, 18.02, 17.04. Me
O
OH
O HO Me
O O
Me O
O
(3S,8S,9R,14S,15R)-isomer, Enantiomer of macrosphelide E (299 = ent-1-E). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (225 μL) and TFA (225 μL) to a stirring solution of fluorous PMB ether S28 (18.2 mg, 0.0225 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide 299 (5.31 mg, 69%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 7.022 (dd, J = 15.4, 3.0 Hz, 1 H), 6.793 (dd, J = 15.4, 4.9 Hz, 1 H), 6.111 (dd, J = 15.4, 1.4 Hz, 1 H), 6.079 (dd, J = 15.4, 1.4 Hz, 1 H), 5.344-5.330 (m, 1 H), 5.139-5.107 (m, 1 H), 4.993-4.965 S35
Curran and coworkers
FMS of Macrosphelides
(m, 1 H), 4.388-4.368 (m, 1 H), 4.208-4.182 (m, 1 H), 3.342 (d, J = 8.4 Hz, 1 H), 3.052 (d, J = 7.0 Hz, 1 H), 2.720 (dd, J = 16.1, 2.8 Hz, 1 H), 2.611 (dd, J = 16.1, 7.7 Hz, 1 H), 1.435 (d, J = 6.3 Hz, 3 H), 1.384 (d, J = 6.3 Hz, 3 H), 1.325 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.94, 166.80, 165.29, 145.33, 144.95, 122.96, 122.31, 76.18, 75.56, 75.27, 73.82, 66.60, 40.51, 19.64, 17.80, 17.36. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8S,9S,14R,15S)-isomer of Macrosphelides A and E (II-1). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (47 μL) and TFA (47 μL) to a stirring solution of fluorous PMB ether S29 (4.30 mg, 0.00473 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide II-1 (1.46 mg, 90%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.910 (dd, J = 15.4, 3.5 Hz, 1 H), 6.899 (dd, J = 15.4, 3.5 Hz, 1 H), 6.074 (dd, J = 16.1, 2.1 Hz, 1 H), 6.059 (dd, J = 16.1, 2.1 Hz, 1 H), 5.320-5.295 (m, 1 H), 5.117-5.089 (m, 1 H), 4.947-4.911 (m, 1 H), 4.430-4.408(m, 1 H), 4.181-4.153 (m, 1 H), 2.651 (dd, J = 14.7, 2.8 Hz, 1 H), 2.503 (dd, J = 14.7, 8.4 Hz, 1 H), 2.208 (d, J = 7.0 Hz, 1 H), 2.074 (d, J = 7.0 Hz, 1 H), 1.462 (d, J = 6.3 Hz, 3 H), 1.367 (d, J = 6.3 Hz, 3 H), 1.337 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.10, 165.25, 164.95, 146.95, 145.78, 122.43, 121.51, 73.98, 72.96, 72.73, 72.19, 67.60, 40.74, 19.48, 17.53,15.69. Me
O
OH
O HO Me
O O
Me O
O
(3S,8S,9R,14R,15S)-isomer of Macrosphelides A and E (II-2). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (165 μL) and TFA (165 μL) to a stirring solution of fluorous PMB ether S30 (15.0 mg, 0.0165 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide II-2 (3.67 mg, 65%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.946 (dd, J = 15.4, 4.9 Hz, 1 H), 6.907 (dd, J = 16.1, 4.9 Hz, 1 H), 6.080 (dd, J = 16.1, 2.1 Hz, 1 H), 6.039 (dd, J = 16.1, 2.1 Hz, 1 H), 5.344-5.318 (m, 1 H), 5.119-5.096 (m, 1 H), 4.921-4.893 (m, 1 H),
S36
Curran and coworkers
FMS of Macrosphelides
4.329-4.306 (m, 1 H), 4.198-4.172 (m, 1 H), 3.274 (d, J = 7.7 Hz, 1 H), 3.038 (d, J = 8.4 Hz, 1 H), 2.647 (dd, J = 14.7, 2.8 Hz, 1 H), 2.573 (d, J = 15.4, 8.4 Hz, 1 H), 1.407 (d, J = 7.0 Hz, 3 H), 1.370 (d, J = 6.3 Hz, 3 H), 1.328 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 171.29, 166.89, 165.10, 145.83, 144.77, 122.71, 122.51, 76.06, 76.04, 75.27, 73.95, 67.54, 40.76, 19.50, 17.78, 17.76. Me
O
OH
O HO Me
Me
O
O
O
O
(3S,8R,9S,14S,15R)-isomer of Macrosphelides A and E (II-3). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (113 μL) and TFA (113 μL) to a stirring solution of fluorous PMB ether S31 (9.10 mg, 0.0113 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide II-3 (3.08 mg, 80%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.839-6.796 (m, 2 H), 6.056 (dd, J = 15.4, 1.4 Hz, 1 H), 5.978 (dd, J = 15.4, 1.4 Hz, 1 H), 5.267-5.242 (m, 1 H), 5.069-5.036 (m, 1 H), 4.979-4.943 (m, 1 H), 4.238-4.215 (m, 1 H), 4.173-4.153 (m, 1 H), 3.494 (d, J = 7.0 Hz, 1 H), 2.708-2.640 (m, 2 H), 2.491 (d, J = 6.3 Hz, 1 H), 1.461 (d, J = 6.3 Hz, 3 H), 1.373 (d, J = 6.3 Hz, 3 H), 1.313 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 171.72, 165.92, 164.55, 145.98, 144.77, 123.00, 76.37, 75.87, 74.56, 73.42, 66.93, 40.74, 19.70, 17.73, 17.40. Me
O
OH
O HO Me
O O
Me O
O
Macrosphelide A (II-4 = 1-A). The procedure described for macrosphelide 288 was followed with the sequential addition of thioanisole (132 μL) and TFA (132 μL) to a stirring solution of fluorous PMB ether S32 (12.0 mg, 0.0132 mmol) in CH2Cl2 (500 μL) at 0 oC. The product was purified by flash chromatography on silica gel (elution with 25-40% EtOAc/hexanes) to afford macrosphelide II-4 (3.67 mg, 65%) as a viscous colorless oil: 1H NMR (700 MHz, CDCl3) δ 6.888-6.852 (m, 2 H), 6.063 (dd, J = 16.1, 1.4 Hz, 1 H), 6.044 (dd, J = 16.1, 1.4 Hz, 1 H), 5.408-5.381 (m, 1 H), 4.959-4.931 (m, 1 H), 4.8804.843 (m, 1 H), 4.253-4.227 (m, 1 H), 4.170-4.141 (m, 1 H), 2.739 (d, J = 7.7 Hz, 1 H), 2.633-2.557 (m, 2 H), 2.324 (d, J = 7.0 Hz, 1 H), 1.464 (d, J = 6.3 Hz, 3 H), 1.376 (d, J = 6.3 Hz, 3 H), 1.330 (d, J = 6.3
S37
Curran and coworkers
FMS of Macrosphelides
Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.19, 165.74, 164.41, 145.88, 144.83, 122.79, 122.39, 75.22, 74.91, 74.27, 73.20, 67.64, 40.97, 19.70, 18.08, 17.85.
Table S1. Tagging pattern for the macrosphelide library double tag number 8aa 8ab 8ba 8ac 8bb 8ca 8ad 8bc 8cb 8da 8bd 8cc 8db 8dc 8cd 8dd
student sample # 288 289 290 291 292 293 294 295 296 297 298 299 II-1 II-2 II-3 II-4
configuration 3S,8R,9R,14R,15R 3S,8S,9S,14R,15R 3S,8R,9R,14S,15S 3S,8S,9R,14R,15R 3S,8S,9S,14S,15S 3S,8R,9R,14S,15R 3S,8R,9S,14R,15R 3S,8S,9R,14S,15S 3S,8S,9S,14S,15R 3S,8R,9R,14R,15S 3S,8R,9S,14S,15S 3S,8S,9R,14S,15R 3S,8S,9S,14R,15S 3S,8S,9R,14R,15S 3S,8R,9S,14S,15R 3S,8R,9S,14R,15S
F
PMB RF C2F5 C2F5 C4F9 C2F5 C4F9 C6F13 C2F5 C4F9 C6F13 C8F17 C4F9 C6F13 C8F17 C8F17 C6F13 C8F17
S38
F
TIPS RF C2F5 C4F9 C2F5 C6F13 C4F9 C2F5 C8F17 C6F13 C4F9 C2F5 C8F17 C6F13 C4F9 C6F13 C8F17 C8F17
Total fluorine # 10 14 14 18 18 18 22 22 22 22 26 26 26 30 30 34
HPLC fraction 1 2 2 3 3 3 4 4 4 4 5 5 5 6a 6b 7
Curran and coworkers
FMS of Macrosphelides
Figure S2. Structures of the macrosphelide stereoisomer library members
OH
O HO Me
O
O
O
288 3S,8R,9R,14R,15R
Me
289 3S,8S,9S,14R,15R
OH HO
O
O
O
292 3S,8S,9S,14S,15S
OH
O
Me
O
O
O
296 3S,8S,9S,14S,15R
Me
O O
297 3S,8R,9R,14R,15S
II-1 3S,8S,9S,14R,15S
O
Me
O O
O
O
II-2 3S,8S,9R,14R,15S
S39
Me
O O
HO O
Me
O
O
O
299 3S,8S,9R,14S,15R ent-macrosphelide E
Me
O
O
OH
O HO
Me
II-3 3S,8R,9S,14S,15R
OH Me
O
OH
O
O
Me O
Me O
HO
Me
OH
298 3S,8R,9S,14S,15S
O
O
O
O
O
O
OH
O HO
Me
Me
Me
295 3S,8S,9R,14S,15S
Me
O
Me
O
O
HO O
O
OH Me
O
Me O
O
Me O
HO
294 3S,8R,9S,14R,15R
OH
O
OH
O
O
O
Me
O
OH
O HO
Me
Me
O
O
291 3S,8S,9R,14R,15R
Me
O
Me
O
Me
O
O
Me
O
O HO
O HO
Me
O
OH
293 3S,8R,9R,14S,15R
O
O
Me
O
Me
O
O
O
O
O
OH
O HO
290 3S,8R,9R,14S,15S
Me
O
Me
O HO
Me
Me
Me O
Me
O
O
OH Me
O
Me
O
O HO
O
O
O
O HO
Me
Me
O
OH Me
O
Me
O
O HO
Me
O
Me
O
Me
O
Me
O O
Me O
II-4 3S,8R,9S,14R,15S macrosphelide A
O
Curran and coworkers
FMS of Macrosphelides
Synthesis of fragments for macrosphelide D candidate structures Scheme S1. Synthesis of fragment 19 1. AD-mix !, 60% 2. TBS-OTf, 88%
O
OTBS
OR
OR
OR1
OH S34
O OH
OR1 15, R = TBS, R1 = MEM 17, R = MEM, R1 = TBS
O OEt
OEt
OEt 1. MEM-Cl, 92% 2. 1N NaOH, 98%
1. DAID, PPh3, HCO2H 2. NH4OH, MeOH/H2O
O
S35, R = TBS, R1 = H; 50% S36, R = H, R1 = TBS; 20%
1. 2,2,2-trichloroethanol, DCC, 95% 2. HF•Pyr, 90%
OH
O OTCE
OMEM 19
OH
O OEt
OH
(4S,5S,E)-Ethyl 4,5-dihydroxyhex-2-enoate (S33):1 The procedure described for diol S2 was followed with AD-mix α (50 g, 1.40 g/mmol) and methanesulfonamide (5.1 g, 53.5 mmol) in t-BuOH/H2O (1:1) (360 mL). A solution of ethyl sorbate (5.0 g, 35.7 mmol) in t-BuOH/H2O (1:1) (10 mL) was added. The product was purified by flash chromatography on silica (elution with 10-70 % EtOAc/hexanes) to give diol S33 (3.7 g, 60%) as a viscous colorless oil. [α]20D = –17.1 (c 0.1 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.92 (dd, J = 16.0, 5.2, Hz, 1 H), 6.14 (dd, J = 15.6, 1.6 Hz, 1 H), 4.20 (q, J = 14.4, 7.2 Hz, 2 H), 4.07–4.04 (m, 1 H), 3.75–3.70 (m, 1 H), 2.66 (d, J = 4.8 Hz, 1 H) 2.36 (d, J = 4.4 Hz, 1 H), 1.30 (t, J = 7.2 Hz, 3 H), 1.24 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 166.3, 1.46.3, 122.6, 75.6, 70.3, 60.6, 19.1, 14.2; TOF-MS (ES) m/z 197.0800 (M + Na)+; calcd for C8H14O4Na, 197.0790. OTBS
O OEt
OH
[1] Gao, D.; O’Doherty, A. G.; J. Org. Chem. 2005, 70, 9932-9939.
S40
Curran and coworkers
(4S,5S,E)-Ethyl
FMS of Macrosphelides
5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate
(S34):
The
procedure
described for TBS ether S4 was followed with diol S33 (7.2 g, 41.3 mmol), 2,6-lutidine (13.3 g, 124.0 mmol) and TBSOTf (11.5 g, 43.4 mmol) in CH2Cl2 (400 mL). The product was purified by flash chromatography on silica gel (elution with 10-15% EtOAc/hexanes) to afford TBS ether S34 (10.5 g, 88%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.89 (dd, J = 15.6, 4.8 Hz, 1 H), 6.11 (dd, J = 15.6, 1.6 Hz, 1 H), 4.2 (q, J = 14.4, 7.2 Hz, 2 H), 4.03–3.99 (m, 1 H), 3.79–3.73 (m, 1 H), 2.59 (d, J = 5.6 Hz, 1 H), 1.28 (t, J = 7.2 Hz, 3 H), 1.21 (d, J = 6.4 Hz, 3 H), 0.88 (s, 9 H), 0.09 (s, 3 H), 0.07 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 166.3, 147.2, 122.0, 75.2, 71.1, 60.3, 25.7, 20.1, 18.0, 14.2, –4.4, –4.9; TOF-MS (AP) m/z 289.1850 (M + H)+; calcd for C14H29O4Si: 289.1835. OR
O OEt
OR1 S35, R = TBS, R1 = H S36, R = H, R1 = TBS
(4R,5S,E)-Ethyl 5-(tert-butyldimethylsilyloxy)-4-hydroxyhex-2-enoate (S35) and (4R,5S,E)-ethyl 4(tert-butyldimethylsilyloxy)-5-hydroxyhex-2-enoate (S36): To a cooled stirred mixture of TBS ether S34 (4.7 g, 12.0 mmol), PPh3 (9.5 g, 36.0 mmol) and Formic acid (1.9 g, 36.0 mmol) in Benzene (25 mL), DAID (15.7 g, 36.0 mmol) was added to the reaction mixture over 45 min via syringe pump and the reaction mixture was stirred at room temperature for 16 h. The reaction mixture was quenched with H2O, the aqueous phase was extracted with CH2Cl2, and the combined organic extracts were washed with a saturated solution of brine. The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo. The crude reaction mixture was dissolved in MeOH/H2O (3:1) (60 mL), NH4OH (60 mL) was added, and the reaction mixture was stirred at room temperature for 1 hour. The reaction mixture was quenched with a saturated aqueous NH4Cl, the aqueous phase was extracted with Et2O, and the combined organic extracts were washed with brine. The combined organic extracts were dried over MgSO4, filtered and concentrated. The crude product was purified by flash chromatography on silica gel (elution with 1015% EtOAc/hexanes) to furnish the less polar TBS ether S35 (2.25 g, 50%) as a colorless oil and the more polar TBS ether S36 (0.9 g, 20%) as a colorless oil. TBS ether S35: 1H NMR (700 MHz, CDCl3) δ 6.88 (dd, J = 15.4, 4.2 Hz, 1 H), 6.09 (dd, J = 15.4, 1.4 Hz, 1 H), 4.24–4.22 (m, 1 H), 4.20 (q, J = 14.0, 7.0 Hz, 2 H), 3.93–3.90 (m, 1 H), 2.42 (d, J = 3.5 Hz, 1 H), 1.28 (t, J = 7.0 Hz, 3 H), 1.08 (d, J = 6.3 Hz, 3 H), 0.89 (s, 9 H), 0.08 (s, 6 H); 13C NMR (175 MHz, CDCl3) δ 166.3, 145.6, 121.8, 74.8, 70.7, 60.4, S41
Curran and coworkers
FMS of Macrosphelides
25.7, 18.0, 17.8, 14.2, –4.5, –5.0; TOF-MS (AP) m/z 289.1842 (M + H)+; calcd for C14H29O4Si: 289.1835. TBS ether S36: [α]20D = -9.48 (c 0.5 CHCl3); 1H NMR (700 MHz, CDCl3) δ 6.91 (dd, J = 15.4, 4.9 Hz, 1 H), 6.00 (dd, J = 15.4, 1.4 Hz, 1 H), 4.23–4.17 (m, 3 H), 3.84–3.80 (m, 1 H), 2.12 (s, 1 H), 1.29 (t, , J = 7 Hz, 3 H), 1.12 (d, , J = 7 Hz, 3 H), 0.9 (s, 9 H), 0.08 (s, 3 H), 0.05 (s, 3 H); ); 13C NMR (175 MHz, CDCl3) δ 166.3, 146.2, 122.6, 75.8, 70.6, 60.5, 25.9, 18.1, 17.5, 14.2, –4.5, –5.0; TOF-MS (AP) m/z 289.1860 (M + H)+; calcd for C14H29O4Si: 289.1835. OTBS
O OEt
OMEM
(4R,5S,E)-Ethyl 5-(tert-butyldimethylsilyloxy)-4-(2-methoxyethoxy-methoxy)hex-2-enoate (S37): To a stirred solution of alcohol S35 (1.44 g, 4.97 mmol) and diisopropylethylamine (9.65 g, 74.62 mmol) in CH2Cl2 (25 mL) , 2-methoxyethixymethy chloride (7.44 g, 59.70 mmol) was added to solution at 0 oC and then mixture was treated with DMAP (0.12 g 1.0 mmol). Resultant mixture was stirred for 60 h, quenched with water and extracted with CH2Cl2. The combined extracts were washed with brine, dried over Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (elution with 10-15% EtOAc/hexanes) to give MEM ether S37 (1.72 g, 92%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.84 (dd, J = 16.0, 6.8 Hz, 1 H), 5.98 (dd, J = 15.6, 1.2 Hz, 1 H), 4.72 (dd, J = 10.0, 6.8 Hz, 2 H), 4.18 (q, J = 14.4, 7.2 Hz, 2 H), 4.07–4.03 (m, 1 H), 3.84–3.77 (m, 1 H), 3.76–3.72 (m, 1 H), 3.66–3.61 (m, 1 H), 3.53–3.51 (m, 2 H), 3.37 (s, 3 H), 1.27 (t, J = 7.2 Hz, 3 H), 0.85 (s, 9 H), 0.03 (s, 3 H), 0.01 (s, 3 H); 13C NMR (175 MHz, CDCl3) δ 166.0, 145.6, 123.4, 94.0, 79.9, 71.6, 70.6, 67.2, 60.3, 59.0, 25.7, 19.9, 18.0, 14.2, –4.6, –4.9; TOF-MS (AP) m/z 399.2203 (M + Na)+; calcd for C18H36O6SiNa: 399.2179. OMEM
O OEt
OTBS
(4R,5S,E)-Ethyl 4-(tert-butyldimethylsilyloxy)-5-(2-methoxyethoxy-methoxy)hex-2-enoate (S38): The procedure described for MEM ether S37 was followed with alcohol S36 (1.16 g, 4.02 mmol), diisopropylethylamine (7.80 g, 60.32 mmol), 2-methoxyethoxy-methyl chloride (6.0g, 48.25 mmol) and DMAP (0.098g, 0.80 mmol) in CH2Cl2 (20 mL). The crude product was purified by flash chromatography on silica gel (elution with 10-15% EtOAc/hexanes) to afford MEM ether S38 (1.39 g, 92%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.95 (dd, J = 15.6, 4.8 Hz, 1 H), 6.02 (dd, J = 15.6, S42
Curran and coworkers
FMS of Macrosphelides
1.6 Hz, 1 H), 4.73 (dd, J = 9.2, 6.8 Hz, 2 H), 4.24 (dt, J = 4.4, 1.6 Hz, 1 H), 4.18 (dq, J = 14.4, 7.2, 2.0 Hz, 2 H), 3.77–3.71 (m, 1 H), 3.69–3.63 (m, 2 H), 3.55–3.51 (m, 2 H), 3.37 (s, 3 H), 1.28 (t, J = 7.2 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 0.90 (s, 9 H), 0.05 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 166.4, 147.9, 121.6, 94.0, 75.5, 74.8, 71.7, 66.9, 60.3, 59.0, 25.8, 18.2, 15.5, 14.2, –4.6, –4.9; TOF-MS (AP) m/z 399.2198 (M + Na)+; calcd for C18H36O6SiNa: 399.2179. OTBS
O OH
OMEM
(4R,5S,E)-5-(Tert-butyldimethylsilyloxy)-4-(2-methoxyethoxy-methoxy)hex-2-enoic acid (15): To a stirred solution of ethyl ester 37 (0.77 g, 2.04 mmol) in MeOH (22 mL), 1 N NaOH (12.2 mL) was added to solution at room temperature and mixture stirred for 16 h at the same temperature. The excess of MeOH was evaporated under reduced pressure and then neutralized with 2 N HCl. The mixture was extracted with EtOAc, dried over Na2SO4, and concentrated to afford acid 15 (0.69 g, 98%) as a colorless oil which was used for next step without further purification. 1H NMR (400 MHz, CDCl3) δ 6.97 (dd, J = 16.0, 6.4 Hz, 1 H), 6.01 (dd, J = 15.6, 1.2 Hz, 1 H), 4.73 (dd, J = 14.8, 7.2 Hz, 2 H), 4.10– 4.07 (m, 1 H), 3.86–3.80 (m, 1 H), 3.78–373 (m, 1 H), 3.68–3.63 (m, 1 H), 3.57–3.49 (m, 2 H), 3.37 (s, 3 H), 1.16 (d, J = 6.4 Hz, 3 H), 0.85 (s, 9 H), 0.03 (s, 3 H), 0.02 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 171.2, 148.5, 122.5, 94.1, 79.9, 71.6, 70.5, 67.2, 59.0, 25.7, 19.9, 18.0, –4.7, –4.8; TOF-MS (ES) m/z 347.1901 (M – H)-; calcd for C16H31O6Si: 347.1890. OMEM
O OH
OTBS
(4R,5S,E)-4-(Tert-butyldimethylsilyloxy)-5-(2-methoxyethoxy-methoxy)hex-2-enoic acid (17): The procedure described for acid 15 was followed with ethyl ester S38 (1.40 g, 3.72 mmol) and 1 N NaOH (22.3 mL) in MeOH (40.5 mL) to furnish acid 17 (1.26 g, 98%) as a colorless oil which was used for next step without further purification. 1H NMR (400 MHz, CDCl3) δ 7.09 (dd, J = 15.6, 4.8 Hz, 1 H), 6.05 (dd, J = 15.6 , 1.6 Hz, 1 H), 4.74 (dd, J = 11.2, 7.2 Hz, 2 H), 4.28–4.25 (m, 1 H), 3.79–3.73 (m, 1 H), 3.70–3.67 (m, 2 H), 3.57–3.52 (m, 2 H), 3.38 (s, 3 H), 1.14 (d, J = 6.4 Hz, 3 H), 0.91 (s, 9 H), 3.07 (s, 3 H), 3.03 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 171.4, 150.8, 120.8, 93.9, 75.5, 74.8, 71.7, 66.9, 59.0, 25.8, 18.2, 15.6, –4.7, –4.8; TOF-MS (ES) m/z 347.1865 (M – H)–; calcd for C16H31O6Si: 347.1890. S43
Curran and coworkers
FMS of Macrosphelides
OTBS
O OTCE
OMEM
(4R,5S,E)-2,2,2-Trichloroethyl
5-(tert-butyldimethylsilyloxy)-4-(2-methoxyethoxymethoxy)hex-2-
enoate (S39): To a stirred solution of acid 15 (0.7 g, 2.0 mmol) and 2,2,2-trichloroethanol (0.45 g, 3.0 mmol) in CH2Cl2 (10 mL), DCC (0.62 g, 3 mmol) was added to reaction mixture and then treated with DMAP (0.037 g, 0.30 mmol) at room temperature. The reaction mixture was stirred at the same temperature for 16 h, and then solvents were concentrated under reduced pressure, residue was diluted with diethylether, and the DCU precipitate was removed by Buchner filtration. The mother liquor was concentrated in vacuo and the product was purified by flash chromatography on silica gel (elution with 5–10% EtOAc/hexanes) to yield ester S39 (0.915 g, 95%) as a colorless oil. [α]20D = -21.77 (c 1.0 CHCl3); 1H NMR (700 MHz, CDCl3) δ 7.04 (dd, J = 16.1, 6.3 Hz, 1 H), 6.11 (dd, J = 16.1, 0.7 Hz, 1 H), 4.80 (q, J = 40.6, 11.9 Hz, 2 H), 4.74 (dd, J = 18.9, 6.3 Hz, 2 H), 4.09 (t, J = 5.6 Hz, 1 H), 3.86–3.82 (m, 1 H), 3.78–3.75 (m, 1 H), 3.68–3.65 (m, 1 H), 3.54–3.52 (m, 2 H), 3.37 (s, 3 H), 1.19 (d, J = 6.3 Hz, 3 H), 0.86 (s, 9 H), 0.04 (s, 3 H), 0.02 (s, 3 H); 13C NMR (175 MHz, CDCl3) δ 164.2, 148.7, 121.6, 95.0, 94.2, 80.0, 74.0, 71.6, 70.5, 67.3, 59.0, 25.7, 20.2, 18.0, –4.6, –4.8; TOF-MS (AP) m/z 501.1069 (M + Na)+; calcd for C18H33O6NaSi: 501.1010. OH
O OTCE
OMEM
(4R,5S,E)-2,2,2-Trichloroethyl 5-hydroxy-4-(2-methoxyethoxymethoxy)hex-2-enoate (19): To a stirred solution of TBS ether S39 (2.7 g, 5.63 mmol) in THF, pyridine (7 mL) was added to the solution and then mixture was treated with HF•pyr (10.5 mL) at 0 oC. After stirring at room temperature for 48 h, the reaction mixture was quenched with a saturated aqueous NaHCO3, extracted with CH2Cl2, washed brine. The combined extracts were dried over Na2SO4, concentrated, and the residue was purified by column chromatography using silica gel, EtOAc/Hexane (1:1) to give alcohol 19 (1.85 g, 90%) as a colorless oil. 1H NMR (700 MHz, CDCl3) δ 7.03 (dd, J = 16.1, 6.3 Hz, 1 H), 6.16 (dd J = 16.1, 1.4 Hz, 1 H), 4.81 (d, J = 7.7 Hz, 1 H), 4.79 (d, J = 2.8 Hz, 2 H), 4.73 (d, J = 7.7 Hz, 1 H), 4.28–4.27 (m, 1 H), 3.99–3.95 (m, 1 H), 3.86–3.83 (m, 1 H), 3.70–3.67 (m, 1 H), 3.86–3.83 (m, 1 H), 3.70–3.67 (m, 1 H), 3.55 (t, J = 4.2 Hz, 2 H), 3.38 (s, 3 H), 2.91 (d, J = 6.3 Hz, 1 H), 1.15 (d, J = 6.3 Hz, 3 H); 13C NMR
S44
Curran and coworkers
FMS of Macrosphelides
(175 MHz, CDCl3) δ 164.0, 146.6, 121.9, 94.8, 94.7, 81.0, 74.0, 71.6, 68.9, 67.6, 58.9, 17.6; TOF-MS (AP) m/z 387.0170 (M + Na)+; calcd for C12H19O6NaCl3: 387.0117. Scheme S2. Synthesis of fragment 14 R R1 O OMe (S) R = OH; R1 = H (R) R = H; R1 = OH
1. TBS-Cl, 97% 2. 1N NaOH, 98%
R R1 O OH S-5, R = OTBS; R1 = H R-5, R = H; R1 = OTBS
TBSO
1. 2,2,2-trichloro ethanol DCC, 95% 2. 2N HCl, 80%
OH O OTCE 14
O O
(S)-Methyl 3-(tert-butyldimethylsilyl-oxy)butanoate (S40): To a solution of methyl (S)-(+)-3hydroxybutyrate (2.9 g, 24.55 mmol), imidazole (2.5 g, 36.82 mmol), TBS-Cl (4.5 g, 29.5 mmol) in DMF (50 mL) was stirred for 16 h. Reaction mixture was quenched with aq. NaHCO3 and ether, and then stirred for 30 min. The layers were separated and the aqueous layer was extracted with ether, washed with brine, dried over MgSO4 and concentrated to afford crude product, which was subjected to chromatography using silica gel, Hexane/EtOAc (10:0 – 9:1) to give TBS ether S40 (5.5 g, 97%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.30–4.22 (m, 1 H), 3.64 (s, 3 H), 2.46 (dd, J = 14.4, 7.6 Hz, 1 H), 2.36 (dd, J = 14.8, 5.2 Hz, 1 H), 1.18 (d, J = 6.0 Hz, 3 H), 0.85 (s, 9 H), 0.04 (s, 3 H), 0.2 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 172.1, 65.8, 51.4, 44.7, 26.1, 23.9, 17.9, –4.5, –5.1 ppm. TBSO
O O
(R)-Methyl 3-(tert-butyldimethylsilyl-oxy)butanoate (S41): The procedure described for TBS ether S40 was followed with methyl (R)-(–)-3-hydroxybutyrate (2.5 g, 21.16 mmol), Imidazole (2.16 g, 31.74 mmol), TBS-Cl (3.83 g, 25.4 mmol) in DMF (42 mL). The product was purified by flash chromatography on silica gel (elution with 0-10% EtOAc/hexanes) to afford TBS ether S41 (4.75 g, 97%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.30–4.22 (m, 1 H), 3.65 (s, 3 H), 2.46 (dd, J = 14.4, 7.6 Hz, 1 H), 2.36 (dd, J = 14.4, 5.2 Hz, 1 H), 1.18 (d, J = 6.4 Hz, 3 H), 0.85 (s, 9 H), 0.05 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 172.1, 65.8, 51.4, 44.7, 25.7, 23.9, 17.9, –4.6, –5.1 ppm.
