Maghrebian Flysch Basin and Lucanian Ocean - Wiley Online Library

8 downloads 0 Views 1MB Size Report
Petite Kabylie dans les re´gions de Collo. Terra Nova, Vol 17, No. 4, 358–367. F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the ...
doi: 10.1111/j.1365-3121.2005.00621.x

Tectono-sedimentary evolution of the southern branch of the Western Tethys (Maghrebian Flysch Basin and Lucanian Ocean): consequences for Western Mediterranean geodynamics F. Guerrera,1 M. Martı´n-Martı´n,2 V. Perrone1 and M. Tramontana3 1 Istituto di Geologia, UniversitaÕ degli Studi di Urbino ÔCarlo BoÕ, Campus Scientifico, 61029 Urbino, Italy; 2Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Campus San Vicente, San Vicente del Respeig, Alicante, Spain; 3Istituto di Geodinamica e Sedimentologia, UniversitaÕ degli Studi di Urbino ÔCarlo BoÕ, Campus Scientifico, 61029 Urbino, Italy

ABSTRACT The evolution of the oceanic Maghrebian Flysch Basin and its continuation in the Southern Apennines was studied by reconstructing mainly representative stratigraphic successions. In all sectors a common evolution has been identified. Rifting and drifting phases are indicated by remnants of oceanic crust, Jurassic limestones, Cretaceous–Palaeogene turbiditic and pelagic deposits. The pre-orogenic sedimentation was mainly controlled by extensional tectonics and sea-level changes. The occurrence of a generalized foredeep stage since the Early Miocene is testified by thick siliciclastic and

Introduction and previous studies An important feature for palaeogeographical and palaeotectonic reconstructions of the Western Mediterranean Alpine Chains (Fig. 1) is represented by the Maghrebian Flysch Basin (MFB), which is a major Meso-Cenozoic domain of the Betic and Maghrebian Chains (Durand Delga, 1980a; Durand Delga and Fontbote´, 1980; Wildi, 1983; Bouillin, 1986; Bouillin et al., 1986). A continuation of the MFB, named Lucanian Ocean (LO), is recognized in the Southern Apennines (Guerrera et al., 1993; Bonardi et al., 1996, 2001). Since the Jurassic, the MFB and the LO have constituted the southernmost branch of the Western NeoTethys, separating the Africa and Adria plates from a Mesomediterranean Microplate (MM; Doglioni, 1992; Guerrera et al., 1993). Figure 2 shows a simplified palaeogeography of the western Mediterranean area during the Early Cretaceous, illustrating the location of the oceanic areas (Nevado-Filabride, PiemonteseLigurian, MFB and LO) and their Correspondence: Prof. Francesco Guerrera, Istituto di Geologia, UniversitaÕ degli Studi di Urbino ÔCarlo BoÕ, Campus Scientifico, Loc. Crocicchia, 61029 Urbino, Italy. Tel.: +39 0722 304224; e-mail: [email protected] 358

volcaniclastic syn-orogenic flysch successions. The deformation of the oceanic areas began in the Burdigalian and the resulting nappes were stacked in the growing chains. During the Middle Miocene, piggy-back basins developed and the building of the chains was accomplished in the Late Tortonian. Areal distribution and ages of flysch deposits represent an important tool for the study of the diachronous growth of the accretionary wedges.

Terra Nova, 17, 358–367, 2005

relationships with Iberia-Europe, Africa, Adria and MM margins. For discussion and alternative views, see Platt and Vissers (1989), Bonardi et al. (1996, 2001, 2003), Doglioni et al. (1998, 1999), Frizon de Lamotte et al. (2000), Chalouan et al. (2001), Michard et al. (2002), de Capoa et al. (2003), Platt et al. (2003) and Chalouan and Michard (2004). Sedimentary successions from the MFB–LO, locally covering their oceanic substratum, crop out from the Gibraltar Arc to the Southern Apennines and are widely exposed. They form several nappes, sandwiched between the basement nappes, originated from the MM (internal domain) and the nappes developed within Iberia, North Africa and West Adria palaeo-margins (external domains). In Algeria Ge´lard (1969) and Bouillin et al. (1970) found a ÔFlysch Maure´tanienÕ and a ÔFlysch MassylienÕ which distinguish different Cretaceous–Palaeogene deposits, and which characterize the internal (northern) and the external (southern) sub-domains of the MFB, respectively. This distinction was later extended to all the MFB, that is, from the Betic Cordilleras to Sicily (Didon, 1969; Durand Delga, 1980b; Guerrera, 1981/1982; Wildi, 1983; Guerrera et al., 1987; Martin-Algarra, 1987; de Capoa et al., 2000).

The Mauretanian and Massylian sub-domains are characterized by successions reflecting the differing lithological characters and tectonic evolution of their source areas. The clastic supply of the Mauretanian deposits derived from the erosion of the MM, composed of pre-Alpine basements and Meso-Cenozoic sedimentary covers, and locally affected by Alpine metamorphism, whereas the Massylian deposits were fed by the African Craton (Durand Delga and Fontbote´, 1980; Hoyez, 1989). The differences between Mauretanian and Massylian deposits become particularly evident in the Early Miocene when a thick sedimentation of immature sandstones occurred in the Mauretanian sub-domain, while the highly mature quartzarenitic Numidian Sequence (Durand Delga, 1980a; Guerrera et al., 1992) was deposited in the Massylian sub-domain. The two lithologically different successions interfingered in the socalled Mixed Successions, revealing a marked interference by two depositional systems (Hoyez, 1976; Didon and Hoyez, 1978; Guerrera et al., 1986; Grasso et al., 1