S45
Curran and coworkers
FMS of Macrosphelides
TBSO
O OH
(S)-3-(Tert-butyldimethylsilyl-oxy)butanoic acid (S-5): A solution of methyl ester S40 (2.5 g, 10.75 mmol), NaOH (1 N, 53.8 mL) in MeOH (95 mL) was stirred for over night. Most of MeOH was evaporated under reduced pressure and the residue was extracted with Ether. The aqueous layer was acidified with 2 N HCl to pH-4 and then mixture was extracted with ether, dried over MgSO4 and solvents were evaporated to afford acid (S-5) (2.3 g, 98%) as colorless oil which was used without further purification. 1H NMR (400 MHz, CDCl3) δ 4.30–4.25 (m, 1 H), 2.50 (dd, J = 14.8, 6.8 Hz, 1 H), 2.44 (dd, J = 14.8, 5.2 Hz, 1 H), 1.21 (d, J = 6.4 Hz, 3 H), 0.86 (s, 9 H), 0.07 (s, 3 H), 0.05 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 177.3, 65.6, 44.4, 25.7, 23.7, 17.9, –4.5, –5.0; TOF-MS (ES) m/z 217.1250 (M - H)-; calcd for C10H21O3Si: 218.1260. TBSO
O OH
(R)-3-(Tert-butyldimethylsilyl-oxy)butanoic acid (R-5): The procedure described for acid (S-5) was followed with methyl ester S41 (1 g, 4.30 mmol) and NaOH (1 N, 21.5 mL) in MeOH (21.5 mL) produce acid (R-5) (0.91 g, 97%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.32–4.23 (m, 1 H), 2.50–2.42 (m, 2 H) 1.22 (d, J = 6.4 Hz, 3 H), 0.86 (s, 9 H), 0.09 (s, 3 H), 0.06 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 177.2, 65.6, 44.3, 25.7, 23.6, 17.9, –4.6, –5.1; TOF-MS (ES) m/z 217.1242 (M - H)-; calcd for C10H21O3Si: 218.1260. TBSO
O OTCE
(S)-2,2,2-Trichloroethyl 3-((tert-butyldimethylsilyl)oxy)butanoate (S42): To a stirring solution of acid (S-5) (2.3 g, 10.53 mmol) and 2,2,2-trichloroethanol (2.36 g, 15.8 mmol) in DCM (21 mL) was added DCC (3.26 g, 15.8 mmol) and DMAP (193 mg, 1.58 mmol). The reaction mixture was stirred for 1 h, concentrated in vacuo, diluted with hexanes, and the DCU precipitate was removed by Buchner filtration. The mother liquor was concentrated in vacuo and the product was purified by flash chromatography on silica gel (elution with 5% EtOAc/hexanes) to yield ester (S42) (3.5 g, 95%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.72 (q, J = 19.2, 12.0 Hz, 2 H), 4.37–4.29 (m, 1 H), 2.63 (dd, J = 15.2, 7.6 Hz, 1 H), 2.53 (dd, J = 14.8, 5.2 Hz, 1 H), 1.23 (d, J = 6.0 Hz, 3 H), 0.86 (s, 9 H), 0.07 (s, 3 H), 0.04 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.9, 94.9, 74.0, 65.5, 44.4, 25.7, 23.8, 17.9, – S46
Curran and coworkers
FMS of Macrosphelides
4.5, –5.0 ppm. OH O OTCE
(S)-2,2,2-Trichloroethyl 3-hydroxybutanoate (14): To a solution of TBS ether (S42) (1.7 g, 4.86 mmol) and HCl (2 N, 30 mL) in THF (120 mL) was stirred at rt for 16 h. The reaction mixture was quenched with aq. NaHCO3 and extracted with DCM, dried over Na2SO4, filtered and solvents were evaporated. The residue was purified by flash chromatography using silica gel, hexane/EtOAc (9:1–8:2) to yield alcohol 14 (0.91 g, 80%) as colorless oil. 1H NMR (400 MHz, CDCl3) δ 4.78 (q, J = 16.0, 12.0 Hz, 2 H), 4.33–4.27 (m, 1 H), 2.65–2.60 (m, 3 H), 1.28 (d, J = 6.0 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 170.9, 94.7, 73.9, 64.2, 42.7, 22.5 ppm. Synthesis of macrosphelide D 10, Figure 6 of paper
OTBS
O O
O
OMEM
(4R,5S,E)-(S)-4-Oxo-4-(2,2,2-trichloroethoxy)butan-2-yl
OTCE
5-(tert
butyldimethylsilyloxy)-4-(2-
methoxyethoxymethoxy)hex-2-enoate (S43): The procedure described for TCE-ester S42 was carried out with the sequential addition of DMAP (60 mg, 0.50 mmol), CSA (58 mg, 0.25 mmol) and DCC (540 mg, 2.60 mmol) to a stirring solution of alcohol 14 (730 mg, 3.10 mmol) and carboxylic acid 15 (865 mg, 2.48 mmol) in CH2Cl2 (25 mL). The product was purified by flash chromatography on silica gel (elution with 5% EtOAc/hexanes) to afford diester S43 (1.3 g, 93%) as a colorless oil. [α]20D = 16.56 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.83 (dd, J = 16.0, 6.4 Hz, 1 H), 5.95 (dd, J = 15.6, 1.2 Hz, 1 H), 5.40–5.34 (m, 1 H), 4.77–4.68 (m, 4 H), 4.06–4.02 (m, 1 H), 3.84–3.77 (m, 1 H), 3.77– 3.73 (m, 1 H), 3.65–3.60 (m, 1 H), 3.54–3.51 (m, 2 H), 3.37 (s, 3 H), 2.83 (dd, J = 16.0, 7.6 Hz, 1 H), 2.68 (dd, J = 15.6, 5.6 Hz, 1 H), 1.36 (d, J = 6.4 Hz, 3 H), 1.15 (J = 6.0 Hz, 3 H), 0.85 (s, 9 H), 0.03 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 168.5, 165.0, 146.2, 123.2, 94.7, 93.9, 79.8, 74.0, 71.6, 70.5, 67.2, 67.0, 59.0, 40.4, 25.7, 19.9, 19.8, 18.0, –4.6, –4.8; TOF-MS (ES) m/z 587.1360 (M + Na)+; calcd for C22H39O8SiCl3Na: 587.1377.
S47
Curran and coworkers
FMS of Macrosphelides
OH
O O
O
OMEM
OTCE
(4R,5S,E)-(S)-4-Oxo-4-(2,2,2-trichloroethoxy)butan-2-yl 5-hydroxy-4-(2-methoxy-ethoxymethoxy)hex-2-enoate (16): The procedure described for alcohol 19 was carried out with the sequential addition of pyridine (2.4 mL), HF•pyr (3.6 mL) to TBS ether S43 (1.1 g, 2.0 mmol) in THF (30 mL). The crude product was purified by column chromatography using silica gel, EtOAc/Hexane (1:1) to afford alcohol 16 (0.78 g, 90%) as a colorless oil. [α]20D = -34.67 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.83 (dd, J = 15.6, 6.0 Hz, 1 H), 6.00 (dd, J = 16.0, 1.6 Hz, 1 H), 5.38–5.33 (m, 1 H), 4.77–4.68 (m, 4 H), 4.22–4.19 (m, 1 H), 3.96–3.88 (m, 1 H), 3.86–3.82 (m, 1 H), 3.68–3.63 (m, 1 H), 3.55–3.53 (m, 2 H), 3.37 (s, 3 H), 2.82 (dd, J = 15.6, 7.6 Hz, 1 H), 2.69 (dd, J = 15.6, 5.2 Hz, 1 H), 1.36 (d, J = 6.4 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 168.5, 164.9, 144.2, 123.6, 94.7, 94.4, 80.8, 73.9, 71.6, 68.9, 67.5, 67.2, 58.9, 40.4, 19.8, 17.5; TOF-MS (AP) m/z 473.0522 (M + Na)+; calcd for C16H25O8Cl3Na: 473.0513. OMEM
O O
O
TBSO
O OMEM
O OTCE
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-((S)-4-oxo-4-(2,2,2-trichloroethoxy butan-2-yl)oxy)hex-4-en-2-yl
4-(tert-butyldimethylsilyloxy)-5-(2-methoxyethoxymethoxy)hex-2-
enoate (S44): The procedure described for TCE-ester S42 was followed with the sequential addition of DMAP (36 mg, 0.30 mmol), CSA (34 mg, 0.15 mmol) and DCC (300 mg, 1.46 mmol) to a stirring mixture of alcohol 16 (660 mg, 146 mmol) and carboxylic acid 17 (510 mg, 1.46 mmol) in CH2Cl2 (14.6 mL). The product was purified by flash chromatography on silica gel (elution with 20–30% EtOAc/hexanes) to afford triester S44 (0.980 mg, 86%) as a colorless oil. [α]20D = -14.84 (c 1.0 CHCl3); 1
H NMR (400 MHz, CDCl3) δ 6.96 (dd, J = 15.6, 4.8 Hz, 1 H), 6.82 (dd, J = 15.6, 6.0 Hz, 1 H), 6.03
(dd, J = 16.0, 1.6 Hz, 1 H), 6.01 (dd, J = 15.6, 2.0 Hz, 1 H), 5.41–5.35 (m, 1 H), 5.11–5.06 (m, 1 H), 4.78–4.68 (m, 6 H), 4.40 – 4.37 (m, 1 H), 4.26 (dt, J = 4.4, 2.0 Hz, 1 H), 3.78–3.71 (m, 2 H), 3.7–3.62 (m, 3 H), 3.54–3.50 (m, 4 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.85 (dd, J = 16.0, 7.6 Hz, 1 H), 2.70 (dd, J = 16.0, 5.6 Hz, 1 H), 1.38 (d, J = 6.4 Hz, 3 H), 1.24 (d, J = 6.4 Hz, 3 H), 1.13 (d, J = 6.4 Hz, 3 H), 9.0 (s, 9 S48
Curran and coworkers
FMS of Macrosphelides
H), 0.06 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 168.5, 165.5, 164.8, 148.7, 143.8, 123.9, 121.3, 94.7, 94.0, 93.8, 77.2, 76.5, 75.5, 74.8, 74.0, 71.7, 71.6, 71.2, 67.3, 67.2, 66.9, 59.0, 40.4, 25.8, 19.9, 18.2, 15.5, 15.0, –4.6, –4.8; TOF-MS (ES) m/z 803.2403 (M + Na)+; calcd for C32H55O13Cl3SiNa: 803.2375. OMEM
O O
O
OH
O
O
OMEM
OTCE
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-((S)-4-oxo-4-(2,2,2-trichloroethoxybutan-2-yl)oxy)hex-4-en-2-yl 4-hydroxy-5-(2-methoxyethoxy-methoxy)hex-2-enoate (S45): The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.8mL), HF•pyr (2.4 mL) to TBS ether S44 (925 mg, 1.18 mmol) in THF (20 mL). The crude product was purified by column chromatography using silica gel (elution with 50–60% EtOAc/hexanes) to give alcohol S45 (0.710 mg, 90%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ 6.93 (dd, J = 15.6, 4.4 Hz, 1 H), 6.81 (dd, J = 15.6, 6.0 Hz, 1 H), 6.12 (dd, J = 15.6, 2.0 Hz, 1 H), 6.02 (dd, J = 15.6, 1.6 Hz, 1 H), 5.41–5.34 (m, 1 H), 5.13–5.05 (m, 1 H), 4.77–4.67 (m, 6 H), 4.43–4.39 (m, 1 H), 4.39–4.36 (m, 1 H), 3.87–3.75 (m, 3H), 3.69–3.60 (m, 2 H), 3.56–3.50 (m, 4 H), 3.47 (d, J = 6.0 Hz, 1 H), 3.38 (s, 3 H), 3.36 (s, 3 H), 2.84 (dd, J = 16.0, 7.6 Hz, 1 H), 2.69 (dd, J = 16.0, 5.6 Hz, 1 H), 1.37 (d, J = 6.4 Hz, 3 H), 1.22 (d, J = 6.4 Hz, 3 H), 1.13 (d, J = 6.4 Hz, 1 H); 13C NMR (100 MHz, CDCl3) δ 168.5, 165.5, 164.8, 146.6, 143.8, 123.9, 121.7, 94.9, 94.7, 93.8, 77.8, 76.5, 73.9, 73.0, 71.6, 71.5, 71.2, 67.5, 67.3, 67.2, 59.0, 58.9, 40.4, 19.8, 15.3, 14.9; TOF-MS (ES) m/z 689.1487 (M + Na)+; calcd for C26H41O13Cl3SiNa: 689.1510. O MEMO
O OMEM
O O O
S49
O
Curran and coworkers
FMS of Macrosphelides
(2S,6R,7E,11S,12R,13E)-12-(2-Methoxyethoxymethoxy)-6-((S)-1-(2-methoxyethoxymethoxy)ethyl)2,11-dimethyl-1,5,10-trioxacyclopentadeca-7,13-diene-4,9,15-trione (S46):2 To a stirring solution of trichloroethyl esters S45 (74 mg, 0.113 mmol in THF (5.4 mL) was added NaOAc/HOAc buffer solution (5.4 mL, pH 4.65), followed by zinc dust (74 mg, 1.13 mmol). The reaction mixture was stirred vigorously at room temperature for 16 h. The reaction mixture was filtered and the filtrate was acidified with 2 M aqueous HCl and extracted with EtOAc. The organic layer was dried over Na2SO4 and evaporated to give crude hydroxy-acid 18 (60 mg), which was used without further purification. 2,4,6 Trichlorobezoyl chloride (54 mg, 0.22 mmol) was added to mixture of hydroxy-acid 18 (60 mg, 0.11 mmol) and Et3N (25 mg, 0.25 mmol) in dry THF (2 mL), after which the reaction was stirred for 2 h at room temperature. Mixture was filtered and filtrate was diluted with toluene (55 mL) and added to a solution of DMAP (82 mg, 0.67 mmol) in toluene (10 mL) at 85 oC over 6 h by using syringe pump and then reaction mixture heated another 2 h. The reaction mixture was washed a saturated aqueous citric acid, NaHCO3, and with brine, dried with Na2SO4 and evaporated to get crude mixture. The crude product was separated by preparative TLC using diethyl ether to give S46 (15 mg, 26%) as colorless oil. 1H NMR (700 MHz, CDCl3) δ 5.56 (dd, J = 16.1, 9.1 Hz, 1 H), 6.51 (dd, J = 16.1, 8.4 Hz, 1 H), 5.97 (d, J = 15.4 Hz, 1 H), 5.90 (d, J = 16.1, Hz, 1 H), 5.35–5.31 (m, 1 H), 5.12 (dd, J = 8.4, 4.2 Hz, 1 H), 4.80–4.74 (m, 4 H), 4.68 (d, J = 7 Hz, 1 H), 4.12 (t, J = 9.1 Hz, 1 H), 3.96 (qd, J = 6.3, 4.2 Hz, 1 H), 3.78–3.73 (m, 2 H), 3.71–3.68 (m, 1H), 3.65–3.62 (m, 1 H), 3.57–3.52 (m, 4 H), 3.39 (s, 3 H), 3.38 (s, 3 H), 2.59 (dd, J = 13.3, 11.9 Hz, 1 H), 2.47 (dd, J = 14.0, 2.8 Hz, 1 H), 1.42 (d, J = 6.3 Hz, 3 H), 1.32 (d, J = 5.6 Hz, 3 H), 1.20 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.9, 164.1, 163.8, 144.8, 141.7, 126.2, 126.1, 94.3, 94.0, 79.7, 76.6, 72.9, 71.7, 71.5, 70.5, 69.1, 67.3, 67.1, 59.0, 59.0, 41.6, 20.3, 18.1, 16.3; TOF-MS (ES) m/z 541.2250 (M + Na)+; calcd for C24H38O12Na; 541.2261. O OH
O OH
O O O
O
[2] Nakamura, H.; Ono, M.; Shida, Y.; Akita, H.; Tetrahedron: Asymmetry, 2002, 13, 705-713.
S50
Curran and coworkers
FMS of Macrosphelides
Macrosphelide D (10): A solution of MEM-Macrosphelide D S46 (15 mg, 0.029 mmol) in CH2Cl2 (1.6 mL) was treated with TFA (1.6 mL) and resulting mixture was stirred for 16 h at room temperature and then concentrated under reduced pressure. The crude product was purified by preparative TLC (silica gel plate) to yield Macrosphelide D, 10 (8 mg, 81%) as colorless oil. [α]20D = 63.03 (c 0.27 MeOH); 1H NMR (700 MHz, CDCl3) δ 6.65 (dd, J = 16.1, 7.7 Hz, 1 H), 6.58 (dd, J = 16.1, 8.4 Hz, 1 H), 5.95 (d, J = 16.1 Hz, 2 H), 5.34–5.30 (m, 1 H), 5.05 (dd, J = 8.4, 4.2 Hz, 1 H), 4.75 (dq, J = 8.4, 6.3 Hz, 1 H), 4.15 (t, J = 8.4, 1 H), 4.06 (dq, J = 6.3, 4.2 Hz, 1 H), 2.63 (dd, J = 14.0, 11.9 Hz, 1 H), 2.52 (dd, J = 14.0, 3.5 Hz, 1 H), 1.46 (d, J = 6.3 Hz, 3 H), 1.34 (d, J = 6.3 Hz, 3 H), 1.21 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 169.7, 164.4, 164.1, 145.7, 140.7, 126.9, 124.4, 77.7, 75.9, 72.5, 69.2, 68.1, 41.5, 20.2, 18.3, 17.8; TOF-MS (ES) m/z 365.1213 (M + Na)+; calcd for C16H22O8Na; 165.1212. Scheme S3. Synthesis of macrosphelide M 11
OMEM
O
OH OH
1. DCC, 92% 2. HF•Pyr, 83%
O
+
OMEM
OTCE
OTBS
O O
O OH
OTCE
OMEM
17
S47
20
1. R-5, DCC, 86% 2. HF•Pyr, 85%
OMEM O
MEMO
1. Zinc dust 2. Yamaguchi Reaction 56% (2 steps) 3.TFA, DCM, 80%
O O
O O
OH
O OH
O
OH O
OMEM
OH O
O 11
19
OMEM
O
O O
O OTBS
OTCE OMEM
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-(2,2,2-trichloroethoxy)hex-4-en-2-yl 4(tert-butyldimethylsilyloxy)-5-(2-methoxyethoxymethoxy)hex-2-enoate
(S47):
The
procedure
described for TCE-ester S42 was carried out with the sequential addition of DMAP (29 mg, 0.24 mmol), CSA (28 mg, 0.12 mmol) and DCC (295 mg, 1.43 mmol) to a stirring mixture of alcohol 19 (437 mg, 1.2 mmol) and carboxylic acid 17 (460 mg, 1.32 mmol) in CH2Cl2 (12 mL). The product was purified by
S51
Curran and coworkers
FMS of Macrosphelides
flash chromatography on silica gel (elution with 20–30% EtOAc/hexanes) to afford diester S47 (0.750 mg, 92%) as a colorless oil. [α]20D = -23.64 (c 0.5 CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.00 (dd, J = 15.2, 6.0 Hz, 1 H), 6.96 (dd, J = 15.6, 4.8 Hz, 1 H), 6.19 (dd, J = 15.6, 1.2 Hz, 1 H), 6.02 (dd, J = 16.6, 1.6 Hz, 1 H), 5.15–5.09 (m, 1 H), 4.84–4.71 (m, 6 H), 4.44–4.42 (m, 1 H), 4.25 (dt, J = 4.0, 1.6 Hz, 1 H), 3.78–3.72 (m, 2 H), 3.70–3.64 (m, 3 H), 3.55–3.51 (m, 4 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 1.27 (d, J = 6.8 Hz, 3 H), 1.13 (d, J = 6.4 Hz, 3 H), 0.90 (s, 9 H), 0.06 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 165.5, 163.9, 148.8, 146.3, 122.3, 121.2, 94.8, 94.1, 94.0, 77.2, 76.7, 75.5, 74.8, 74.1, 71.7, 71.6, 71.1, 67.3, 66.9, 59.0, 25.8, 18.2, 15.6, 15.2, –4.6, –4.8; TOF-MS (ES) m/z 717.1969 (M + Na)+; calcd for C28H49O11Cl3SiNa: 717.2007. OMEM
O O
O
OH
OTCE OMEM
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-(2,2,2-trichloroethoxy)hex-4-en-2-yl 4hydroxy-5-(2-methoxyethoxymethoxy)hex-2-enoate (S48): The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.2 mL), HF•pyr (1.8 mL) to TBS ether S47 (730 mg, 1.07 mmol) in THF (15 mL). The crude product was purified by column chromatography using silica gel (elution with 40–50% EtOAc/hexanes) to give alcohol S48 (0.515 mg, 83%) as a colorless oil. [α]20D = -4.76 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.00 (dd, J = 16.0, 6.0 Hz, 1 H), 6.93 (dd, J = 15.6, 4.4 Hz, 1 H), 6.18 (dd, J = 15.6, 1.6 Hz, 1 H), 6.12 (dd, J = 15.6, 2.0 Hz, 1 H), 5.14–5.08 (m, 1 H), 4.82–4.71 (m, 6 H), 4.44–4.42 (m, 1 H), 4.40 (bs, 1H), 3.86–3.75 (m, 3 H), 3.69–3.62 (m, 2 H), 3.56–3.50 (m, 5 H), 3.38 (s, 3 H), 3.36 (s, 3 H), 1.25 (d, J = 6.4 Hz, 3 H), 1.13 (d, J = 6.8 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 165.5, 163.9, 146.7, 146.2, 122.2, 121.6, 94.9, 94.8, 94.1, 77.8, 77.2, 74.0, 73.0, 71.6, 71.5, 71.1, 67.5, 67.3, 59.0, 58.9, 15.3, 15.0; TOF-MS (ES) m/z 603.1118 (M + Na)+; calcd for C22H35O11Cl3Na: 603.1143. MEMO
O O
O O TBSO
OTCE OMEM
O
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-(2,2,2-trichloroethoxy)hex-4-en-2-yl 4((R)-3-((tert-butyldimethylsilyloxy)butanoyl)oxy)-5-(2-methoxyethoxymethoxy)hex-2-enoate (S49): S52
Curran and coworkers
FMS of Macrosphelides
The procedure described for TCE-ester S42 was carried out with the sequential addition of DMAP (19 mg, 0.155 mmol), CSA (18 mg, 0.077 mmol) and DCC (225 mg, 1.10 mmol) to a stirring mixture of alcohol S48 (450 mg, 0.77 mmol) and carboxylic acid R-5 (220 mg, 1.02 mmol) in CH2Cl2 (7.7 mL). The product was purified by flash chromatography on silica gel (elution with 20–30% EtOAc/hexanes) to afford triester S49 (0.520 mg, 86%) as a colorless oil. [α]20D = -31.84 (c 1.0 CHCl3); 1H NMR (700 MHz, CDCl3) δ 7.00 (dd, J = 15.4, 6.3 Hz, 1 H), 6.89 (dd, J = 16.1, 5.6 Hz, 1 H), 6.19 (dd, J = 16.1, 1.4 Hz, 1 H), 5.97 (dd, J = 15.4, 0.7 Hz, 1 H), 5.44–5.43 (m, 1 H), 5.14–5.10 (m, 1 H), 4.83–4.72 (m, 6 H), 4.46–4.41 (m, 1 H), 4.29–4.25 (m, 1 H), 3.95–3.91 (m, 1 H), 3.77–3.74 (m, 1 H), 3.69–3.67 (m, 2 H), 3.67–3.64 (m, 1 H), 3.55–3.52 (m, 4 H), 3.38 (s, 3 H), 3.36 (s, 3 H), 2.56 (dd, J = 15.4, 7.0 Hz, 1 H), 2.45 (dd, J = 15.4, 5.6 Hz, 1 H), 1.25 (d, J = 6.3 Hz, 3 H), 1.20 (d, J = 5.6 Hz, 3 H), 1.18 (d, J = 7.0 Hz, 3 H), 0.85 (s, 9 H), 0.06 (s, 3 H), 0.04 (s, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.3, 164.9, 163.9, 146.0, 142.9, 123.1, 122.4, 94.8, 94.1, 93.9, 76.6, 74.5, 74.1, 73.1, 71.7, 71.6, 71.4, 67.3, 67.0, 65.5, 59.0, 44.6, 25.8, 23.7, 18.0, 16.1, 15.1, –4.6, –4.9; TOF-MS (AP) m/z 803.2369 (M + Na)+; calcd for C32H55O13Cl3SiNa: 803.2375. MEMO
O O
O O
OTCE OMEM
OH O
(4R,5S,E)-(2S,3R,E)-3-(2-Methoxyethoxymethoxy)-6-oxo-6-(2,2,2-trichloroethoxy)hex-4-en-2-yl 4((R)-3-hydroxybutanoyl)oxy)-5-((2-methoxyethoxymethoxy)hex-2-enoate (S50): The procedure described for alcohol 19 was followed with the sequential addition of pyridine (0.6 mL), HF•pyr (0.9 mL) to TBS ether S49 (0.35 mg, 0.447 mmol) in THF (7.5 mL). The crude product was purified by column chromatography using silica gel (elution with 50–60% EtOAc/hexanes) to give alcohol S50 (0.255 mg, 85%) as a colorless oil. [α]20D = -35.9 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.00 (dd, J = 15.6, 6.0 Hz, 1 H), 6.89 (dd, J = 15.6, 5.2 Hz, 1 H), 6.19 (dd, J = 15.6, 1.2 Hz, 1 H), 6.00 (dd, J = 15.6, 1.6 Hz, 1 H), 5.57–5.52 (m, 1 H), 5.16–5.10 (m, 1 H), 4.84–4.72 (m, 6 H), 4.44–4.42 (m, 1 H), 4.27–4.19 (m, 1 H), 4.00–3.94 (m, 1 H), 3.79–3.73 (m, 1 H), 3.72–3.64 (m, 3 H), 3.55–3.51 (m, 4 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.95 (d, J = 4.0 Hz, 1 H), 2.56 (dd, J = 16.0, 3.6 Hz, 1 H), 2.50 (dd, J = 16.0, 8.8 Hz, 1 H), 1.26 (d, J = 6.8 Hz, 3 H), 1.25 (d, J = 6.4 Hz, 3 H), 1.8 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 171.6, 164.8, 163.9, 146.0, 142.3, 123.0, 122.4, 94.8, 94.0, 93.9, 77.2, 76.6, 74.6, 74.1, 72.9, 71.6, 71.5, 71.5, 67.3, 67.1, 64.4, 59.0, 43.2, 22.6, 15.7, 15.1; TOF-MS (ES) m/z 689.1494 (M + Na)+; calcd for C26H41O13Cl3Na: 689.1510. S53
Curran and coworkers
FMS of Macrosphelides
O MEMO
O OMEM
O O O
O
(2R,6R,7E,11S,12R,13E)-12-(2-Methoxyethoxymethoxy)-6-((S)-1-(2-methoxyethoxymethoxy)ethyl)-2,11-dimethyl-1,5,10-trioxacyclopentadeca-7,13--diene-4,9,15-trione (S51): The procedure described for MEM-Macrosphelide D (S46) was followed with the sequential addition of zinc-dust (74 mg, 1.13 mmol) and NaOAc/AcOH buffer solution (5.4 mL, pH 4.65) to a stirring solution of trichloroethyl esters S50 (74 mg, 0.113 mmol in THF (5.4 mL) to yield hydroxy-acid (55 mg) as almost pure, then followed by Yamaguchi macrolactonization using 2,4,6 trichlorobezoyl chloride (50 mg, 0.20 mmol), Et3N (23 mg, 0.23 mmol) to solution of hydroxy-acid (55 mg, 0.102 mmol) in THF (2 mL), dilution with toluene (50 mL), and DMAP (82 mg, 0.67 mmol) in toluene (10 mL) to yield S51 (30 mg, 56%) as colorless oil. 1H NMR (700 MHz, CDCl3) δ 6.93 (dd, J = 16.1, 4.2 Hz, 1 H), 6.38 (dd, J = 16.1, 9.1 Hz, 1 H), 6.07 (dd, J = 16.1, 4.2 Hz, 1 H), 5.88 (d, J = 15.4 Hz, 1 H), 5.30 (dd, J = 8.4, 3.5 Hz, 1 H), 5.28–5.23 (m, 2 H), 4.77 (d, J = 7.0 Hz, 1 H), 4.74 (s, 2 H), 4.65 (d, J = 7.0 Hz, 1 H), 4.38–4.37 (m, 1 H), 3.90 (dq, J = 7.0, 4.2 Hz, 1 H), 3.79–3.76 (m, 1 H), 3.73–3.70 (m, 1 H), 3.68–3.62 (m, 2 H), 3.56– 3.51 (m, 4 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.77 (dd, J = 15.4, 4.2 Hz, 1 H), 2.55 (dd, J = 14.7, 10.5 Hz, 1 H), 1.38 (d, J = 6.3 Hz, 3 H), 1.37 (d, J = 6.3 Hz, 3 H), 1.15 (J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 168.4, 165.5, 163.7, 143.2, 142.3, 125.8, 123.7, 94.1, 93.5, 78.2, 76.1, 72.9, 71.7, 71.6, 71.5, 68.1, 67.3, 67.1, 59.1, 59.0, 41.7, 20.0, 17.8, 16.2; TOF-MS (ES) m/z 541.2262 (M + Na)+; calcd for C24H38O12Na: 541.2261. O OH
O OH
O O O
O
Macrosphelide M (11): The procedure described for macrosphelide D 10 was followed TFA (2 mL) to solution of MEM-macrosphelide M, S51, (20 mg, (0.039 mmol) in DCM (2 mL) to yield macrosphelide M 11 (10.5 mg, 80%) as colorless oil. [α]20D = 34.57 (c 0.2 EtOH); 1H NMR (700 MHz, CDCl3) δ 7.06 S54
Curran and coworkers
FMS of Macrosphelides
(dd, J = 15.4, 2.8 Hz, 1 H), 6.47 (dd, J = 16.1, 9.1 Hz, 1 H), 6.08 (dd, J = 16.1, 2.1 Hz, 1 H), 6.03 (d, J = 16.1 Hz, 1 H), 5.37–5.33 (m, 1 H), 5.29 (q, J = 14.0, 7.0 Hz, 1 H), 5.19 (dd, J = 9.1, 4.2 Hz, 1 H), 4.43 (br s, 1 H), 4.02–3.99 (m, 1 H), 3.08 (d, J = 7.0 Hz, 1 H), 2.76 (dd, J = 14.7, 3.5 Hz, 1 H), 2.60 (dd, J = 14.7, 10.5 Hz, 1 H), 1.93 (d, J = 3.5 Hz, 1 H), 1.45 (d, J = 7.0 Hz, 3 H), 1.36 (d, J = 6.3 Hz, 3 H), 1.17 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 168.1, 166.7, 165.8, 145.8, 140.8, 127.3, 121.9, 77.0 (in CDCl3), 76.1, 76.0, 68.0, 67.8, 41.8, 20.1, 18.3, 17.8; TOF-MS (ES) m/z 365.1214 (M + Na)+; calcd for C16H22O8Na; 165.1212. Scheme S4. Synthesis of iso-macrosphelide D 12 and ent-iso-macrosphelide M 13 R R1 O OH
R R1 O OH
O OTCE
+
1. DCC 2. HF•Pyr
O
OTCE
OMEM
S-5, R = OTBS; R1 = H R-5, R = H; R1 = OTBS
1. 17, DCC 2. HF•Pyr
O
OMEM
20
S54, R = OH; R1 = H; 81% (2 steps) S55, R = H; R1 = OH; 84% (2 steps) HO
OMEM
O
O
O
OH
O
1. Zinc-dust 2. Yamaguchi Reaction 3. TFA, DCM
O R R1 O
O
HO O
OTCE
R
R1
O O
OMEM O 12, R = Me, R1 = H; 38% (3 steps) 13, R = H, R1 = Me; 42% (3 steps)
S58, R = H; R1 = Me; 73% (2 steps) S59, R = Me; R1 = H; 70% (2 steps)
TBSO
O O
O OTCE OMEM
(4R,5S,E)-2,2,2-Trichloroethyl
5-((S)-3-((tert-butyldimethylsilyloxy)butanoyl)oxy)-4-(2-methoxy-
ethoxymethoxy)hex-2-enoate (S52): The procedure described for TCE-ester S42 was carried out with the sequential addition of DMAP (46 mg, 0.38 mmol), CSA (44 mg, 0.19 mmol) and DCC (470 mg, 2.26 mmol) to a stirring solution of alcohol 19 (550 mg, 1.51 mmol) and carboxylic acid S-5 (493 mg, 2.26 mmol) in CH2Cl2 (14 mL). The product was purified by flash chromatography on silica gel (elution with 10-15% EtOAc/hexanes) to afford diester S52 (755 mg, 89%) as a colorless oil. [α]20D = -16.46 (c S55
Curran and coworkers
FMS of Macrosphelides
1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 7.00 (dd, J = 15.6, 6.0 Hz, 1 H), 6.18 (dd, J = 15.6, 1.6 Hz, 1 H), 5.10–5.04 (m, 1 H), 4.80 (s, 2 H), 4.75 (dd, J = 23.6, 6.8 Hz, 2 H), 4.39–4.37 (m, 1 H), 4.28–4.20 (m, 1 H), 3.81–3.76 (m, 1 H), 3.69–3.64 (m, 1 H), 3.54–3.52 (m, 2 H), 3.37 (s, 3 H), 2.48 (dd, J = 14.8, 6.8 Hz, 1 H), 2.36 (dd, J = 14.4, 6.0 Hz, 1 H), 1.22 (d, J = 6.4 Hz, 3 H), 1.18 (d, J = 16.0, 6.0 Hz, 1 H), 0.85 (s, 9 H), 0.05 (s, 3 H), 0.04 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 170.6, 163.9, 146.2, 122.3, 94.8, 94.1, 76.7, 74.1, 71.6, 71.0, 67.3, 65.6, 59.0, 94.9, 25,7, 23.7, 18.0, 15.1, –4.5, –5.0; TOF-MS (ES) m/z 587.1392 (M + Na)+; calcd for C22H39O8Cl3SiNa: 587.1377. TBSO
O O
O OTCE OMEM
(4R,5S,E)-2,2,2-Trichloroethyl
5-((R)-3-((tert-butyldimethylsilyloxy)butanoyl)oxy)-4-(2-methoxy-
ethoxymethoxy)hex-2-enoate (S53): The procedure described for TCE-ester S42 was carried out with the sequential addition of DMAP (29 mg, 0.24 mmol), CSA (28 mg, 0.12 mmol) and DCC (300 mg, 1.44 mmol) to a stirring solution of alcohol 19 (350 mg, 0.96 mmol) and carboxylic acid R-5 (315 mg, 1.44 mmol) in CH2Cl2 (10 mL). The product was purified by flash chromatography on silica gel (elution with 10-15% EtOAc/hexanes) to afford diester S53 (475 mg, 88%) as a colorless oil. [α]20D = -35.92 (c 0.5 CHCl3); 1H NMR (400 MHz, CDCl3) δ 700 (dd, J = 16.0, 6.0 Hz, 1 H), 6.18 (dd, J = 16.0, 1.6 Hz, 1 H), 5.09–5.03 (m, 1 H), 4.80 (s, 2 H), 4.75 (dd, J = 24.8, 6.8 Hz, 2 H), 4.39–4.36 (m, 1 H), 4.30–4.21 (m, 1 H), 3.81–3.76 (m, 2 H), 3.38 (s, 3 H), 2.49 (dd, J = 14.8, 7.2 Hz, 1 H), 2.35 (dd, J = 14.8, 5.6 Hz, 1 H), 1.23 (d, J = 6.8 Hz, 3 H), 1.18 (d, J = 6.0 Hz, 3 H), 0.85 (s, 9 H), 0.06 (s, 3 H), 0.04 (s, 3 H); H); 13
C NMR (100 MHz, CDCl3) δ 170.9, 163.9, 146.2, 122.3, 94.8, 94.1, 76.8, 74.1, 71.6, 70.9, 67.4, 65.6,
59.1, 44.8, 25.7, 23.8, 17.9, 15.2, –4.5, –5.0; TOF-MS (ES) m/z 587.1402 (M + Na)+; calcd for C22H39O8Cl3SiNa: 587.1377. OH O O
O OTCE OMEM
(4R,5S,E)-2,2,2-Trichloroethyl 5-(((S)-3-hydroxybutanoyl)oxy)-4-((2-methoxyethoxy)methoxy)hex2-enoate (S54): The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.6 mL), HF•pyr (2.4 mL) to TBS ether S52 (0.750 mg, 1.33 mmol) in THF (20 mL). The S56
Curran and coworkers
FMS of Macrosphelides
crude product was purified by column chromatography using silica gel (elution with 30–50% EtOAc/hexanes) to give alcohol S54 (0.550 mg, 92%) as a colorless oil. [α]20D = -22.58 (c 1.0 CHCl3); 1
H NMR (400 MHz, CDCl3) δ 6.98 (dd, J = 16.0, 6.0 Hz, 1 H), 6.19 (dd, J = 15.6, 1.6 Hz, 1 H), 5.16–
5.10 (m, 1 H), 4.80 (d, J = 0.8 Hz, 2 H), 4.75 (dd, J = 26.0, 6.8 Hz, 2 H), 4.42–4.39 (m, 1 H), 4.21–4.14 (m, 1 H), 3.82–3.77 (m, 1 H), 3.67–3.62 (m, 1 H), 3.55–3.52 (m, 2 H), 3.37 (s, 3 H), 2.92 (d, J = 4.0 Hz, 1 H), 2.48 (dd, J = 16.0, 3.6 Hz, 1 H), 2.41 (dd, J = 16.0, 8.4 Hz, 1 H), 1.25 (d, J = 6.8 Hz, 3 H), 1.22 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 172.1, 163.9, 145.8, 122.6, 94.8, 94.1, 76.6, 74.1, 71.6, 71.3, 67.4, 64.3, 59.0, 43.1, 22.5, 15.1; TOF-MS (ES) m/z 473.0495 (M + Na)+; calcd for C16H25O8Cl3Na: 473.0513. OH O O
O OTCE OMEM
(4R,5S,E)-2,2,2-Trichloroethyl 5-(((R)-3-hydroxybutanoyl)oxy)-4-(2-methoxyethoxymethoxy)hex2-enoate (S55): The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.2 mL), HF•pyr (1.8 mL) to TBS ether S53 (560 mg, 0.99 mmol) in THF (15 mL). The crude product was purified by column chromatography using silica gel (elution with 30–50% EtOAc/hexanes) to give alcohol S55 (430 mg, 96%) as a colorless oil. [α]20D = -44.12 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.98 (dd, J = 15.6, 6.0 Hz, 1 H), 6.18 (dd, J = 15.6, 1.2 Hz, 1 H), 5.16–5.10 (m, 1 H), 4.80 (d, J = 1.2 Hz, 2 H), 4.74 (dd, J = 28.8, 6.8 Hz, 2 H), 4.41–4.38 (m, 1 H), 4.24–4.14 (bs, 1 H), 3.80–3.75 (m, 1 H), 3.66–3.61 (m, 1 H), 3.53–3.51 (m, 2 H), 3.63 (s. 3 H), 3.01 (s, 1 H), 2.50 (dd, J = 16.4, 3.6 Hz, 1 H), 2.40 (dd, J = 16.4, 9.2 Hz, 1 H), 1.23 (d, J = 6.8 Hz, 3 H), 1.20 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 171.1, 163.9, 145.7, 122.5, 94.8, 94.0, 76.6, 74.1, 71.5, 71.2, 67.4, 64.1, 59.0, 43.2, 22.4, 15.2; TOF-MS (ES) m/z 473.0535 (M + Na)+; calcd for C16H25O8Cl3Na: 473.0513. OMEM
O O
O
OTBS
O
O OTCE OMEM
(4R,5S,E)-(8R,9S,13S)-9-Methyl-11-oxo-8-((E)-3-oxo-3-(2,2,2-trichloroethoxy)prop-1-en-1-yl)2,5,7,10-tetraoxatetradecan-13-yl 4-(tert-butyldimethylsilyloxy)-5-((2-methoxyethoxy)methoxy)hex S57
Curran and coworkers
FMS of Macrosphelides
-2-enoate (S56): The procedure described for TCE-ester S42 was carried out with the sequential addition of DMAP (36 mg, 0.29 mmol), CSA (34 mg, 0.145 mmol) and DCC (272 mg, 1.32 mmol) to a stirring solution of alcohol S54 (540 mg, 1.95 mmol) and carboxylic acid 17 (460 mg, 1.32 mmol) in CH2Cl2 (11 mL). The product was purified by flash chromatography on silica gel (elution with 30-50% EtOAc/hexanes) to afford triester S56 (745 mg, 80%) as a colorless oil. [α]20D = -19.9 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.97 (dd, J = 16.0, 6.0 Hz, 1 H), 6.93 (dd, J = 15.2, 4.8 Hz, 1 H), 6.18 (dd, J = 15.6, 1.2 Hz, 1 H), 5.98 (dd, J = 15.6, 1.6 Hz, 1 H), 5.32–5.25 (m, 1 H), 5.10–5.04 (m, 1 H), 4.81 (s, 2 H), 4.78–4.70 (m, 4 H), 4.39–4.36 (m, 1 H), 4.24 (dt, J = 4.4, 1.6 Hz, 1 H), 3.81–3.75 (m, 2 H), 3.74– 3.63 (m, 3 H), 3.54–3.52 (m, 4 H), 3.38 (s, 3 H), 2.69 (dd, J = 15.6, 7.2 Hz, 1 H), 2.54 (dd, J = 15.2, 6.4 Hz, 1 H), 1.32 (d, J = 6.0 Hz, 3 H), 1.19 (d, J = 6.4 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 0,9 (s, 9 H), 0.06 (s, 3 H), 0 .01 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.2, 165.4, 163.9, 148.4, 146.0, 122.5, 121.4, 94.8, 94.1, 94.0, 77.2, 75.5, 74.8, 74.1, 71.7, 71.6, 71.3, 67.4, 67.2, 66.9, 59.0, 41.0, 25.8, 25.7, 19.8, 18.2, 15.5, 15.1, –4.6, –4.8; TOF-MS (ES) m/z 803.2336 (M + Na)+; calcd for C32H55O13Cl3SiNa: 803.2375. OMEM
O O
O
OTBS
O
O OTCE OMEM
(4R,5S,E)-(8R,9S,13R)-9-Methyl-11-oxo-8-((E)-3-oxo-3-(2,2,2-trichloroethoxy)prop-1-en-1-yl)2,5,7,10-tetraoxatetradecan-13-yl 4-(tert-butyldimethylsilyloxy)-5-(2-methoxyethoxymethoxy)hex2-enoate (S57): The procedure described for TCE-ester 42 was carried out with the sequential addition of DMAP (29 mg, 0.24 mmol), CSA (28 mg, 0.12 mmol) and DCC (252 mg, 1.22 mmol) to a stirring solution of alcohol S55 (425 mg, 0.94 mmol) and carboxylic acid 17 (426 mg, 1.22 mmol) in CH2Cl2 (10 mL). The product was purified by flash chromatography on silica gel (elution with 30-50% EtOAc/hexanes) to afford triester 57 (630 mg, 87%) as a colorless oil. [α]20D = -25.81 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.98 (dd, J = 16.0, 6.0 Hz, 1 H), 6.93 (dd, J = 15.6, 4.8 Hz, 1 H), 6.18 (dd, J = 15.6, 1.2 Hz, 1 H), 5.97 (dd, J = 15.6, 1.6 Hz, 1 H), 5.32–5.25 (m, 1 H), 5.11–5.05 (m, 1 H), 4.84– 4.70 (m, 6 H), 4.39–4.36 (m, 1 H), 4.24 (dt, J = 4.4, 2.0 Hz, 1 H), 3.81–3.73 (m, 2 H), 3.72–3.63 (m, 4 H), 3.54–3.52 (m, 4 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.71 (dd, J = 15.2, 6.8 Hz, 1 H), 2.50 (dd, J = 15.6, 6.4 Hz, 1 H), 1.31 (d, J = 6.4 Hz, 3 H), 1.21 (d, J = 6.8 Hz, 3 H), 1.12 (d, J = 6.4 Hz, 3 H), 0.90 (s, 9 H), 0.06 (s, 3 H), 0.02 (s, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.5, 165.4, 163.9, 148.3, 146.0, 122.4, S58
Curran and coworkers
FMS of Macrosphelides
121.4, 94.8, 94.1, 94.0, 77.2, 75.5, 74.8, 74.1, 71.7, 71.6, 71.3, 67.4, 67.3, 66.9, 59.0, 59.0, 40.9, 25.8, 19.9, 18.2, 15.5, 15.1, –4.6, –4.8; TOF-MS (ES) m/z 803.2345 (M + Na)+; calcd for C32H55O13Cl3SiNa: 803.2375. OMEM
O O
O
OH
O
O OTCE OMEM
(4R,5S,E)-(8R,9S,13S)-9-Methyl-11-oxo-8-((E)-3-oxo-3-(2,2,2-trichloroethoxy)prop-1-en-1-yl)2,5,7,10-tetraoxatetradecan-13-yl 4-hydroxy-5-(2-methoxyethoxymethoxy)-hex-2-enoate S58: The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.2 mL), HF•pyr (1.8 mL) to TBS ether S56 (555 mg, 0.74 mmol) in THF (15 mL). The crude product was purified by column chromatography using silica gel (elution with 50–80% EtOAc/hexanes) to give alcohol S58 (400 mg, 87%) as a colorless oil. [α]20D = -5.31 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.97 (dd, J = 16.0, 6.0 Hz, 1 H), 6.91 (dd, J = 15.6, 4.4 Hz, 1 H), 6.18 (dd, J = 16.0, 1.6 Hz, 1 H), 6.08 (dd, J = 15.6, 1.6 Hz, 1 H), 5.35–5.27 (m, 1 H), 5.09–5.03 (m, 1 H), 4.81–4.69 (m, 6 H), 4.39–4.35 (m, 2 H), 3.84–3.74 (m, 3 H), 3.69–3.62 (m, 2 H), 3.55–3.51 (m, 4 H), 3.47 (d, J = 6.0 Hz, 1 H), 3.38 (s, 3 H), 3.36 (s, 3 H), 2.66 (dd, J = 15.2, 7.6 Hz, 1 H), 2.53 (dd, J = 15.6, 6.0 Hz, 1 H), 1.31 (d, J = 6.4 Hz, 3 H), 1.19 (d, J = 6.4 Hz, 3 H), 1.13 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.3, 165.3, 163.9, 146.4, 146.0, 122.4, 121.8, 94.9, 94.8, 94.1, 77.7, 77.2, 74.1, 73.0, 71.6, 71.5, 71.3, 67.5, 67.3, 67.2, 59.0, 58.9, 41.0, 19.8, 15.3, 15.1; TOF-MS (ES) m/z 689.1521 (M + Na)+; calcd for C26H41O13Cl3Na: 689.1510. OMEM
O O
O
OH
O
O OTCE OMEM
(4R,5S,E)-(8R,9S,13R)-9-Methyl-11-oxo-8-((E)-3-oxo-3-(2,2,2-trichloroethoxy)prop-1-en-1-yl)2,5,7,10-tetraoxatetradecan-13-yl-4-hydroxy-5-(2-methoxyethoxy-methoxy)hex-2-enoate
(S59):
The procedure described for alcohol 19 was followed with the sequential addition of pyridine (1.2 mL), HF•pyr (1.8 mL) to TBS ether 57 (575 mg, 0.74 mmol) in THF (15 mL). The crude product was S59
Curran and coworkers
FMS of Macrosphelides
purified by column chromatography using silica gel (elution with 50–80% EtOAc/hexanes) to give alcohol S59 (410 mg, 84%) as a colorless oil. [α]20D = -10.53 (c 1.0 CHCl3); 1H NMR (400 MHz, CDCl3) δ 6.98 (dd, J = 15.6, 6.0 Hz, 1 H), 6.91 (dd, J = 15.6, 4.8 Hz, 1 H), 6.18 (dd, J = 15.6, 1.6 Hz, 1 H), 6.10 (dd, J = 15.6, 2.0 Hz, 1 H), 5.33–5.28 (m, 1 H), 5.11–5.05 (m, 1 H), 4.84–4.69 (m, 6 H), 4.39– 4.35 (m, 2 H), 3.84–3.75 (m, 3 H), 3.69–3.63 (m, 2 H), 3. 56–3.51 (m, 4 H), 3.46 (d, J = 6.0 Hz, 1 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.68 (dd, J = 15.2, 7.2 Hz, 1 H), 2.51 (dd, J = 15.6, 6.0 Hz, 1 H), 1.31 (d, J = 6.0 Hz, 3 H), 1.21 (d, J = 6.4 Hz, 3 H), 1.13 (d, J = 6.4 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.5, 165.3, 163.9, 146.2, 146.0, 122.5, 121.9, 94.9, 94.8, 94.1, 77.8, 77.2, 74.1, 73.1, 71.6, 71.6, 71.3, 67.5, 67.3, 67.3, 59.0, 58.9, 40.9, 19.9, 15.2; TOF-MS (ES) m/z 689.1523 (M + Na)+; calcd for C26H41O13Cl3Na: 689.1510. OMEM O
O
MEMO
O O
O
O
(4S,7E,9R,12E,14R,15S)-14-((2-Methoxyethoxy)methoxy)-9-((S)-1-((2-methoxyethoxy)methoxy)ethyl)-4,15-dimethyl-1,5,10-trioxacyclopentadeca-7,12-diene-2,6,11-trione (S60): The procedure described for MEM-macrosphelide D S46 was followed with the sequential addition of zinc-dust (60 mg, 1.13 mmol) and NaOAc/AcOH buffer solution (4.5 mL, pH 4.65) to a stirring solution of trichloroethyl esters S58 (62 mg, 0.093 mmol in THF (4.5 mL) to yield hydroxy-acid (45 mg) as crude, then followed by Yamaguchi macrolactonization using 2,4,6-trichlorobezoyl chloride (41 mg, 0.168 mmol), Et3N (19 mg, 0.19 mmol) to solution of hydroxy-acid (45 mg, 0.084mmol) in THF (1.5 mL), dilution with toluene (41 mL), and DMAP (62 mg, 0.50 mmol) in toluene (8 mL) to yield S60 (22 mg, 46%) as colorless oil. 1H NMR (700 MHz, CDCl3) δ 6.76 (dd, J = 16.1, 7.7 Hz, 1 H), 6.73 (dd, J = 15.4, 4.9 Hz, 1 H), 6.12 (d, J = 15.4, Hz, 1 H), 5.93 (d, J = 15.4 Hz, 1 H), 5.30 (dd, J = 7.7, 4.9 Hz, 1 H), 5.27–5.22 (m, 1 H), 4.86 (dq, J = 8.4, 5.6 Hz, 1 H), 4.81 (d, J = 7.0 Hz, 1 H), 4.77 (d, J = 7.0 Hz, 1 H), 4.71–4.69 (m, 2 H), 4.19 (dd, J = 9.1, 5.6 Hz, 1 H), 4.05–4.01 (m, 1 H), 3.80–3.77 (m, 1 H), 3.74–3.68 (m, 2 H), 3.65–3.62 (m, 1 H), 3.56–3.53 (m, 4 H), 3.38 (s, 6 H), 2.57 (dd, J = 14.7, 10.5 Hz, 1 H), 2.48 (dd, J = 14.7, 2.1 Hz, 1 H), 1.33 (d, J = 6.3 Hz, 3 H), 1.32 (d, J = 6.3 Hz, 3 H), 1.23 (d, J = 6.3 Hz, 3 H); 13
C NMR (100 MHz, CDCl3) δ 169.6, 166.4, 163.8, 145.6, 141.3, 125.4, 124.1, 94.4, 93.9, 77.1, 75.9,
S60
Curran and coworkers
FMS of Macrosphelides
73.3, 72.7, 71.7, 71.6, 68.6, 67.7, 67.1, 59.1, 59.0, 41.8, 19.8, 18.2, 16.6; TOF-MS (AP) m/z 541.2292 (M + Na)+; calcd for C24H38O12Na: 541.2261. OMEM O
O
MEMO
O O
O
O
(4R,7E,9R,12E,14R,15S)-14-((2-Methoxyethoxy)methoxy)-9-((S)-1-((2-methoxyethoxy)methoxy)ethyl)-4,15-dimethyl-1,5,10-trioxacyclopentadeca-7,12-diene-2,6,11-trione (S61): The procedure described for MEM-macrosphelide D S46 was followed with the sequential addition of zinc-dust (81 mg, 1.24 mmol) and NaOAc/AcOH buffer solution (5.5 mL, pH 4.65) to a stirring solution of trichloroethyl ester S59 (83 mg, 0.124 mmol in THF (5.5 mL) to yield hydroxy-acid (60 mg) as crude, then followed by Yamaguchi macrolactonization using 2,4,6-trichlorobezoyl chloride (55 mg, 0.224 mmol), Et3N (25 mg, 0.25 mmol) to solution of hydroxy-acid 60 mg, 0.112 mmol) in THF (2 mL), dilution with toluene (55 mL), and DMAP (82 mg, 0.67 mmol) in toluene 11 mL) to yield S61 (35 mg, 54%) as colorless oil. 1H NMR (700 MHz, CDCl3) δ 6.89 (dd, J = 16.1, 6.18 Hz, 1 H), 6.76 (dd, J = 15.4, 5.6 Hz, 1 H), 6.18 (dd, J = 15.4, 0.7 Hz, 1 H), 6.02 (dd, J = 16.1, 0.7 Hz, 1 H), 5.44–5.42 (m, 1 H), 5.20–5.16 (m, 1 H), 4.83–4.77 (m, 1 H), 4.72 (s, 2 H), 4.21–4.19 (m, 1 H), 4.05–4.01 (m, 1 H), 3.80– 3.77 (m, 1 H), 3.75–3.69 (m, 3 H), 3.66–3.63 (m, 1 H), 3.58–3.51 (m, 5 H), 3.38 (s, 3 H), 3.37 (s, 3 H), 2.64 (dd, J = 14.0, 4.9 Hz, 1 H), 2.38 (dd, J = 14.0, 3.5 Hz, 1 H), 1.46 (d, J = 7.0 Hz, 3 H), 1.32 (d, J = 6.3 Hz, 3 H), 1.25 (d, J = 6.3 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 169.1, 166.6, 164.8, 145.5, 141.6, 126.0, 124.3, 94.3, 93.9, 76.3, 76.1, 73.5, 72.6, 71.7, 71.6, 67.7, 65.5, 67.2, 59.0, 59.0, 40.0, 18.7, 17.8, 16.4; TOF-MS (ES) m/z 541.2264 (M + Na)+; calcd for C24H38O12Na: 541.2261. HO O
O
HO
O O
O
O
Iso-Macrosphelide-D (12): The procedure described for macrosphelide D 10 was followed TFA (2.5 mL) to solution of S60 (26 mg, (0.050 mmol) in DCM (2.5 mL) to yield Iso-macrosphelide-D 12 (14
S61
Curran and coworkers
FMS of Macrosphelides
mg, 82%) as colorless oil. [α]20D = 53.13 (c 0.37 MeOH); 1H NMR (700 MHz, CDCl3) δ 6.89–6.85 (m, 2 H), 6.05 (d, J = 15.4 Hz, 1 H), 6.02 (d, J = 15.4 Hz, 1 H), 5.40–5.36 (m, 1 H), 4.97–4.94 (m, 1 H), 4.87–4.83 (m, 1 H), 4.22 (br s, 1 H), 4.13 (t, J = 5.6 Hz, 1 H), 3.06 (br s, 1 H), 2.72 (br s, 1 H), 2.61 (dd, J = 16.1, 9.8 Hz, 1 H), 2.57 (dd, J = 16.1, 2.8 Hz, 1 H), 1.45 (d, J = 7.0 Hz, 3 H), 1.36 (d, J = 6.3 Hz, 3 H), 1.32 (d, J = 6.3 Hz, 3 H); 13C NMR (175 MHz, CDCl3) δ 170.2, 165.8, 164.6, 146.2, 145.1, 122.7, 122.2, 75.0, 74.7, 74.0, 73.1, 67.7, 41.0, 19.7, 18.0, 17.8; TOF-MS (ES) m/z 365.1183 (M + Na)+; calcd for C16H22O8Na: 365.1212. HO O
O
HO
O O
O
O
Iso-Macrosphelide-M 13: The procedure described for macrosphelide D 10 was followed TFA (4 mL) to solution of S61 (35 mg, (0.050 mmol) in DCM (4 mL) to yield iso-macrosphelide-M 13 (18 mg, 78%) as colorless oil. 1H NMR (700 MHz, CDCl3) δ 7.02 (dd, J = 16.1, 4.2 Hz, 1 H), 6.80 (dd, J = 15.4, 4.9 Hz, 1 H), 6.11 (dd, J = 16.1, 2.1 Hz, 1 H), 6.08 (dd, J = 15.4, 2.1 Hz, 1 H), 5.35–5.31 (m, 1 H), 5.12 (dq, J = 6.3, 1.4 Hz, 1 H), 4.98 (dq, J = 7.0, 4.2 Hz, 1 H), 4.38–4.36 (m, 1 H), 4.20–4.18 (m, 1 H), 3.34 (d, J = 7.7 Hz, 1 H), 3.06 (d, J = 7.0 Hz, 1 H), 2.72 (dd, J = 16.1, 2.8 Hz, 1 H), 2.61 (dd, J = 16.1, 7.7 Hz, 1 H), 1.43 (d, J = 7.0 Hz, 3 H), 1.38 (d, J = 7.0 Hz, 3 H), 1.32 (d, J = 6.3 Hz, 3 H); 13C NMR (100 MHz, CDCl3) δ 171.0, 166.8, 165.3, 145.3, 145.0, 123.0, 122.3, 76.2, 75.6, 75.3, 73.8, 66.6, 40.5, 19.7, 17.8, 17.4; TOF-MS (ES) m/z 365.1186 (M + Na)+; calcd for C16H22O8Na: 365.1212.
S62
Curran and coworkers
FMS of Macrosphelides
Table S2. NMR spectra of macrosphelides D and M in CD3COCD3
Macrosphelide Da Position 1 2A 2B 3 5 6 7 8 9 11 12 13 14 15 17 18 19 8-OH 15-OH a
M
H
2.57 2.6 5.25 - 5.20 5.98 6.62 4.16 4.65
H
dd 14.0, 12.2 1H dd 14.0, 3.5 1H m 1H d dd t qd
5.88 6.58 4.97 3.99 - 3.95 1.16 1.39 1.29 4.85 4.22
J/Hz
Macrosphelide Ma
15.4 16.1, 7.7 9.1 9.8, 6.3
1H 1H 1H 1H
d 16.1 dd 15.4, 8.4 dd 8.4, 4.9 m d 6.3 d 6.3 d 6.3 br s br s
1H 1H 1H 1H 3H 3H 3H OH OH
C
170.76 41.91 69.88 165.05 124.55 147.88 75.89 72.67 164.76 126.66 143.66 78.84 68.19 19.34 18.03 20.31
H
M
J/Hz
2.49 2.88 5.26 - 5.24
dd dd m
15.4, 10.5 15.4, 4.2
6.07 7.03 4.46 5.11
dd dd br s qd
15.4, 1.4 15.4, 3.5
5.87 6.44 5.16 3.90 - 3.87 1.12 1.37 1.33 4.56 4.17
d dd dd m d d d d d
16.1 16.1, 8.4 8.4, 4.9
6.3, 3.5
6.3 7.0 6.3 4.9 5.6
H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 1H 3H 3H 3H OH OH
Macrosphelide Mb C
169.03 42.08 68.95 166.17 122.84 147.23 75.01 75.16 164.63 126.11 144.34 78.11 68.43 19.07 17.88 20.02
H
M
J/Hz
H
2.51 2.89 5.28
dd dd dqd
15.2, 10.6 15.2, 4.1 10.6, 6.0, 4.1
1H 1H 1H
6.08 7.04 4.47 5.12
dd dd br s qd
15.8, 2.2 15.8, 4.5 (1H) 6.2, 3.0
1H 1H 1H 1H
5.89 6.47 5.18 3.9 1.14 1.39 1.36 4.45 4.17
dd dd ddd qdd d d d d d
15.2, 1.1 15.2, 8.8 8.8, 5.5, 1.1 6.0, 5.5, 4.9 6.0 6.2 6.0 4.9 4.9
1H 1H 1H 1H 3H 3H 3H OH OH
C
169.08 42.12 68.99 166.22 122.92 147.26 75.11 75.24 164.71 126.16 144.39 78.19 68.49 19.12 17.95 20.08
sample from this work; bnatural macrosphelide M, reported in J. Antibiot. 60, 2007, 370–375.
Table S3. NMR spectral data of macrosphelides D and M in CDCl3 Macrosphelide Ma Position 1 2A 2B 3 5 6 7 8 9 11 12 13 14 15 17 18 19 8-OH 15-OH a
H
2.60 2.76 5.37 - 5.33 6.08 7.06 4.43 5.29 6.03 6.47 5.19 4.02 - 3.99 1.17 1.45 1.36 3.08 1.93
M
J/Hz
Macrosphelide Da H
dd 14.7, 10.5 1H dd 14.7, 3.5 1H m 1H dd 16.1, 2.1 dd 15.4, 2.8 br s q 14.0, 7.0
1H 1H 1H 1H
d dd dd m d d d d d
1H 1H 1H 1H 3H 3H 3H 0H OH
16.1 16.1, 9.1 9.1, 4.2 6.3 7.0 6.3 7.0 3.5
C
1.68 41.8 67.8 166.7 121.9 145.8 76.0 76.1 165.8 127.3 140.8 in CDCl3 68.0 18.3 17.8 20.1
H
M
J/Hz
H
2.52 2.63 5.35 - 5.31
dd dd m
14.0, 3.5 14.0, 11.9
1H 1H 1H
5.95 6.65 4.15 4.75
d dd t dq
16.1 16.1, 7.7 8.4 8.4, 6.3
1H 1H 1H 1H
5.95 6.58 5.05 4.06 1.21 1.46 1.34
d dd dd dq d d d
16.1 16.1, 8.4 8.4, 4.2 4.2, 6.3 6.3 6.3 6.3
1H 1H 1H 1H 3H 3H 3H
Macrosphelide Db C
169.7 41.5 69.2 69.2 164.4 124.4 148.7 75.9 72.5 164.1 126.9 148.7 77.7 68.2 18.3 17.8 20.2
H
M
J/Hz
H
2.52 2.62 5.35
dd dd m
13.5, 3.3 13.5, 11.5
1H 1H 1H
5.96 6.64 4.16 4.76
d dd dd dq
15.8 15.8, 7.9 8.6, 4.0 7.9, 6.3
1H 1H 1H 1H
5.96 6.59 5.05 4.06 1.22 1.47 1.35
d dd dd dq d d d
15.8 15.8, 8.6 8.6, 4.0 4.0, 6.6 6.6 6.3 6.3
1H 1H 1H 1H 3H 3H 3H
sample from this work; bnatural macrosphelide D reported in J. Antibiot. 50, 1997, 878–880.
S63
C
169.7 41.5 69.2 164.4 124.3 145.8 75.9 72.5 164.1 126.9 140.8 77.7 68.1 18.3 17.8 20.2
6.5 6.0 5.5 O
5.0 4.5 4.0
S64
3.5 3.0 2.5 2.0 1.5
3.14 3.13 3.13
O
1.31
O
1.03 1.10 0.89
O
0.31
O
1.02 1.03
HO
1.00
Me
1.43 1.02
7.0
2.00
7.5 1.00 1.01
7.260 6.901 6.896 6.879 6.873 6.802 6.796 6.779 6.773 6.050 6.048 6.031 6.028 6.025 6.008 6.005 5.315 5.310 5.301 5.183 5.178 5.174 5.169 4.999 4.995 4.990 4.986 4.435 4.432 4.331 4.330 4.325 4.125 4.115 2.739 2.734 2.716 2.711 2.566 2.556 2.542 2.533 2.174 2.122 2.046 2.026 2.015 2.011 1.426 1.417 1.405 1.396 1.362 1.353
Curran and coworkers FMS of Macrosphelides
288, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.0 0.5 ppm
6.6 6.4 6.2 6.0 5.8 5.6
S65
5.0 4.4 4.2
0.31
4.6 1.03
4.8 1.02
5.2
1.00
5.4 1.02
1.43
6.8
2.00
1.01
1.00
6.901 6.896 6.879 6.873 6.802 6.796 6.779 6.773 6.050 6.048 6.031 6.028 6.025 6.008 6.005 5.324 5.319 5.315 5.310 5.305 5.301 5.183 5.178 5.174 5.169 5.159 4.999 4.995 4.990 4.986 4.446 4.444 4.440 4.438 4.435 4.432 4.429 4.427 4.424 4.421 4.347 4.343 4.342 4.340 4.339 4.334 4.331 4.330 4.328 4.327 4.325 4.321 4.125 4.115
Curran and coworkers FMS of Macrosphelides
288, H−NMR, 700MHz, CDCl3
ppm
2.5 2.4 2.3 2.2 2.1 2.0
S66
1.9 1.8 1.7 1.6 1.5 3.14 3.13 3.13
2.6 1.31
2.7
0.89
2.8 1.10
2.9 1.03
1.426 1.417 1.405 1.396 1.362 1.353
2.174 2.122 2.046 2.026 2.015 2.011
2.739 2.734 2.716 2.711 2.566 2.556 2.542 2.533 2.498 2.485
Curran and coworkers FMS of Macrosphelides
288, H−NMR, 700MHz, CDCl3
1.4 1.3 1.2 ppm
5.5 5.0 4.5 4.0
S67
3.5 3.0 2.5 2.0 3.27 3.29 3.45
6.0 O
0.96
6.5 O
0.96
O
1.03 1.07
O
2.05
Me O
2.04
HO
1.02
7.0
1.97
1.00
7.5 1.00
7.260 6.963 6.957 6.940 6.935 6.730 6.725 6.707 6.702 6.151 6.148 6.128 6.126 6.092 6.089 6.069 6.066 5.254 5.253 5.249 5.248 5.015 5.012 5.008 5.006 5.002 4.999 4.450 4.448 4.446 4.442 4.438 4.438 4.435 4.433 4.431 2.698 2.693 2.675 2.670 2.594 2.583 2.571 2.560 2.287 2.275 1.897 1.886 1.495 1.485 1.419 1.409 1.275 1.266
Curran and coworkers FMS of Macrosphelides
289, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
6.2 6.0 5.8 5.6 5.4
S68
5.2 5.0 4.8 4.6
2.05
6.4 2.04
6.6 1.02
6.8 1.97
1.00
1.00
5.264 5.259 5.254 5.253 5.249 5.248 5.244 5.239 5.021 5.018 5.015 5.012 5.008 5.006 5.002 4.999 4.993 4.453 4.450 4.448 4.446 4.442 4.438 4.438 4.435 4.433 4.431 4.428
6.151 6.148 6.128 6.126 6.092 6.089 6.069 6.066
6.730 6.725 6.707 6.702
6.940 6.935
Curran and coworkers FMS of Macrosphelides
289, H−NMR, 700MHz, CDCl3
4.4 4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.2
2.1
2.0
1.9
S69
1.7
1.6
1.5
1.4
1.275 1.266
1.495 1.485 1.419 1.409 1.8
1.3 3.45
2.3
1.897 1.886
2.287 2.275 2.4
3.29
2.5
3.27
2.6
0.96
2.7
1.07
2.8
1.03
2.9
0.96
2.698 2.693 2.675 2.670 2.594 2.583 2.571 2.560
289, H−NMR, 700MHz, CDCl3
1.2
ppm
5.5 O
5.0 4.5 4.0
S70
3.5 3.0 2.5 2.0 3.04 3.20 3.44
6.0 O
0.95 0.97
6.5 O
2.14
O
1.06
O
1.02
HO
1.03 1.09
Me
0.99
7.0 0.99 0.97
7.5 2.00
7.260 6.805 6.800 6.782 6.777 6.759 6.752 6.736 6.729 6.114 6.112 6.092 6.089 5.994 5.992 5.972 5.969 5.417 5.154 5.151 5.145 5.142 5.108 5.102 5.099 5.093 4.497 4.494 4.491 4.490 4.487 4.319 4.317 4.316 4.314 4.306 4.305 4.303 4.301 2.591 2.568 2.554 2.549 2.531 1.956 1.945 1.883 1.870 1.391 1.382 1.360 1.351 1.320 1.311
Curran and coworkers FMS of Macrosphelides
290, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S71
5.2 5.0 4.8 4.6
1.06
6.0
1.02
6.2 1.03 1.09
6.4 0.99
6.6 0.97
6.8
0.99
2.00
6.805 6.800 6.782 6.777 6.759 6.752 6.736 6.729 6.114 6.112 6.092 6.089 5.994 5.992 5.972 5.969 5.426 5.422 5.417 5.413 5.409 5.154 5.151 5.145 5.142 5.117 5.108 5.102 5.099 5.093 4.507 4.504 4.501 4.500 4.498 4.497 4.494 4.491 4.490 4.487 4.483 4.481 4.322 4.319 4.317 4.316 4.314 4.311 4.309 4.306 4.305 4.303 4.301 4.298
Curran and coworkers FMS of Macrosphelides
290, H−NMR, 700MHz, CDCl3
4.4 4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.6
2.5
2.3
2.2
2.1
2.0
1.9
S72
1.391 1.382 1.360 1.351 1.320 1.311
1.956 1.945 1.883 1.870 2.4
1.8
1.7
1.6
1.5
1.4
1.3
3.04 3.20 3.44
2.7
0.97
2.8
2.14
2.9
0.95
2.591 2.577 2.568 2.554 2.549 2.531 2.526
290, H−NMR, 700MHz, CDCl3
1.2
ppm
5.0 4.5 4.0
S73
3.5 3.0 2.5 2.0
2.99 3.04 3.17
5.5 1.00
6.0 O
1.07
6.5 O
1.04
O
0.98
O
2.00
Me O
2.02
HO
1.02
7.0
1.92
7.5 1.00 0.98
7.260 7.029 7.024 7.007 7.002 6.914 6.909 6.891 6.887 6.098 6.096 6.094 6.075 6.074 6.072 6.071 5.256 5.250 5.073 5.071 5.064 5.062 5.058 5.055 5.049 5.045 4.353 4.351 4.348 4.346 4.344 4.341 4.338 4.336 4.332 4.328 3.595 3.582 2.786 2.781 2.763 2.758 2.541 2.532 2.518 2.509 2.198 2.185 1.447 1.444 1.438 1.434 1.350 1.340
Curran and coworkers FMS of Macrosphelides
291, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
6.2 6.0 5.8 5.6 5.4
S74
5.2 5.0 4.8 4.6
2.00
6.4 2.02
6.6 1.02
6.8 1.92
0.98
5.265 5.260 5.256 5.250 5.247 5.241 5.073 5.071 5.067 5.064 5.062 5.058 5.055 5.052 5.049 5.045 4.356 4.353 4.351 4.348 4.346 4.344 4.341 4.338 4.336 4.332 4.329 4.328
6.098 6.096 6.094 6.075 6.074 6.072 6.071
6.909 6.891 6.887
Curran and coworkers FMS of Macrosphelides
291, H−NMR, 700MHz, CDCl3
4.4 4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.3
2.2
1.447 1.444 1.438 1.434 1.350 1.340
2.198 2.185 2.172 2.4
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
S75
1.3 3.17
2.5
2.99 3.04
2.6
1.00
2.7
1.07
2.8 1.04
2.9
2.541 2.532 2.518 2.509
2.786 2.781 2.763 2.758
291, H−NMR, 700MHz, CDCl3
1.2
ppm
O
5.5 5.0 4.5 4.0
S76
3.5 3.0 2.5 2.0
1.13 3.32 3.48 5.82
6.0 O
0.78 1.18 1.15
6.5 O
1.05 1.06
O
1.08
O
1.03 1.03
HO
2.36
Me
1.08
7.0
0.98 0.99
7.5 1.00 1.02
7.260 6.923 6.918 6.901 6.896 6.851 6.845 6.828 6.822 6.073 6.070 6.051 6.048 5.996 5.994 5.973 5.971 5.301 5.230 5.228 5.221 5.219 5.214 5.211 5.204 5.202 5.116 4.371 4.370 4.264 3.350 2.630 2.614 2.607 2.592 2.496 2.494 2.474 2.471 2.231 2.220 2.209 2.046 2.042 2.032 2.011 1.965 1.952 1.443 1.434 1.389 1.380 1.296 1.287
Curran and coworkers FMS of Macrosphelides
292, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
6.6 6.4 6.2 6.0 5.8
S77
5.2 4.8 4.6
1.03
5.0 1.03
5.4
2.36
5.6 1.08
0.99
6.8
0.98
1.02
1.00
6.073 6.070 6.051 6.048 5.996 5.994 5.973 5.971 5.434 5.432 5.425 5.423 5.419 5.417 5.410 5.407 5.345 5.339 5.301 5.238 5.230 5.228 5.226 5.221 5.219 5.214 5.211 5.204 5.202 5.195 5.192 5.116 4.378 4.375 4.371 4.370 4.364 4.361 4.280 4.278 4.275 4.267 4.264
6.901 6.896 6.851 6.845 6.828 6.822
Curran and coworkers FMS of Macrosphelides
292, H−NMR, 700MHz, CDCl3
4.4 4.2 ppm
2.1 2.0
S78
1.9 1.8 1.7 1.6 1.5 1.4 5.82
2.2
3.48
2.3 3.32
2.4 1.13
2.5
1.15
2.6
1.18
2.7 0.78
2.8 1.06
2.9 1.05
1.443 1.434 1.389 1.380 1.296 1.287
2.046 2.042 2.032 2.011 2.003 1.965 1.952
2.231 2.220 2.209
2.630 2.614 2.607 2.592 2.496 2.494 2.474 2.471
Curran and coworkers FMS of Macrosphelides
292, H−NMR, 700MHz, CDCl3
1.3 1.2 ppm
5.5 5.0 4.5 4.0
S79
3.5 3.0 2.0 1.5 3.32 3.38 3.81
2.5
0.96
O
2.16
6.0 O
0.92
6.5 O
1.13
O
1.01
O
1.00
HO
1.12
Me
1.05
7.0
2.02
7.5 2.00
7.260 6.858 6.852 6.845 6.839 6.836 6.830 6.822 6.816 6.101 6.099 6.091 6.089 6.079 6.077 6.069 6.066 5.128 5.122 5.118 5.113 4.924 4.919 4.914 4.909 4.493 4.491 4.488 4.486 4.483 4.223 4.220 4.217 4.215 4.212 4.209 3.104 3.093 2.677 2.672 2.654 2.649 2.623 2.612 2.600 2.589 2.039 2.029 1.437 1.428 1.363 1.354 1.321 1.312
Curran and coworkers FMS of Macrosphelides
293, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.0 0.5 ppm
5.8 5.6 5.4
S80
5.2 5.0 4.8 4.6 4.4 1.13
6.0 1.01
6.2 1.00
6.4 1.12
6.6 1.05
6.8
2.02
2.00
6.858 6.852 6.845 6.839 6.836 6.830 6.822 6.816 6.101 6.099 6.091 6.089 6.079 6.077 6.069 6.066 5.354 5.349 5.344 5.342 5.340 5.338 5.333 5.329 5.300 5.128 5.122 5.118 5.113 4.924 4.919 4.914 4.909 4.900 4.502 4.499 4.496 4.493 4.491 4.488 4.486 4.483 4.480 4.477 4.229 4.226 4.223 4.220 4.217 4.215 4.212 4.209 4.207 4.204
Curran and coworkers FMS of Macrosphelides
293, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.6
2.5
2.3
2.2
2.1
2.0
S81
1.437 1.428 1.363 1.354 1.321 1.312
2.039 2.029 2.4
1.9
1.8
1.7
1.6
1.5
1.4
1.3 3.38 3.81
2.7
3.32
2.8
2.16
2.9
0.96
2.677 2.672 2.654 2.649 2.623 2.612 2.600 2.589
293, H−NMR, 700MHz, CDCl3
1.2
ppm
5.5 O
5.0 4.5 4.0
S82
3.5 3.0 2.5 2.0 2.98 3.52 3.13
6.0 O
0.93
6.5 O
0.92 1.00 1.01
O
0.98 0.99
O
0.97
HO
1.02
Me
1.06
7.0
1.88
7.5 1.00 0.96
7.260 6.893 6.886 6.871 6.864 6.792 6.787 6.769 6.765 6.065 6.062 6.048 6.043 6.040 6.026 6.023 5.280 5.275 5.098 5.094 5.088 5.085 4.920 4.913 4.911 4.904 4.397 4.394 4.390 4.385 4.382 4.264 4.262 4.258 4.253 4.251 2.855 2.845 2.718 2.713 2.695 2.690 2.589 2.579 2.566 2.556 1.976 1.964 1.479 1.469 1.440 1.431 1.305 1.296
Curran and coworkers FMS of Macrosphelides
294, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S83
5.2 5.0 4.8 4.6 4.4 0.99
6.0
0.98
6.2 0.97
6.4 1.02
6.6 1.06
6.8
1.88
0.96
1.00
6.893 6.886 6.871 6.864 6.792 6.787 6.769 6.765 6.065 6.062 6.048 6.043 6.040 6.026 6.023 5.299 5.289 5.284 5.280 5.275 5.270 5.265 5.255 5.107 5.103 5.098 5.094 5.088 5.085 5.079 5.075 4.930 4.922 4.920 4.913 4.911 4.904 4.895 4.402 4.397 4.394 4.390 4.385 4.382 4.378 4.271 4.269 4.264 4.262 4.258 4.253 4.251 4.247 4.244
Curran and coworkers FMS of Macrosphelides
294, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.2
2.1
2.0
S84
1.9
1.8
1.7
1.6
1.5
1.4
1.305 1.296 1.3 3.13
2.3
1.479 1.469 1.440 1.431
1.976 1.964 2.4
2.98 3.52
2.5
0.93
2.6 1.01
2.7 1.00
2.8 0.92
2.9
2.718 2.713 2.695 2.690 2.589 2.579 2.566 2.556
2.855 2.845
294, H−NMR, 700MHz, CDCl3
1.2
ppm
5.5 O
5.0 4.5 4.0
S85
3.5 3.0 2.5 2.0
3.00 3.08 3.24
6.0 O
0.96
6.5 O
2.09
O
0.96
O
2.04
HO
1.01 1.04
Me
0.99
7.0 0.99 0.98
7.5 2.00
7.260 6.847 6.843 6.840 6.838 6.825 6.820 6.817 6.816 6.120 6.116 6.097 6.094 6.021 6.019 5.999 5.997 5.432 5.430 5.426 5.424 5.420 5.182 5.179 5.173 5.170 5.112 5.109 5.102 5.099 4.321 4.317 4.313 4.307 4.304 4.300 4.297 4.293 4.292 4.289 3.473 3.462 2.576 2.575 2.571 2.563 1.936 1.923 1.388 1.378 1.354 1.345 1.325 1.315
Curran and coworkers FMS of Macrosphelides
295, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S86
5.2 5.0 4.8 4.6
2.04
6.0
1.04
6.2 1.01
6.4 0.99
6.6 0.98
6.8
0.99
2.00
6.120 6.116 6.097 6.094 6.021 6.019 5.999 5.997 5.441 5.436 5.432 5.430 5.426 5.424 5.420 5.415 5.191 5.188 5.182 5.179 5.173 5.170 5.163 5.160 5.122 5.118 5.112 5.109 5.102 5.099 5.093 5.090 4.324 4.321 4.317 4.313 4.307 4.304 4.300 4.297 4.293 4.292
6.843 6.840 6.838 6.825 6.820 6.817 6.816
Curran and coworkers FMS of Macrosphelides
295, H−NMR, 700MHz, CDCl3
4.4 4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
S87
1.388 1.378 1.354 1.345 1.325 1.315 1.8
1.7
1.6
1.5
1.4
1.3
3.00 3.08 3.24
2.7
0.96
2.8
2.09
2.9
1.936 1.923
2.593 2.576 2.575 2.571 2.563 2.541
295, H−NMR, 700MHz, CDCl3
1.2
ppm
5.5 5.0 4.5 4.0
S88
3.5 3.0 2.5 2.0
3.21 3.32 3.72
6.0 O
0.98
6.5 O
2.13
Me O
1.00
O
1.06
O
1.04
HO
2.05 1.04
7.0
1.99
7.5 1.00 1.02
7.260 6.943 6.938 6.921 6.916 6.857 6.851 6.835 6.828 6.111 6.108 6.086 5.230 5.227 5.225 5.221 5.218 5.211 5.208 5.076 5.073 5.067 5.063 4.427 4.425 4.422 4.419 4.415 4.413 4.411 4.248 4.244 4.241 4.238 4.234 4.231 3.603 3.593 2.711 2.706 2.687 2.683 2.661 2.649 2.638 2.625 1.971 1.960 1.468 1.459 1.374 1.365 1.335 1.326
Curran and coworkers FMS of Macrosphelides
296, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
6.0 5.8 5.6 5.4
S89
5.2 5.0 4.8 4.6 4.4
1.06
6.2 1.04
6.4 1.04
6.6 2.05
6.8
1.99
1.02
1.00
5.234 5.230 5.227 5.225 5.221 5.218 5.211 5.208 5.202 5.199 5.086 5.082 5.076 5.073 5.067 5.063 5.057 5.053 4.429 4.427 4.425 4.422 4.419 4.415 4.413 4.411 4.408 4.251 4.248 4.244 4.241
6.111 6.108 6.086
6.916 6.857 6.851 6.835 6.828
Curran and coworkers FMS of Macrosphelides
296, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.4
2.3
2.2
2.1
2.0
S90
1.468 1.459 1.374 1.365 1.335 1.326
1.971 1.960 2.5
1.9
1.8
1.7
1.6
1.5
1.4
1.3 3.72
2.6
3.32
2.7
3.21
2.8
2.13
2.9
0.98
2.711 2.706 2.687 2.683 2.661 2.649 2.638 2.625
296, H−NMR, 700MHz, CDCl3
1.2
ppm
6.0 O
5.5 O
5.0 4.5 4.0
S91
3.5 3.0 2.5
0.61 0.49 1.09 0.96 1.23 3.35 3.31 1.63 2.91 5.44
6.5 O
1.54 1.07
HO
0.34
O
0.99 0.40
O
0.35 1.02 1.51
Me
2.25 1.22 0.55 0.38 1.01
7.0
0.36 2.19
7.5 1.00 0.78 0.99
7.260 6.965 6.959 6.943 6.937 6.727 6.722 6.705 6.700 6.071 6.068 6.064 6.048 6.046 6.045 6.042 5.258 5.253 5.248 5.244 5.116 4.861 4.856 4.851 4.846 3.416 3.403 3.350 2.654 2.639 2.630 2.615 2.564 2.561 2.540 2.537 1.871 1.859 1.438 1.429 1.419 1.410 1.392 1.382 1.360 1.351 1.321 1.311 1.305 1.296 1.287 1.265 1.249 1.235
Curran and coworkers FMS of Macrosphelides
297, H−NMR, 700MHz, CDCl3
Me OH
Me O
2.0 1.5 1.0 0.5 ppm
5.8 5.6 5.4
S92
5.2 5.0 4.8 4.4 4.2
1.51
4.6 1.02
0.35
6.0
0.38 1.01
6.2 0.55
6.4 1.22
6.6 2.25
6.8
0.36 2.19
0.99
0.78
1.00
6.965 6.959 6.943 6.937 6.843 6.838 6.835 6.829 6.821 6.815 6.727 6.722 6.705 6.700 6.102 6.099 6.094 6.091 6.080 6.077 6.071 6.068 6.064 6.048 6.046 6.045 6.042 5.392 5.386 5.382 5.380 5.377 5.371 5.368 5.345 5.340 5.301 5.258 5.253 5.248 5.244 5.116 4.861 4.856 4.851 4.846 4.408 4.405 4.401 4.396 4.393 4.211 4.205 4.199
Curran and coworkers FMS of Macrosphelides
297, H−NMR, 700MHz, CDCl3
ppm
2.4 2.3 2.2 2.1 2.0
S93
1.9 1.8 1.7 1.6 1.5
1.23 3.35 3.31 1.63 2.91 5.44
2.5 0.96
2.6
0.49 1.09
2.7 0.61
2.8 1.07
2.9 1.54
1.438 1.429 1.419 1.410 1.392 1.382 1.360 1.351 1.321 1.311 1.305 1.296 1.287 1.265 1.249 1.235
1.871 1.859
2.052 2.047 2.042 2.011 2.002
2.231 2.220 2.209
2.675 2.670 2.654 2.652 2.648 2.639 2.630 2.626 2.615 2.603 2.591 2.564 2.561 2.540 2.537
Curran and coworkers FMS of Macrosphelides
297, H−NMR, 700MHz, CDCl3
1.4 1.3 1.2 ppm
6.5 6.0 O
5.5 5.0 4.5 4.0
S94
3.5 3.0 2.5 2.0 3.32 3.47 4.35
O
1.05
O
1.06 2.11
O
1.06 1.07
O
1.02
HO
1.07
Me
1.01
7.0
1.94
7.5 1.00 1.05
7.260 6.878 6.872 6.856 6.850 6.808 6.801 6.785 6.778 6.045 6.042 6.022 6.020 5.995 5.992 5.972 5.970 5.421 5.418 5.414 5.411 5.195 5.193 5.186 5.184 4.928 4.919 4.910 4.294 4.291 4.288 4.282 4.279 4.276 4.169 4.161 2.670 2.654 2.647 2.631 2.537 2.527 2.510 2.507 2.487 2.484 1.969 1.957 1.454 1.445 1.385 1.376 1.311 1.302
Curran and coworkers FMS of Macrosphelides
298, H−NMR, 700MHz, CDCl3
Me OH
Me
O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S95
5.2 5.0 4.8 4.6 4.4
1.07
6.0
1.06
6.2 1.02
6.4 1.07
6.6 1.01
6.8
1.94
1.05
1.00
4.296 4.294 4.291 4.288 4.286 4.284 4.282 4.279 4.276 4.273 4.179
5.430 5.427 5.421 5.418 5.414 5.411 5.405 5.402 5.195 5.193 5.186 5.184 4.928 4.919 4.910
6.045 6.042 6.022 6.020 5.995 5.992 5.972 5.970
6.872 6.856 6.850 6.808 6.801 6.785 6.778
Curran and coworkers FMS of Macrosphelides
298, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.4
2.2
2.1
2.0
S96
1.454 1.445 1.385 1.376 1.311 1.302
1.969 1.957 2.3
1.9
1.8
1.7
1.6
1.5
1.4
1.3 4.35
2.5
3.47
2.6
3.32
2.7
2.11
2.8
1.06
2.9
1.05
2.670 2.654 2.647 2.631 2.537 2.527 2.510 2.507 2.487 2.484
298, H−NMR, 700MHz, CDCl3
1.2
ppm
5.0 4.5 4.0
S97
3.5 3.0 2.5 2.0
3.19 3.34 3.24
5.5 O
1.04 1.06
6.0 O
0.96
6.5 O
1.02
O
1.04
O
1.02
HO
1.05 1.05
Me
1.02
7.0
2.01
1.10
7.5 1.00
7.260 7.036 7.030 7.014 7.008 6.818 6.811 6.796 6.789 6.123 6.121 6.101 6.098 6.091 6.089 6.069 6.067 5.129 5.127 5.120 5.117 4.990 4.984 4.980 4.974 4.385 4.382 4.379 4.377 4.374 4.371 4.368 4.198 4.195 4.192 4.190 3.348 3.336 3.057 3.047 2.733 2.729 2.710 2.706 2.628 2.617 2.605 2.594 1.439 1.430 1.388 1.379 1.329 1.320
Curran and coworkers FMS of Macrosphelides
299, H−NMR, 700MHz, CDCl3
Me OH
Me
O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S98
5.2 5.0 4.8 4.6 4.4 1.04
6.0 1.02
6.2 1.05
6.4 1.05
6.6 1.02
6.8
2.01
1.10
6.818 6.811 6.796 6.789 6.123 6.121 6.101 6.098 6.091 6.089 6.069 6.067 5.344 5.340 5.335 5.333 5.330 5.330 5.324 5.320 5.139 5.136 5.129 5.127 5.120 5.117 5.110 5.107 4.993 4.990 4.984 4.980 4.974 4.971 4.965 4.388 4.385 4.382 4.379 4.377 4.374 4.371 4.368 4.365 4.208 4.205 4.200 4.198 4.195 4.192 4.190 4.188 4.184 4.182
Curran and coworkers FMS of Macrosphelides
299, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
S99
1.3 3.24
2.5
3.34
2.6
3.19
2.7
1.06
2.8
1.04
2.9
1.439 1.430 1.388 1.379 1.329 1.320
2.733 2.729 2.710 2.706 2.628 2.617 2.605 2.594
299, H−NMR, 700MHz, CDCl3
1.2
ppm
5.0 4.5 4.0
S100
3.5 3.0 2.5 2.0 3.08 3.13 3.22
5.5
O
0.99 1.01
6.0 O
1.08 1.07
6.5 O
1.04
O
1.04
O
1.01
HO
1.08
Me
1.14
7.0
1.94
7.5 2.00
7.260 6.924 6.917 6.912 6.907 6.902 6.895 6.890 6.885 6.087 6.084 6.072 6.069 6.064 6.062 6.049 6.047 5.309 5.307 5.300 5.112 5.108 5.102 5.098 4.938 4.929 4.920 4.424 4.420 4.417 4.414 4.411 4.171 4.170 4.164 4.162 2.663 2.659 2.642 2.638 2.519 2.507 2.498 2.486 2.213 2.203 2.079 2.069 1.466 1.457 1.371 1.362 1.341 1.332
Curran and coworkers FMS of Macrosphelides
II−1, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S101
5.2 5.0 4.8 4.6 4.4 1.04
6.0 1.04
6.2 1.01
6.4 1.08
6.6 1.14
6.8 1.94
2.00
6.924 6.917 6.912 6.907 6.902 6.895 6.890 6.885 6.087 6.084 6.072 6.069 6.064 6.062 6.049 6.047 5.320 5.316 5.311 5.309 5.307 5.304 5.300 5.295 5.117 5.112 5.108 5.102 5.098 5.093 5.089 4.947 4.938 4.929 4.920 4.911 4.430 4.427 4.424 4.420 4.417 4.414 4.411 4.408 4.181 4.178 4.174 4.171 4.170 4.164 4.162 4.160 4.155 4.153
Curran and coworkers FMS of Macrosphelides
II−1, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.3
2.2
2.1
1.466 1.457 1.371 1.362 1.341 1.332
2.079 2.069
2.213 2.203 2.4
2.0
1.9
1.8
1.7
1.6
1.5
S102
1.4
1.3
3.13 3.22
2.5
3.08
2.6
1.01
2.7
1.07
2.8
1.08
2.9
0.99
2.663 2.659 2.642 2.638 2.519 2.507 2.498 2.486
II−1, H−NMR, 700MHz, CDCl3
1.2
ppm
5.0 4.5 4.0
S103
3.5 3.0 2.5 2.0 3.16 3.21 3.40
5.5 O
1.03 1.07
6.0 O
0.97
6.5 O
0.97
O
1.02 1.04
O
1.01
HO
1.05
Me
1.02
7.0
1.97
7.5 2.00
7.260 6.960 6.953 6.938 6.931 6.922 6.915 6.899 6.892 6.092 6.090 6.070 6.067 6.052 6.049 6.029 6.027 5.340 5.331 5.322 5.119 5.116 5.109 5.106 4.918 4.912 4.908 4.902 4.319 4.317 4.313 4.190 4.189 4.186 4.185 4.179 3.279 3.268 3.044 3.032 2.659 2.655 2.638 2.634 2.590 2.578 2.568 2.556 1.412 1.402 1.374 1.365 1.332 1.323
Curran and coworkers FMS of Macrosphelides
II−2, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S104
5.2 5.0 4.8 4.6 4.4 1.04
6.0
1.02
6.2 1.01
6.4 1.05
6.6 1.02
6.8 1.97
2.00
6.960 6.953 6.938 6.931 6.922 6.915 6.899 6.892 6.092 6.090 6.070 6.067 6.052 6.049 6.029 6.027 5.344 5.340 5.335 5.331 5.327 5.322 5.318 5.300 5.119 5.116 5.109 5.106 5.100 5.096 4.921 4.918 4.912 4.908 4.902 4.899 4.893 4.329 4.326 4.323 4.319 4.317 4.313 4.309 4.306 4.198 4.196 4.190 4.189 4.186 4.185 4.179 4.174 4.172
Curran and coworkers FMS of Macrosphelides
II−2, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.6
2.5
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
3.16 3.21 3.40
2.7
1.07
2.8
1.03
2.9
1.412 1.402 1.374 1.365 1.332 1.323
2.659 2.655 2.638 2.634 2.590 2.578 2.568 2.556
II−2, H−NMR, 700MHz, CDCl3
S105
1.2
ppm
5.5 5.0 4.5 4.0
S106
3.5 3.0 2.5 2.0
3.04 3.14 3.22
6.0 O
0.97
6.5 O
2.07
O
0.98
O
1.02 1.03
Me
O
1.01 1.02
HO
1.00
7.0 0.99 0.98
7.5 2.00
7.260 6.839 6.830 6.825 6.817 6.808 6.803 6.796 6.068 6.066 6.046 6.044 5.990 5.988 5.967 5.966 5.262 5.258 5.256 5.253 5.251 5.247 5.059 5.055 5.050 5.046 4.970 4.961 4.952 4.231 4.228 4.224 4.221 4.218 4.173 4.171 4.164 4.162 3.499 3.489 2.704 2.685 2.680 2.675 2.664 2.640 2.495 2.486 1.465 1.456 1.377 1.368 1.317 1.308
Curran and coworkers FMS of Macrosphelides
II−3, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S107
5.2 5.0 4.8 4.6 4.4
1.02 1.03
6.0
1.02
6.2 1.01
6.4 1.00
6.6 0.98
6.8
0.99
2.00
6.839 6.830 6.825 6.817 6.808 6.803 6.796 6.068 6.066 6.046 6.044 5.990 5.988 5.967 5.966 5.267 5.262 5.258 5.256 5.253 5.251 5.247 5.242 5.069 5.065 5.059 5.055 5.050 5.046 5.040 5.036 4.979 4.970 4.961 4.952 4.943 4.238 4.236 4.234 4.231 4.228 4.224 4.221 4.218 4.217 4.215 4.182 4.181 4.173 4.171 4.164 4.162 4.155 4.153
Curran and coworkers FMS of Macrosphelides
II−3, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.4
2.3
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
S108
1.4
1.3 3.22
2.5
3.14
2.6
3.04
2.7
0.97
2.8
2.07
2.9
1.465 1.456 1.377 1.368 1.317 1.308
2.708 2.704 2.685 2.680 2.675 2.664 2.652 2.640 2.495 2.486
II−3, H−NMR, 700MHz, CDCl3
1.2
ppm
6.0 O
5.5 O
5.0 4.5 4.0
S109
3.5 3.0 2.5 2.0 3.14 3.54 3.75
6.5 O
0.98
HO
0.96 2.28
O
1.03 1.03
O
1.01 1.00
Me
0.99
7.0
2.08
7.5 2.00
7.260 6.888 6.881 6.875 6.866 6.859 6.852 6.075 6.073 6.058 6.055 6.052 6.050 6.035 6.033 5.404 5.395 5.385 4.956 4.949 4.947 4.940 4.871 4.862 4.853 4.247 4.244 4.242 4.240 4.238 4.236 4.233 4.160 4.158 4.153 4.151 2.744 2.733 2.633 2.619 2.611 2.597 2.583 2.579 2.561 2.557 2.329 2.319 1.468 1.459 1.380 1.371 1.334 1.325
Curran and coworkers FMS of Macrosphelides
II−4, H−NMR, 700MHz, CDCl3
Me OH
Me O
1.5 1.0 0.5 ppm
5.8 5.6 5.4
S110
5.2 5.0 4.8 4.6 4.4 1.03
6.0
1.03
6.2 1.00
6.4 1.01
6.6 0.99
6.8 2.08
2.00
6.888 6.881 6.875 6.866 6.859 6.852 6.075 6.073 6.058 6.055 6.052 6.050 6.035 6.033 5.408 5.404 5.399 5.395 5.390 5.385 5.381 4.959 4.956 4.949 4.947 4.940 4.937 4.931 4.880 4.871 4.862 4.853 4.843 4.253 4.251 4.247 4.244 4.242 4.240 4.238 4.236 4.233 4.229 4.227 4.170 4.168 4.163 4.160 4.158 4.153 4.151 4.148 4.144 4.141
Curran and coworkers FMS of Macrosphelides
II−4, H−NMR, 700MHz, CDCl3
4.2 ppm
Curran and coworkers
FMS of Macrosphelides
2.3
1.468 1.459 1.380 1.371 1.334 1.325
2.329 2.319 2.4
2.2
2.1
2.0
1.9
1.8
1.7
1.6
1.5
S111
1.4
1.3 3.75
2.5
3.54
2.6
3.14
2.7
2.28
2.8
0.96
2.9
0.98
2.744 2.733 2.633 2.619 2.611 2.597 2.583 2.579 2.561 2.557
II−4, H−NMR, 700MHz, CDCl3
1.2
ppm
Curran and coworkers
FMS of Macrosphelides
288
289
290
291
292
293
294
295
296
297
298
299
II-1
II-2
II-3
II-4
6.8
6.6
6.4
6.2
6.0
5.8
5.6 S112
5.4
5.2
5.0
4.8
4.6
4.4
ppm
Curran and coworkers
FMS of Macrosphelides
288
289
290
291
292
293
294
295
296
297
298
299
II-1
II-2
II-3
II-4
2.8
2.6
2.4
2.2
2.0 S113
1.8
1.6
1.4
1.2
ppm
Curran and coworkers
FMS of Macrosphelides
Me
170
160
150
140
130
30
19.07 15.66 14.94
40
Me OH
O HO
29.69
O
39.70
77.18 77.00 76.82 74.30 72.52 72.37 72.17 66.96
122.63 121.64
147.74 146.16
169.51 165.45 164.89
kai288, C−NMR, 700MHz, CDCl3
O O
120
Me O
O
110
100
90 S114
80
70
60
50
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.65 15.81 14.90
Me OH
O HO
40.32
77.18 77.00 76.82 73.13 72.97 72.86 71.30 66.88
122.56 121.27
147.55 145.94
169.27 165.47 165.05
kai−289, C−NMR, 700MHz, CDCl3
O O
120
Me O
O
110
100
90 S115
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.64 16.31 14.54
Me OH
O HO
40.85
77.18 77.00 76.82 72.58 72.57 72.28 71.34 67.50
123.21 122.02
147.45 145.14
169.62 164.96 164.74
kai290, C−NMR, 700MHz, CDCl3
O
Me
O
O
O
120
110
100
90 S116
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.14 18.00 15.92
Me OH
O HO
39.71
77.19 77.01 76.82 75.43 73.12 72.42 67.11
121.76 121.26
148.35 145.63
169.19 167.34 165.51
kai291, C−NMR, 700MHz, CDCl3
O O
120
Me O
O
110
100
90 S117
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
170
160
150
140
130
41.20
20.09 17.26 16.08
Me
30
20
Me OH
O HO
29.70
O
77.19 77.00 76.82 73.63 72.92 71.89 71.07 67.45
121.56 120.73
148.59 146.82
169.65 165.14 164.86
kai292, C−NMR, 700MHz, CDCl3
O O
120
Me O
O
110
100
90 S118
80
70
60
50
40
10 ppm
Curran and coworkers
FMS of Macrosphelides
170
160
150
140
130
19.70 17.57 14.91
Me
40
30
20
Me OH
O HO
29.71
O
40.55
77.19 77.01 76.82 76.45 73.69 72.42 72.19 71.35 66.65
122.56 122.42
146.28 144.91
165.15 164.53
170.97
kai−293, C−NMR, 700MHz, CDCl3
O
Me
O
O
120
110
O
100
90 S119
80
70
60
50
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
O O
120
19.40 18.12 15.37
Me OH
O HO
40.00
77.18 77.00 76.82 75.42 75.32 72.55 71.66 66.96
122.55 122.29
146.74 145.60
169.26 165.83 164.56
kai−294, C−NMR, 700MHz, CDCl3
Me O
110
O
100
90 S120
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
O
19.73 17.72 16.34
Me OH
O HO
40.88
77.19 77.01 76.82 76.19 74.97 72.65 71.91 67.32
122.51 121.67
147.83 144.46
169.56 166.65 165.10
kai−295, C−NMR, 700MHz, CDCl3
Me
O
O
120
110
O
100
90 S121
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
O
19.74 17.47 16.02
Me OH
O HO
40.83
77.19 77.00 76.82 76.57 74.72 73.23 70.99 66.92
122.93 121.08
147.81 144.74
165.38 165.14
171.97
kai296, 13C NMR, 700MHz, CDCl3
Me
O
O
120
110
O
100
90 S122
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
170
160
150
140
130
19.52 18.15 15.21
Me
O
40
30
20
Me OH
O HO
29.69
O
40.29
77.18 77.00 76.82 74.37 72.33 72.11 66.99 66.66
122.56 122.33
145.90 145.83
165.53 164.64
171.43
kai−297, C−NMR, 700MHz, CDCl3
Me
O
O
120
110
O
100
90 S123
80
70
60
50
10 ppm
Curran and coworkers
FMS of Macrosphelides
170
160
150
140
130
19.95 18.02 17.04
Me
O
40
30
20
Me OH
O HO
29.69
O
40.97
77.18 77.00 76.82 74.90 74.13 73.39 71.71 67.53
122.73 120.92
148.24
169.46 165.73 164.46
kai298, C−NMR, 700MHz, CDCl3
Me
O
O
120
110
O
100
90 S124
80
70
60
50
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.64 17.80 17.36
Me OH
O HO
40.51
77.19 77.00 76.82 76.18 75.56 75.27 73.82 66.60
122.96 122.31
145.33 144.95
170.94 166.80 165.29
kai−299, C−NMR, 700MHz, CDCl3
O
Me
O
O
O
120
110
100
90 S125
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
Me
170
160
150
140
130
30
19.48 17.53 15.69
40
Me OH
O HO
29.69 29.31
O
40.74
77.18 77.00 76.82 73.98 72.96 72.73 72.19 67.60
122.43 121.51
146.95 145.78
165.25 164.95
170.10
kai−jesse−II−1, 700MHz, Microtube, 13C NMR
O O
Me O
120
O
110
100
90 S126
80
70
60
50
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.50 17.78 17.76
Me OH
O HO
40.76
77.18 77.00 76.82 76.06 76.04 75.27 73.95 67.54
122.71 122.51
145.83 144.77
166.89 165.10
171.29
176.56
kai−II−2, C−NMR, 700MHz, CDCl3
O
Me
O
O
O
120
110
100
90 S127
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
19.70 17.73 17.40
Me OH
O HO
40.74
77.19 77.00 76.82 76.37 75.87 74.56 73.42 66.93
123.00
145.98 144.77
165.92 164.55
171.72
kai−II−3, C−NMR, 700MHz, CDCl3
O
Me
O
O
O
120
110
100
90 S128
80
70
60
50
40
30
20
10 ppm
Curran and coworkers
FMS of Macrosphelides
O
Me
170
160
150
140
130
O O
120
19.70 18.08 17.85
Me OH
O HO
40.97
77.19 77.00 76.82 75.22 74.91 74.27 73.20 67.64
122.79 122.39
145.88 144.83
170.19 165.74 164.41
kai−II−4, C−NMR, 700MHz, CDCl3
Me O
110
O
100
90 S129
80
70
60
50
40
30
20
10 ppm
S130
4 3
3.03 3.22
5 0.97
6
0.99
7
0.99
8 2.05 1.18
9 0.99
OH
1.00
6.161 6.157 6.122 6.117 4.229 4.211 4.193 4.175 4.122 4.104 4.082 4.078 4.069 4.066 4.063 4.057 4.054 4.050 4.042 4.038 3.747 3.737 3.732 3.721 3.716 3.706 2.669 2.657 2.372 2.361 2.039 1.712 1.309 1.291 1.273 1.254 1.238
7.260 6.943 6.930 6.903 6.891
Curran and coworkers FMS of Macrosphelides
O
OH OEt
S33
2 1 ppm
OH
14.18
19.09
60.63
77.32 77.00 76.69 75.64 70.24
122.58
146.33
FMS of Macrosphelides
166.30
Curran and coworkers
O OEt
OH
S33
190
180
170
160
150
140
130
120
110
100 S131
90
80
70
60
50
40
30
20
ppm
S132
3 2 5.93
4
9.06
5 3.15 3.02
6
1.00
7
1.01
8 2.03 1.02
9 0.99
OTBS
1.00
0.091 0.077 0.056 −0.007
1.299 1.281 1.263 1.216 1.201 0.882
7.260 6.922 6.910 6.883 6.871 6.136 6.131 6.096 6.092 4.224 4.206 4.188 4.170 4.034 4.030 4.022 4.020 4.018 4.015 4.010 4.008 4.006 4.003 3.996 3.991 3.790 3.777 3.775 3.762 3.759 3.747 3.744 3.731 2.598 2.584
Curran and coworkers FMS of Macrosphelides
O
OH OEt
S34
1 ppm
OTBS
−4.36 −4.91
20.15 17.98 14.22
25.72
60.35
77.32 77.00 76.68 75.25 71.10
122.00
147.21
FMS of Macrosphelides
166.29
Curran and coworkers
O OEt
OH
S34
190
180
170
160
150
140
130
120
110
100 S133
90
80
70
60
50
40
30
20
10
ppm
4
S134
3 2 1 6.22
5 3.15 3.17 9.60
6
0.99
7
1.02
8 1.05 2.05
9 0.98
OTBS
1.00
0.082
1.298 1.287 1.277 1.088 1.079 0.892
2.426 2.421
4.231 4.227 4.219 4.213 4.212 4.203 4.202 4.192 4.183 3.933 3.927 3.924 3.919 3.915 3.910 3.901
6.106 6.104 6.084 6.081
7.260 6.897 6.891 6.875 6.868
Curran and coworkers FMS of Macrosphelides
O
OH OEt
S35
0 ppm
OTBS
−4.48 −4.96
18.00 17.78 14.21
25.73
60.38
77.18 77.00 76.82 74.85 70.73
121.77
145.58
FMS of Macrosphelides
166.35
Curran and coworkers
O OEt
OH
S35
190
180
170
160
150
140
130
120
110
100
S135
90
80
70
60
50
40
30
20
10
0 ppm
5 4
S136
3 2 3.28 3.05
6
0.86
7
1.00
8 1.19 1.95
9 0.99
OH
1.00
1
0.085 0.057
1.305 1.294 1.284 1.136 1.126 0.922
2.123
6.016 6.014 5.994 5.992 4.235 4.233 4.229 4.228 4.225 4.222 4.220 4.217 4.212 4.207 4.202 4.199 4.197 4.188 4.183 4.178 4.173 3.841 3.832 3.826 3.823 3.817 3.808
7.260 6.932 6.924 6.909 6.902
Curran and coworkers FMS of Macrosphelides
O
OTBS OEt
S36
0 ppm
OH
−4.51 −4.97
18.15 17.50 14.21
25.78
60.47
77.18 77.00 76.82 75.76 70.56
122.56
146.20
FMS of Macrosphelides
166.11
Curran and coworkers
O OEt
OTBS
S36
190
180
170
160
150
140
130
120
110
100
S137
90
80
70
60
50
40
30
20
10
0 ppm
4
S138
3 2 1 2.73 3.15
5 9.04
6
3.10 3.03
7 2.08 1.02 1.04 1.02 1.02 1.97 3.04
8 2.04
9 0.99
OTBS
1.00
7.260 6.869 6.852 6.829 6.813 6.007 6.004 5.968 5.964 4.737 4.720 4.712 4.695 4.212 4.194 4.176 4.158 4.069 4.065 4.056 4.053 4.049 4.040 4.036 3.841 3.825 3.812 3.810 3.797 3.787 3.781 3.776 3.774 3.764 3.760 3.750 3.746 3.737 3.729 3.663 3.653 3.650 3.640 3.636 3.625 3.612 3.536 3.535 3.527 3.523 3.521 3.513 3.511 3.369 1.291 1.274 1.256 1.164
Curran and coworkers FMS of Macrosphelides
O
OMEM OEt
S37
ppm
OTBS
−4.63 −4.86
19.89 17.99 14.20
25.73
79.90 77.32 77.00 76.68 71.64 70.58 67.19 60.34 59.00
93.98
123.36
145.62
FMS of Macrosphelides
166.00
Curran and coworkers
O OEt
OMEM
S37
190
180
170
160
150
140
130
120
110
100 S139
90
80
70
60
50
40
30
20
10
ppm
4
S140
3 2 1 3.11 3.00
5 3.10 3.00 9.15
6
1.14 1.97 2.03 3.03
7
1.03 2.07
8 2.01
9 1.00
OMEM
1.00
7.260 6.974 6.962 6.935 6.923 6.038 6.034 5.999 5.995 4.755 4.738 4.732 4.715 4.256 4.252 4.245 4.245 4.241 4.240 4.234 4.229 4.212 4.207 4.194 4.190 4.176 4.172 4.159 4.154 3.773 3.763 3.757 3.747 3.741 3.731 3.725 3.722 3.715 3.711 3.698 3.695 3.684 3.673 3.671 3.662 3.657 3.644 3.635 3.550 3.539 3.528 3.516 3.376 1.302 1.284 1.266 1.135
Curran and coworkers FMS of Macrosphelides
O
OTBS OEt
S38
ppm
OMEM
−4.65 −4.86
18.18 15.54 14.22
25.79
77.32 77.00 76.68 75.53 74.84 71.72 66.89 60.34 59.00
93.96
121.62
147.92
FMS of Macrosphelides
166.38
Curran and coworkers
O OEt
OTBS
S38
190
180
170
160
150
140
130
120
110
100 S141
90
80
70
60
50
40
30
20
10
ppm
9 8 6
S142
2 1 2.85 2.87
3 8.85
4
2.96
5 1.00 1.03 1.05 1.03 2.10 3.05
2.03
7
1.01
OTBS
1.00
7.260 7.002 6.986 6.962 6.947 6.030 6.027 5.991 5.988 4.757 4.739 4.720 4.703 4.104 4.101 4.089 4.076 4.073 3.863 3.848 3.834 3.832 3.819 3.804 3.785 3.772 3.761 3.757 3.748 3.744 3.734 3.682 3.672 3.670 3.659 3.655 3.644 3.632 3.573 3.564 3.546 3.534 3.524 3.522 3.505 3.495 3.374 1.170 1.154 0.855 0.035 0.021
Curran and coworkers FMS of Macrosphelides
O
OMEM OH
15
ppm
OTBS
−4.66 −4.85
19.91 17.97
25.71
58.98
79.90 77.32 77.00 76.68 71.61 70.51 67.23
94.14
122.49
148.47
FMS of Macrosphelides
171.19
Curran and coworkers
O OH
OMEM
15
190
180
170
160
150
140
130
120
110
100 S143
90
80
70
60
50
40
30
20
10
ppm
9 8 6
S144
2 1 2.98 2.89
3 9.08
4
2.98
5 1.08 2.05 2.22 3.06
0.99
2.22
7
0.99
OMEM
1.00
0.070 0.031
1.152 1.136 0.911
7.260 7.115 7.103 7.076 7.064 6.069 6.065 6.030 6.026 4.765 4.747 4.737 4.719 4.285 4.281 4.274 4.270 4.263 4.258 3.789 3.774 3.763 3.758 3.747 3.731 3.703 3.696 3.692 3.685 3.683 3.679 3.674 3.552 3.541 3.529 3.384
Curran and coworkers FMS of Macrosphelides
O
OTBS OH
17
ppm
OMEM
−4.67 −4.85
18.18 15.65
25.78
59.00
77.32 77.00 76.68 75.49 74.78 71.70 66.93
93.92
120.84
150.85
FMS of Macrosphelides
171.44
Curran and coworkers
O OH
OTBS
17
190
180
170
160
150
140
130
120
110
100 S145
90
80
70
60
50
40
30
20
10
ppm
4
S146
3 2 1 6.09
5 9.37
6
3.11
7
1.03 1.02 1.06 1.06 2.12 3.10
8 2.11 2.12
9 0.99
OTBS
1.00
0.043 0.026
0.858
1.190 1.181
7.260 7.060 7.051 7.037 7.028 6.129 6.128 6.106 6.105 4.832 4.815 4.791 4.774 4.761 4.752 4.734 4.724 4.098 4.090 4.082 3.861 3.853 3.844 3.836 3.827 3.779 3.772 3.764 3.758 3.756 3.751 3.680 3.675 3.673 3.667 3.658 3.651 3.540 3.534 3.529 3.527 3.377
Curran and coworkers FMS of Macrosphelides
O
OMEM OTCE
S39
0 ppm
OTBS
−4.58 −4.79
20.16 17.97
25.74
59.04
80.04 77.18 77.00 76.82 73.99 71.64 70.50 67.32
94.96 94.22
121.56
148.69
FMS of Macrosphelides
164.17
Curran and coworkers
O OTCE
OMEM
S39
190
180
170
160
150
140
130
120
110
100
S147
90
80
70
60
50
40
30
20
10
0 ppm
7.0 6.5 6.0 5.5 5.0
S148
4.5 4.0 3.5 3.0 2.5 2.0 1.5
3.13
7.5 0.98
8.0 1.04 1.04 1.06 2.11 3.14
8.5 1.03
9.0 3.17 1.07
9.5 1.00
OH
1.00
7.260 7.045 7.036 7.022 7.014 6.182 6.180 6.159 6.157 4.819 4.808 4.799 4.795 4.778 4.742 4.731 4.288 4.286 4.284 4.281 4.278 4.276 4.274 3.996 3.987 3.982 3.978 3.974 3.969 3.965 3.956 3.868 3.862 3.861 3.853 3.846 3.839 3.700 3.694 3.688 3.684 3.679 3.677 3.672 3.559 3.552 3.546 3.379 2.919 2.910 1.157 1.148
Curran and coworkers FMS of Macrosphelides
O
OMEM OTCE
19
1.0 ppm
OH
17.59
58.96
81.02 77.18 77.00 76.82 74.05 71.60 68.88 67.61
94.86 94.71
121.88
146.65
FMS of Macrosphelides
164.04
Curran and coworkers
O OTCE
OMEM
19
190
180
170
160
150
140
130
120
110
100
S149
90
80
70
60
50
40
30
20
ppm
4
S150
3 2 6.08
5 9.27
6 3.07
7 1.01 1.03
8 3.05
9 1.00
TBSO
0.047 0.023
0.846
1.186 1.171
2.494 2.475 2.458 2.438 2.386 2.373 2.349 2.336
4.301 4.286 4.282 4.273 4.271 4.267 4.258 4.253 4.252 4.242 4.238 4.223 3.648
7.260
Curran and coworkers FMS of Macrosphelides
O O
S40
1 ppm
TBSO
−4.55 −5.11
17.90
23.92
44.70
51.38
77.32 77.00 76.68
65.82
FMS of Macrosphelides
172.06
Curran and coworkers
O O
S40
190
180
170
160
150
140
130
120
110
100 S151
90
80
70
60
50
40
30
20
10
ppm
4
S152
3 2 6.00
5 9.16
6 3.02
7 2.05
8 3.00
9 1.00
TBSO
0.047 0.023
0.846
1.187 1.171
2.494 2.475 2.458 2.439 2.386 2.373 2.350 2.337
4.301 4.286 4.282 4.273 4.271 4.267 4.258 4.254 4.252 4.242 4.238 4.223 3.648
7.260
Curran and coworkers FMS of Macrosphelides
O O
S41
1 ppm
TBSO
−4.56 −5.12
17.90
25.67 23.92
44.70
51.38
77.32 77.00 76.68
65.82
FMS of Macrosphelides
172.06
Curran and coworkers
O O
S41
190
180
170
160
150
140
130
120
110
100 S153
90
80
70
60
50
40
30
20
10
ppm
S154
4 3 2 5.97
5 9.14
6 3.47
7 2.03
8 0.26
9 1.00
TBSO
0.070 0.054
1.234 1.225 1.216 1.209 0.863
4.297 4.283 4.282 4.280 4.268 4.266 4.265 4.251 3.748 3.731 3.713 3.696 2.523 2.506 2.486 2.468 2.464 2.450 2.426 2.413
7.260
Curran and coworkers FMS of Macrosphelides
O OH
S-5
1 ppm
TBSO
17.91
25.68 23.68
44.40
58.39
77.31 77.00 76.68
65.64
FMS of Macrosphelides
177.29
Curran and coworkers
O OH
S-5
190
180
170
160
150
140
130
120
110
100 S155
90
80
70
60
50
40
30
20
ppm
5 4
S156
3 2 5.91
6 9.01
7 3.09
8 2.01
9 1.00
TBSO
0.078 0.071 0.062 −0.005
1.234 1.218
2.529 2.512 2.492 2.475 2.466 2.442 2.428
4.316 4.300 4.285 4.270 4.255 4.239
7.260
Curran and coworkers FMS of Macrosphelides
O OH
R-5
1 ppm
TBSO
−4.56 −5.12
17.92
25.68 23.65
44.32
77.32 77.00 76.68
65.65
FMS of Macrosphelides
177.16
Curran and coworkers
O OH
R-5
190
180
170
160
150
140
130
120
110
100
90
S157
80
70
60
50
40
30
20
10
ppm
4
S158
3 2 6.01
5 9.19
6 3.18
7 1.00 1.03
8 1.00
9 2.02
TBSO
0.070 0.048 0.041 −0.006
1.244 1.229 0.867 0.859 0.852
1.595
4.760 4.730 4.712 4.682 4.368 4.353 4.350 4.339 4.337 4.334 4.324 4.321 4.319 4.308 4.305 4.290 2.662 2.643 2.624 2.606 2.555 2.542 2.518 2.505
7.260
Curran and coworkers FMS of Macrosphelides
O OTCE
S42
1 ppm
TBSO
17.93
25.71 23.85
44.37
65.52
94.88
77.32 77.00 76.68 73.96
FMS of Macrosphelides
169.89
Curran and coworkers
O OTCE
S42
190
180
170
160
150
140
130
120
110
100 S159
90
80
70
60
50
40
30
20
ppm
6 5
S160
4 3 2.97
7 3.01
8 1.00
9 2.00
OH
1.291 1.276
4.815 4.785 4.775 4.745 4.332 4.321 4.316 4.311 4.306 4.300 4.295 4.290 4.285 4.279 4.275 4.269 4.264 4.259 4.253 4.243 2.695 2.685 2.654 2.643 2.639 2.618 2.608 2.598 2.577
7.260
Curran and coworkers FMS of Macrosphelides
O OTCE
14
2 1 ppm
OH
22.52
42.71
64.15
94.67
77.32 77.00 76.68 73.93
FMS of Macrosphelides
170.93
Curran and coworkers
O OTCE
14
190
180
170
160
150
140
130
120
110
100 S161
90
80
70
60
50
40
30
20
ppm
4
S162
3 2 1 3.00 3.12
5 9.26
6
3.16 3.10
7 1.05 1.06
8 1.02 1.01 1.11 1.06 2.07 3.15
9 4.28
O
1.05
OMEM
1.02
OTBS
1.00
7.260 6.858 6.842 6.818 6.802 5.976 5.973 5.937 5.933 5.389 5.385 5.373 5.371 4.767 4.748 4.737 4.728 4.713 4.699 4.681 4.061 4.057 4.048 4.044 4.041 4.032 4.028 3.823 3.810 3.807 3.794 3.774 3.771 3.761 3.757 3.748 3.743 3.734 3.646 3.642 3.632 3.617 3.605 3.537 3.528 3.525 3.522 3.515 3.512 3.372 2.864 2.845 2.824 2.806 2.706 2.692 2.667 2.652 1.372 1.356 1.157 1.142 0.853 0.034 0.016
Curran and coworkers FMS of Macrosphelides
O O OTCE
S43
ppm
OTBS
OMEM O
190 180 170 160 150 140 130 120 110 100
S163
90 80 70 60 50 40 30 20
−4.62 −4.82
25.75 19.88 19.85 18.00
40.43
79.82 77.32 77.00 76.68 73.98 71.63 70.53 67.19 67.02 59.01
94.68 93.95
123.19
146.17
168.54 165.00
Curran and coworkers FMS of Macrosphelides
O O OTCE
S43
10 ppm
5
S164
4 3 2
3.08
6
3.08
7 2.06 1.04
8 1.01 1.04 1.02 1.03 2.06 3.04
9 4.15
O
1.04
OMEM
1.00
OH
1.00
7.260 6.863 6.848 6.824 6.809 6.019 6.015 5.979 5.976 5.384 5.382 5.379 5.368 5.365 5.363 4.773 4.769 4.760 4.755 4.747 4.739 4.726 4.701 4.696 4.683 4.222 4.219 4.214 4.211 4.207 4.204 4.199 4.196 3.928 3.920 3.862 3.851 3.849 3.838 3.834 3.822 3.811 3.680 3.669 3.659 3.643 3.640 3.631 3.553 3.541 3.530 3.373 2.858 2.844 2.839 2.819 2.800 2.716 2.703 2.677 2.664 1.375 1.359 1.130 1.114
Curran and coworkers FMS of Macrosphelides
O O OTCE
16
1 ppm
OH
19.84 17.55
40.41
80.79 77.31 77.00 76.68 73.95 71.59 68.92 67.50 67.21 58.94
94.66 94.41
123.61
144.19
FMS of Macrosphelides
168.54 164.86
Curran and coworkers
O O
O
OMEM
OTCE
16
190
180
170
160
150
140
130
120
110
100 S165
90
80
70
60
50
40
30
20
ppm
4
S166
3 2 1 3.13 3.27
5
3.00 3.24 3.15 9.43
6
0.98 1.00
7
2.15 3.21 4.23 6.22
8 0.94 0.93
9 O
6.07
OMEM
0.94
O
0.99
OTBS
0.93 0.98
OMEM
1.00 0.99
7.260 6.987 6.975 6.948 6.936 6.848 6.833 6.809 6.793 6.055 6.051 6.037 6.032 6.015 6.012 5.998 5.993 4.783 4.766 4.758 4.755 4.753 4.741 4.737 4.734 4.707 4.689 4.255 3.761 3.750 3.746 3.744 3.736 3.733 3.688 3.683 3.676 3.672 3.665 3.661 3.652 3.636 3.544 3.532 3.528 3.520 3.516 3.506 3.380 3.370 2.837 2.818 2.723 2.709 1.614 1.388 1.372 1.248 1.232 1.136 1.120 0.906 0.064 0.021 −0.008
Curran and coworkers FMS of Macrosphelides
O O O OTCE
S44
ppm
OMEM
OTBS O
190 180 170 OMEM O
160 150 140 130 120 110 100
S167
90 80 70 60 50 40 30 20 10
−4.63 −4.83
25.80 19.87 18.19 15.55 14.99
40.41
94.69 93.97 93.82 77.32 77.20 77.00 76.68 76.50 75.50 74.84 74.80 73.98 71.72 71.59 71.25 67.28 67.19 66.91 59.01
123.96 121.30
143.82
148.71
168.52 165.53 164.78
Curran and coworkers FMS of Macrosphelides
O O O
S44 OTCE
ppm
6 5
S168
4 3 2
3.26 3.32 3.19
7
1.10 1.10
8 3.31 2.28 4.42 1.15 2.91 3.17
9 0.97 1.17
O
6.67
OMEM
1.09
O
1.10
OH
0.98 1.08
OMEM
1.00 1.09
7.260 6.955 6.944 6.916 6.905 6.843 6.828 6.804 6.789 6.145 6.140 6.106 6.101 6.046 6.042 6.007 6.003 5.287 5.092 5.083 5.076 5.067 4.773 4.769 4.755 4.749 4.743 4.731 4.727 4.724 4.697 4.688 4.670 3.819 3.793 3.791 3.683 3.672 3.608 3.558 3.547 3.536 3.523 3.514 3.511 3.501 3.500 3.483 3.468 3.381 3.359 2.868 2.849 2.828 2.809 2.719 2.705 2.679 2.666 1.381 1.365 1.231 1.215 1.141 1.125
Curran and coworkers FMS of Macrosphelides
O O O
S45 OTCE
1 ppm
OMEM
OH O
190 180 170 OMEM O
160 150 140
O O
S45 OTCE
130 120 110 100 40
S169
90 80 70 60 50
19.84 15.30 14.92
40.39
O
94.89 94.67 93.81 77.77 77.32 77.00 76.68 76.51 73.95 73.04 71.60 71.54 71.19 67.50 67.27 67.17 58.98 58.93
123.92 121.69
146.59 143.76
168.51 165.50 164.77
Curran and coworkers FMS of Macrosphelides
30 20 ppm
7.0 6.5 6.0 5.5 5.0
S170
4.5 4.0 3.5 3.0 2.5 2.0
3.06 3.33 3.26
7.5 1.01 1.01
8.0 1.00 1.00 2.05 1.14 1.11 4.23 2.79 3.49
8.5 4.15 1.05
9.0 1.07
9.5 1.01
O
1.00 0.97
MEMO
1.00 0.97
7.260 6.582 6.569 6.559 6.547 6.528 6.516 6.505 6.493 5.988 5.966 5.919 5.896 5.133 5.127 5.121 5.115 4.807 4.797 4.788 4.779 4.770 4.766 4.757 4.752 4.742 4.694 4.684 4.135 4.122 4.109 3.973 3.967 3.964 3.958 3.764 3.757 3.751 3.745 3.740 3.737 3.732 3.709 3.707 3.702 3.651 3.644 3.562 3.560 3.557 3.554 3.550 3.543 3.537 3.392 3.381 2.614 2.597 2.595 2.578 2.487 2.483 2.467 2.463 1.427 1.419 1.327 1.319 1.208 1.199
Curran and coworkers FMS of Macrosphelides
O O
O OMEM
O O
S46
1.5 1.0 ppm
MEMO
O
190 180 170 160 150 140 130 120 110 100
S171
90 80 70 60 50 40
20.26 18.06 16.35
41.60
94.33 94.01 79.69 77.18 77.00 76.82 76.60 72.88 71.67 71.54 70.49 69.11 67.31 67.09 59.05 59.02
126.25 126.15
144.75 141.71
164.07 163.83
169.94
Curran and coworkers FMS of Macrosphelides
O O
O OMEM
O O
S46
30 20 ppm
S172
4 3
3.05 3.23 3.21
5
1.05 1.06
6
1.04 1.07
7 1.01
8 0.99
9 1.13
O
1.99
OH
1.00 0.99
7.260 6.667 6.656 6.644 6.633 6.594 6.582 6.571 6.559 5.963 5.962 5.940 5.939 5.355 5.351 5.346 5.342 5.338 5.334 5.330 5.325 5.321 5.299 5.057 5.056 5.051 5.050 5.045 5.044 5.039 5.038 4.775 4.766 4.763 4.757 4.754 4.748 4.745 4.736 4.166 4.154 4.143 4.080 4.074 4.070 4.065 4.061 4.055 4.052 4.046 2.653 2.637 2.634 2.617 2.534 2.530 2.515 2.510 1.469 1.460 1.351 1.342 1.247 1.216 1.207
Curran and coworkers FMS of Macrosphelides
O O
O OH
O O
Macrosphelide D (10)
2 1 ppm
20.23 18.33 17.84
41.49
77.71 77.18 77.00 76.82 75.93 72.48 69.23 68.15
126.93 124.36
140.75
145.67
FMS of Macrosphelides
169.69 164.37 164.08
Curran and coworkers
O OH
O OH
O O O
O
Macrosphelide D (10)
190
180
170
160
150
140
130
120
110
100
S173
90
80
70
60
50
40
30
20
ppm
S174
4 3 2
3.53 4.72 3.65
5
2.20
6
1.21 1.11
7 1.02
8 1.05
9 1.03
O
1.00 0.98
OH
0.97 1.00
6.643 6.632 6.620 6.609 6.600 6.588 6.578 6.566 5.992 5.970 5.896 5.873 5.253 5.248 5.244 5.239 5.235 5.229 5.223 5.220 5.215 5.211 5.205 4.986 4.979 4.974 4.968 4.673 4.664 4.659 4.655 4.650 4.646 4.641 4.633 4.175 4.162 4.149 3.992 3.983 3.975 3.967 3.958 2.848 2.617 2.612 2.597 2.591 2.575 2.571 2.555 2.076 2.046 2.043 2.040 2.037 2.034 1.404
Curran and coworkers FMS of Macrosphelides
O O
O OH
O O
Macrosphelide D (10)
1 ppm
OH
O
200 190 180 170 160 150 140 130 120 110
S175
100 90 80 70
41.91 30.13 30.02 29.91 29.80 29.69 29.58 29.47 20.31 19.34 18.03
78.84 75.89 72.67 69.88 68.19
126.66 124.55
147.88 143.66
170.76 165.05 164.76
206.14
Curran and coworkers FMS of Macrosphelides
O O
O OH
O O
Macrosphelide D (10)
60 50 40 30 20 ppm
7 6 5 4
S176
3 2 1 2.95 3.19
8 2.71 3.00 9.18
9 2.16 3.32 4.31 3.18 3.11
O
6.47 0.13 0.94 1.00
OTBS
1.07
OMEM
1.10 0.99 0.13 0.41 0.12 0.37 0.38 0.10 0.35 0.10
7.260 7.031 7.016 6.993 6.981 6.977 6.954 6.942 6.213 6.210 6.174 6.170 6.040 6.036 6.001 5.997 5.127 5.120 5.110 4.841 4.813 4.811 4.806 4.803 4.801 4.794 4.777 4.771 4.759 4.747 4.742 4.734 4.729 4.259 4.254 3.759 3.757 3.748 3.744 3.734 3.706 3.702 3.696 3.693 3.691 3.685 3.683 3.679 3.674 3.667 3.663 3.547 3.536 3.524 3.513 3.383 3.372 1.282 1.265 1.136 1.120 0.906 0.064 0.019 −0.006
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S47
ppm
OMEM
OTBS O
190 180 170 160 150 140 130 120 110 100
S177
90 80 70 60 50
O
OMEM OTCE
S47
40 30 −4.63 −4.82
O
18.20 15.56 15.21
25.80
94.85 94.09 93.99 77.32 77.20 77.00 76.74 76.68 75.50 74.84 74.06 71.72 71.59 71.10 67.31 66.92 59.03
122.35 121.22
148.85 146.28
165.48 163.92
Curran and coworkers FMS of Macrosphelides
20 ppm
10
6 5
S178
4 3 2
3.55 2.89
7
2.97 2.15 5.03 2.96 3.01
8 1.93
9 5.98
O
1.01
OH
1.00 0.96
OMEM
0.98 0.97
7.260 7.029 7.014 6.989 6.975 6.956 6.945 6.917 6.906 6.208 6.204 6.169 6.165 6.145 6.140 6.106 6.101 5.129 5.120 5.112 5.103 4.798 4.793 4.789 4.768 4.727 4.710 4.444 4.438 4.434 4.429 4.424 4.420 4.407 3.851 3.843 3.834 3.827 3.820 3.808 3.805 3.793 3.781 3.778 3.768 3.765 3.682 3.678 3.672 3.665 3.654 3.645 3.639 3.559 3.547 3.536 3.528 3.517 3.505 3.382 3.359 1.260 1.244 1.137 1.120
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S48
1 ppm
OMEM
OH O
S48
190 180 170 160 150 140 130 120 110 100
S179
90 80 70 60 50
15.28 15.03
94.90 94.82 94.08 77.79 77.32 77.00 76.68 74.03 73.01 71.60 71.54 71.08 67.51 67.28 58.99 58.93
122.24 121.59
146.69 146.22
165.46 163.91
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
40 30 20 ppm
4
S180
3 2 1 3.08 3.02
5
3.35 3.10 3.14 9.37
6
1.01 1.02
7
1.01 1.00 1.01 1.04 1.95 1.17 4.15 6.09
8 6.22
9 O
1.01
TBSO
0.99
O
0.93
O
0.98
MEMO
1.00 0.99
7.260 7.017 7.008 6.995 6.986 6.904 6.896 6.881 6.873 6.204 6.202 6.181 6.180 5.988 5.987 5.966 5.964 5.445 5.440 5.132 5.127 5.123 5.118 4.831 4.814 4.805 4.787 4.785 4.775 4.739 4.733 4.723 4.279 4.271 3.936 3.933 3.767 3.751 3.698 3.692 3.685 3.672 3.671 3.656 3.550 3.544 3.539 3.534 3.525 3.518 3.512 3.383 3.369 2.573 2.551 2.542 2.463 2.455 2.441 2.433 1.261 1.252 1.208 1.200 1.186 1.176 0.857 0.066 0.044 −0.007
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S49
0 ppm
TBSO
190 180 MEMO
170 O O
O
160 150 140 130 120 110 100
S181
90 80 70 60 50 40 30 20
−0.03 −4.56 −4.93
25.75 23.71 17.96 16.08 15.13
44.55
94.84 94.07 93.98 77.18 77.00 76.82 76.63 74.45 74.07 73.10 71.66 71.56 71.43 67.34 67.04 65.46 59.02
123.09 122.44
146.03 142.88
164.87 163.89
170.28
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S49
10 0 ppm
6 5 4
S182
3 2
2.87 3.22 2.88
7
2.02
8 0.94
9 1.00 1.03 1.01 1.14 2.86 3.95 5.86
O
5.89
OH
1.04
O
0.99
O
0.99 0.94
MEMO
1.00 0.98
7.260 7.035 7.020 6.996 6.981 6.915 6.902 6.876 6.863 6.219 6.216 6.180 6.176 6.029 6.025 5.990 5.986 5.560 5.136 5.129 5.120 4.815 4.809 4.798 4.780 4.747 4.743 4.737 4.719 3.752 3.716 3.707 3.703 3.696 3.693 3.690 3.686 3.684 3.679 3.678 3.674 3.667 3.651 3.557 3.556 3.548 3.545 3.542 3.533 3.522 3.510 3.385 3.371 2.957 2.947 2.552 2.543 2.530 2.508 1.273 1.264 1.256 1.248 1.192 1.176
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S50
1 ppm
MEMO
OH
190 180 O O
O
170 160 150 140 130 120 110 100
S183
90 80 70 60 50 40 30
15.74 15.14
22.63
43.19
94.83 94.06 93.95 77.32 77.20 77.00 76.68 76.60 74.59 74.09 72.94 71.65 71.55 71.53 67.35 67.15 64.46 59.04
123.05 122.46
146.02 142.35
164.81 163.95
171.66
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S50
20 ppm
S184
2.80
3 5.62
4
0.98
5
0.96
6
1.02 1.14 3.00 3.74 5.66
7
1.06 1.86 0.99 0.96
8 2.95
9 0.97 1.01
O
0.97
MEMO
1.00
7.260 6.957 6.947 6.918 6.908 6.415 6.393 6.375 6.353 6.099 6.095 6.060 6.056 5.906 5.904 5.867 5.864 5.320 5.310 5.301 5.290 5.288 5.277 5.271 5.260 5.253 4.790 4.772 4.746 4.662 4.644 4.381 4.376 3.763 3.709 3.705 3.695 3.684 3.682 3.671 3.655 3.642 3.549 3.546 3.540 3.537 3.536 3.532 3.527 3.522 3.384 3.378 2.787 2.760 2.750 2.588 2.562 2.550 2.524 1.396 1.381 1.380 1.366 1.160 1.143
Curran and coworkers FMS of Macrosphelides
O O
O OMEM
O O
S51
2 1 ppm
MEMO
O
190 180 170 160 150 140 130 120 110 100
S185
90 80 70 60 50 40
20.01 17.75 16.21
41.71
94.09 93.44 78.15 77.32 77.20 77.00 76.68 76.02 72.90 71.66 71.58 71.45 68.12 67.28 67.04 59.05 59.00
125.80 123.63
143.19 142.31
168.32 165.52 163.63
Curran and coworkers FMS of Macrosphelides
O O
O OMEM
O O
S51
30 20 ppm
9.5 9.0 8.5 8.0 7.5 7.0 6.0 5.5
S186
4.0 2.0
3.10 3.11 3.16
2.5 0.98
3.0
1.04 1.08
3.5 1.01
4.5
1.03
5.0
1.02
1.06 1.09 1.07
6.5
1.00 0.98
O
0.98
OH
1.00
7.260 7.074 7.070 7.052 7.047 6.494 6.481 6.471 6.458 6.091 6.088 6.068 6.066 6.044 6.021 5.373 5.370 5.364 5.361 5.355 5.349 5.345 5.340 5.336 5.308 5.298 5.288 5.278 5.203 5.197 5.190 5.184 4.442 4.440 4.437 4.432 4.027 4.021 4.018 4.012 4.008 4.003 3.998 3.994 3.989 3.090 3.080 2.772 2.767 2.751 2.746 2.621 2.606 2.600 2.584 1.941 1.936 1.570 1.460 1.450 1.373 1.364
Curran and coworkers FMS of Macrosphelides
O O
O OH
O O
Macrosphelide M (11)
1.5 1.0 ppm
20.07 18.32 17.78
41.78
77.18 77.00 76.82 76.13 76.04 68.03 67.80
121.88
127.34
140.80
145.81
FMS of Macrosphelides
168.09 166.74 165.82
Curran and coworkers
O OH
O OH
O O O
O
Macrosphelide M (11)
190
180
170
160
150
140
130
120
110
100
S187
90
80
70
60
50
40
30
20
ppm
S188
3 2 3.34 4.11 3.32
1.04
4
1.07 4.52
5
1.04
6
0.91
7
0.83 1.03
8 1.05 1.03 1.01
9 0.95 0.94
O
0.95
OH
1.00
7.045 7.040 7.023 7.018 6.466 6.454 6.443 6.431 6.081 6.079 6.059 6.057 5.891 5.868 5.278 5.272 5.269 5.263 5.258 5.254 5.249 5.246 5.174 5.167 5.162 5.155 5.133 5.129 5.123 5.119 5.113 5.109 5.104 5.100 4.569 4.562 4.461 4.459 4.179 4.171 3.899 3.891 3.883 3.875 2.894 2.889 2.873 2.867 2.837 2.804 2.508 2.493 2.486 2.472 2.046 2.043 2.040 2.037 2.034 1.376 1.366 1.342 1.333 1.126 1.117
Curran and coworkers FMS of Macrosphelides
O O
O OH
O O
Macrosphelide M (11)
1 ppm
42.08 30.13 30.02 29.91 29.80 29.69 29.58 29.47 20.02 19.07 17.88
78.11 75.16 75.01 68.95 68.43
126.11 122.84
147.23 144.34
169.03 166.17 164.63
FMS of Macrosphelides
206.13
Curran and coworkers
O OH
O OH
O O O
O
Macrosphelide M (11)
200 190 180 170 160 150 140 130 120 110 100
S189
90
80
70
60
50
40
30
20
10
ppm
S190
2 1 2.85 3.10
3 9.04
4 2.96 3.09
5
1.00 0.99
6 1.00 1.02 1.97 3.00
7
1.00 1.02
8 4.05
9 1.00
O
0.99
TBSO
1.00
7.260 7.019 7.004 6.980 6.965 6.206 6.202 6.167 6.163 5.071 5.062 5.055 5.046 4.807 4.805 4.790 4.773 4.731 4.713 4.397 4.393 4.388 4.384 4.383 4.379 4.373 4.370 4.264 4.248 4.232 3.799 3.788 3.784 3.775 3.770 3.761 3.690 3.680 3.677 3.667 3.651 3.640 3.548 3.539 3.536 3.533 3.526 3.523 3.375 2.506 2.489 2.469 2.453 2.392 2.377 2.356 2.340 1.235 1.219 1.191 1.176 0.856 0.057 0.040 −0.009
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S52
ppm
TBSO
190 180 170
O
160 150 140 130 120 110 100 90
S191
80 70 60 50 40 30 20
−4.54 −4.94
17.97 15.12
25.75 23.72
44.87
77.32 77.00 76.74 76.68 74.08 71.58 71.01 67.34 65.57 59.04
94.84 94.06
122.32
146.19
163.93
170.61
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S52
10 ppm
S192
2 1 2.82 3.06
3 8.92
4 2.97 3.01
5
1.01 0.99
6 1.00 1.01 1.97 2.96
7
1.00 1.01
8 4.03
9 1.01
O
0.99
TBSO
1.00
7.260 7.018 7.003 6.978 6.963 6.205 6.201 6.165 6.162 5.077 5.068 5.061 5.051 4.809 4.808 4.793 4.776 4.731 4.713 4.395 4.391 4.386 4.382 4.377 4.371 4.367 4.282 4.267 4.264 4.252 4.249 4.234 3.801 3.789 3.785 3.775 3.772 3.762 3.689 3.679 3.677 3.666 3.662 3.650 3.639 3.547 3.536 3.524 3.378 2.515 2.497 2.478 2.460 2.378 2.364 2.341 2.326 1.241 1.224 1.188 1.173 0.855 0.060 0.041 −0.004
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S53
ppm
TBSO
190 180 170
O
160 150 140 130 120 110 100
S193
90 80 70 60 50 40 30 20
−0.02 −4.53 −4.98
17.95 15.24
25.74 23.84
44.79
77.32 77.00 76.77 76.68 74.09 71.59 70.93 67.36 65.64 59.05
94.85 94.08
122.33
146.25
163.94
170.86
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S53
10 ppm
S194
3
2.89 3.05
2.05
4 0.85
5
1.02 1.03 1.99 2.99
6 1.03
7
1.02
8 4.04
9 1.01
O
0.99
OH
1.00
7.260 7.015 7.000 6.975 6.960 6.214 6.210 6.175 6.171 5.142 5.133 5.125 5.116 4.814 4.810 4.808 4.794 4.784 4.777 4.729 4.712 4.420 4.416 4.411 4.407 4.405 4.401 4.396 4.392 4.178 3.814 3.811 3.801 3.797 3.788 3.783 3.774 3.675 3.665 3.662 3.652 3.637 3.625 3.552 3.548 3.543 3.540 3.537 3.530 3.527 3.378 2.932 2.922 2.509 2.500 2.469 2.459 2.448 2.427 2.408 2.386 1.259 1.242 1.230 1.214
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S54
2 1 ppm
OH
15.13
22.52
43.12
77.32 77.00 76.68 76.63 74.10 71.59 71.31 67.42 64.33 59.04
94.81 94.06
122.58
145.84
163.90
FMS of Macrosphelides
172.08
Curran and coworkers
O O
O OTCE OMEM
S54
190
180
170
160
150
140
130
120
110
100 S195
90
80
70
60
50
40
30
20
ppm
S196
3 2
3.12 3.16
4 2.08
5
0.84
6 1.02 1.03 2.04 2.84
7
1.01 1.04
8 4.10
9 1.02
O
1.00
OH
1.00
7.260 7.013 6.998 6.974 6.958 6.206 6.203 6.167 6.163 5.145 5.136 5.129 5.120 4.833 4.803 4.800 4.797 4.790 4.773 4.770 4.766 4.718 4.701 4.411 4.408 4.402 4.398 4.396 4.393 4.387 4.383 3.808 3.796 3.785 3.781 3.771 3.767 3.758 3.666 3.655 3.653 3.643 3.638 3.627 3.616 3.537 3.532 3.526 3.523 3.514 3.513 3.363 3.015 2.522 2.513 2.481 2.472 2.432 2.409 2.391 2.369 1.246 1.229 1.213 1.197
Curran and coworkers FMS of Macrosphelides
O O
OMEM OTCE
S55
1 ppm
OH
15.17
22.36
43.24
77.32 77.00 76.68 76.62 74.06 71.54 71.21 67.42 64.13 59.01
94.79 94.00
122.55
145.73
163.86
FMS of Macrosphelides
171.74
Curran and coworkers
O O
O OTCE OMEM
S55
190
180
170
160
150
140
130
120
110
100 S197
90
80
70
60
50
40
30
20
ppm
5 4
S198
3 2 1 3.35 2.73
6
3.43 3.25 2.99 9.76
7
0.99 1.06
8 1.97 3.27 4.06 2.59 3.12
9 O
1.04 0.91
O
1.00 0.97 1.76 4.19
OTBS
0.96 0.95
OMEM
2.00
7.002 6.987 6.962 6.950 6.947 6.924 6.912 6.206 6.203 6.167 6.163 6.001 5.997 5.962 5.958 5.289 5.083 5.067 4.810 4.787 4.769 4.736 4.730 4.725 4.713 4.707 4.379 4.375 4.370 4.248 4.244 3.799 3.774 3.771 3.761 3.755 3.745 3.739 3.729 3.696 3.684 3.672 3.669 3.658 3.643 3.545 3.533 3.522 3.380 3.372 2.683 2.665 2.567 2.551 2.529 1.329 1.314 1.204 1.188 1.127 1.111 0.900 0.057 0.013 −0.009
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
S56
ppm
OMEM
OTBS O
200 O
180 160 140 120
O O
OMEM OTCE
S56
100
S199
80 60 40 20
−4.65 −4.84
25.80 25.75 19.84 18.19 15.50 15.11
O
40.98
94.85 94.08 93.97 77.32 77.20 77.00 76.68 75.47 74.85 74.08 71.72 71.58 71.30 67.39 67.17 66.90 59.01
122.47 121.43
148.38 145.97
169.24 165.37 163.89
Curran and coworkers FMS of Macrosphelides
0 ppm
5 4
S200
3 2 1 3.06 3.04
6
3.34 3.12 3.30 9.23
7
1.04 0.96
8 2.02 3.18 4.17 6.12
9 1.05 1.00
O
6.17
O
1.05 1.03
OTBS
1.00 1.00
OMEM
0.94 1.05
7.260 7.007 6.992 6.967 6.958 6.952 6.946 6.919 6.907 6.205 6.202 6.166 6.162 5.996 5.992 5.957 5.953 5.306 5.085 5.069 4.810 4.807 4.785 4.767 4.735 4.731 4.724 4.707 4.380 4.375 4.249 4.245 3.800 3.772 3.761 3.755 3.744 3.739 3.728 3.696 3.684 3.682 3.669 3.658 3.643 3.545 3.533 3.522 3.380 3.372 2.700 2.682 2.529 2.513 1.325 1.309 1.244 1.224 1.207 1.126 1.110 0.902 0.058 0.017 −0.009
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
S57
ppm
OMEM
OTBS O
190 180 170 O
160 150 140 130 120 110 100
S201
90 80 70 60 50 40 30 20 10
−4.65 −4.83
25.80 19.91 18.19 15.47 15.12
33.93
40.91
94.84 94.11 93.94 77.32 77.00 76.68 75.46 74.82 74.08 71.72 71.58 71.28 67.39 67.32 66.90 59.03 59.01
122.45 121.44
148.33 146.03
169.51 165.37 163.90
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
S57
ppm
5 4
S202
3 2
3.11 2.96 3.04
6
1.01 1.02
7
3.09 2.19 4.15 1.04 2.99 3.14
8 2.00
9 6.23
O
1.01
O
1.10
OH
1.00 1.01
OMEM
1.05 0.98
7.260 6.998 6.983 6.958 6.943 6.941 6.930 6.902 6.891 6.200 6.196 6.160 6.157 6.109 6.105 6.070 6.065 5.073 4.805 4.803 4.779 4.766 4.761 4.717 4.699 4.380 4.377 4.371 4.367 4.365 4.362 3.830 3.822 3.814 3.798 3.787 3.785 3.774 3.757 3.682 3.672 3.665 3.663 3.653 3.636 3.557 3.546 3.537 3.535 3.526 3.513 3.475 3.460 3.380 3.363 2.657 2.638 2.558 2.543 1.318 1.302 1.203 1.187 1.138 1.122
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
S58
1 ppm
OMEM
OH O
190 O
180 170 160 150 140 130 120 110 100
S203
90 80 70 60 50 40
19.84 15.30 15.06
40.97
94.87 94.82 94.10 77.71 77.32 77.00 76.69 74.06 73.05 71.60 71.56 71.31 67.49 67.33 67.17 59.00 58.94
122.41 121.76
146.36 146.00
169.35 165.34 163.90
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
S58
30 20 ppm
6 5
S204
4 3 2
2.99 2.84 2.94
7
0.94 0.92
8 3.03 2.15 4.05 0.94 2.87 2.92
9 1.91
S59
6.08
O
0.98
O
1.04
OH
0.98 0.89
OMEM
1.00 0.98
7.260 7.006 6.991 6.967 6.952 6.937 6.925 6.898 6.886 6.202 6.198 6.163 6.159 6.111 6.106 6.072 6.067 5.095 5.085 5.078 5.069 4.811 4.806 4.776 4.773 4.766 4.758 4.716 4.699 4.379 4.376 3.823 3.797 3.795 3.791 3.784 3.762 3.688 3.678 3.668 3.666 3.659 3.655 3.650 3.639 3.563 3.554 3.552 3.542 3.531 3.519 3.466 3.451 3.387 3.369 2.676 2.658 2.541 2.526 1.323 1.308 1.224 1.208 1.142 1.126
Curran and coworkers FMS of Macrosphelides
O O O
OMEM OTCE
1 ppm
OMEM
OH O
190 180 O
170 160 150
O O
OMEM OTCE
S59
140 130 120 110 100 40
S205
90 80 70 60 50
19.87 15.30 15.17
40.93
O
94.90 94.83 94.09 77.82 77.31 77.20 77.00 76.68 74.07 73.08 71.61 71.57 71.31 67.51 67.35 67.27 59.01 58.95
122.46 121.90
146.21 146.00
169.47 165.32 163.92
Curran and coworkers FMS of Macrosphelides
30 20 ppm
8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0
S206
4.5 4.0 3.5 3.0 2.5 2.0
6.73 3.85
9.0 1.09 1.04
9.5 0.99 1.07 1.05 2.30 1.12 4.52 6.76
O
1.09 1.04 0.99 1.05 1.17 2.14
MEMO
0.99 0.98
O
1.00 0.98
7.260 6.781 6.770 6.758 6.751 6.747 6.744 6.729 6.721 6.138 6.116 5.942 5.920 5.316 5.309 5.305 5.298 4.877 4.867 4.864 4.855 4.821 4.811 4.785 4.775 4.706 4.702 4.692 4.199 4.191 4.186 4.179 4.042 4.035 4.033 4.026 3.800 3.784 3.728 3.723 3.721 3.717 3.715 3.712 3.709 3.704 3.644 3.638 3.629 3.554 3.546 3.543 3.540 3.533 3.386 3.381 2.588 2.573 2.567 2.552 2.495 2.492 2.474 2.470 1.345 1.336 1.329 1.320 1.244 1.235
Curran and coworkers FMS of Macrosphelides
MEMO
O
O O
O
S60
1.5 1.0 ppm
O
O
190 180 170
MEMO
160 150 140 130 120 110 100
S207
90 80 70 60 50 40
19.82 18.21 16.64
41.85
77.18 77.00 76.82 75.91 73.27 72.72 71.68 71.61 68.64 67.70 67.08 59.06 59.03
94.41 93.89
125.45 124.07
141.28
145.64
169.57 166.36 163.82
Curran and coworkers FMS of Macrosphelides
MEMO
O
O O
O
S60
30 20 ppm
7.0 6.5 6.0 5.5 5.0
S208
4.5 4.0 3.5 3.0 2.5 2.0
2.93 2.81 3.83
7.5 0.98
8.0 1.00
8.5 0.99 1.21 1.20 2.75 1.34 2.17 2.74 6.69
9.0 2.16 1.23 1.93
9.5 1.03
O
0.92
MEMO
1.00 1.07
O
1.00 0.99
7.260 6.908 6.899 6.885 6.876 6.779 6.771 6.757 6.749 6.194 6.193 6.172 6.170 6.030 6.029 6.007 6.005 5.435 4.830 4.827 4.816 4.811 4.786 4.776 4.719 4.207 4.040 4.031 4.024 3.777 3.740 3.736 3.732 3.728 3.721 3.716 3.712 3.707 3.652 3.650 3.644 3.636 3.574 3.569 3.565 3.560 3.555 3.551 3.547 3.544 3.538 3.535 3.532 3.527 3.525 3.386 3.375 2.647 2.634 2.627 2.397 2.392 2.377 2.372 1.463 1.453 1.329 1.320 1.260 1.251
Curran and coworkers FMS of Macrosphelides
MEMO
O
O O
O
S61
1.5 1.0 ppm
O
O
190 180 170
MEMO
160 150 140 130 120 110 100
S209
90 80 70 60 50 40
18.86 17.76 16.43
39.99
94.35 93.87 77.18 77.00 76.82 76.28 76.06 73.49 72.64 71.66 71.59 67.67 67.53 67.16 59.04 59.01
126.02 124.31
145.46 141.57
169.13 166.63 164.78
Curran and coworkers FMS of Macrosphelides
MEMO
O
O O
O
S61
30 20 ppm
7.5 7.0 6.5 6.0 5.5 5.0
S210
4.5 4.0 3.5 3.0 2.5 2.0 3.20 3.38 3.64
8.0 0.84 1.11 1.11
8.5 0.86
9.0 1.09 1.08
9.5 1.04 1.04
O
1.12
HO
2.08
O
2.00
7.260 6.888 6.881 6.879 6.872 6.866 6.859 6.857 6.849 6.057 6.039 6.035 6.018 6.017 5.407 5.402 5.398 5.394 5.389 5.385 5.380 5.375 5.371 5.366 5.362 4.974 4.965 4.958 4.956 4.949 4.940 4.869 4.859 4.850 4.841 4.832 4.221 4.138 4.130 4.123 3.058 2.727 2.631 2.617 2.608 2.595 2.583 2.579 2.560 2.556 1.450 1.440 1.369 1.360 1.327 1.318
Curran and coworkers FMS of Macrosphelides
O HO
O O
O
Macrosphelide iso D (12)
1.5 1.0 ppm
19.67 18.00 17.81
40.95
77.18 77.00 76.82 74.99 74.74 74.02 73.06 67.66
122.68 122.21
146.15 145.11
FMS of Macrosphelides
170.20 165.80 164.62
Curran and coworkers
HO O
O
HO
O O
O
O
Macrosphelide iso D (12)
190
180
170
160
150
140
130
120
110
100
S211
90
80
70
60
50
40
30
20
ppm
8.0 7.5 7.0 6.5 6.0 5.5 5.0
S212
4.5 4.0 3.5 3.0 2.5 2.0
3.29 3.57 4.08
8.5 1.13 1.12
9.0 1.09 1.08
9.5 1.26 1.68
O
1.07
HO
1.01 0.99
O
1.00 1.04
6.926 6.918 6.903 6.895 6.887 6.880 6.865 6.857 6.035 6.033 6.013 6.011 5.962 5.960 5.939 5.937 5.263 5.257 5.254 5.248 5.245 5.243 5.240 5.236 5.234 5.231 5.225 5.222 4.841 4.832 4.829 4.823 4.820 4.814 4.811 4.802 4.761 4.752 4.749 4.743 4.740 4.734 4.731 4.722 4.219 4.210 4.200 4.124 4.115 4.113 4.105 2.693 2.689 2.671 2.667 2.588 2.574 2.566 2.551 2.056 2.053 2.050 2.047 2.044 1.401 1.392 1.326 1.317 1.283 1.274
Curran and coworkers FMS of Macrosphelides
O HO
O O
O
Macrosphelide iso D (12)
1.5 1.0 ppm
40.46 29.30 29.19 29.08 28.97 28.86 28.75 28.64 18.85 17.35 17.16
73.59 72.90 72.63 72.28 67.50
121.63 121.55
147.69 147.28
169.51 164.64 164.32
FMS of Macrosphelides
205.31
Curran and coworkers
HO O
O
HO
O O
O
O
Macrosphelide iso D (12)
210
200
190
180
170
160
150
140
130
120
110
S213
100
90
80
70
60
50
40
30
20
ppm
6.5 6.0 5.5 5.0
S214
4.5 4.0 3.5 3.0 2.5 2.0
3.24 3.23 3.71
7.0
1.06 1.15
7.5 1.02
8.0 0.97
8.5 1.02 1.12
9.0 1.15 1.13
9.5 1.18
O
1.01 1.22
HO
1.19
O
1.00
7.260 7.036 7.030 7.013 7.008 6.818 6.811 6.796 6.789 6.123 6.120 6.100 6.098 6.091 6.088 6.069 6.066 5.333 5.330 5.323 5.129 5.126 5.119 5.116 4.989 4.983 4.980 4.974 4.385 4.382 4.379 4.376 4.373 4.370 4.368 4.199 4.197 4.194 4.191 4.189 3.352 3.341 3.062 3.052 2.733 2.729 2.710 2.706 2.627 2.616 2.604 2.593 1.439 1.429 1.388 1.378 1.328 1.319
Curran and coworkers FMS of Macrosphelides
O HO
O O
O
Macrosphelide iso M (13)
1.5 1.0 0.5 ppm
19.66 17.82 17.38
40.52
77.20 77.02 76.84 76.19 75.57 75.27 73.83 66.62
122.97 122.31
145.35 144.97
FMS of Macrosphelides
170.96 166.82 165.31
Curran and coworkers
HO O
O
HO
O O
O
O
Macrosphelide iso M (13)
190
180
170
160
150
140
130
120
110
100
S215
90
80
70
60
50
40
30
20
ppm
7.5 7.0 6.5 6.0 5.5 5.0 4.5
S216
4.0 3.5 3.0 2.5 2.0
3.03 3.12 4.31
8.0 1.82 0.67 1.11 1.15
8.5 1.00 1.12
9.0 1.83 0.70
9.5 1.01
O
1.07
HO
0.91 1.06
O
1.00 1.02
7.009 7.002 6.987 6.979 6.934 6.928 6.912 6.906 6.093 6.091 6.071 6.069 6.050 6.048 6.028 6.025 5.206 5.200 5.197 5.191 5.188 5.183 4.992 4.986 4.983 4.977 4.749 4.740 4.738 4.731 4.729 4.720 4.717 4.708 4.674 4.667 4.354 4.352 4.348 4.346 4.338 4.188 4.186 4.183 4.180 4.177 4.174 4.171 4.168 2.845 2.811 2.790 2.785 2.768 2.763 2.610 2.602 2.588 2.580 2.056 2.053 2.050 2.047 2.044 1.445 1.435 1.338 1.329 1.286 1.277
Curran and coworkers FMS of Macrosphelides
O HO
O O
O
Macrosphelide iso M (13)
1.5 1.0 ppm
210 O
HO O
200 190 180 170 160 150 140 130 120 110
S217
100 90 80 70
39.55 29.29 29.19 29.08 28.97 28.85 28.74 28.64 18.44 16.95 16.87
73.70 73.52 73.45 71.87 67.18
122.25 121.68
146.71 146.61
169.14 164.77 164.65
205.40 205.29 205.17
Curran and coworkers FMS of Macrosphelides
O HO
O O
O
Macrosphelide iso M (13)
60 50 40 30 20 ppm
Curran and coworkers
FMS of Macrosphelides
Macrosphelide D (10)
Macrosphelide M (11)
Macrosphelide iso D (12)
Macrosphelide iso M (13)
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
ppm
10
11
12 13
7.2
7.1
7.0
6.9
6.8
6.7
6.6
6.5
6.4 S218
6.3
6.2
6.1
6.0
5.9
5.8
5.7 ppm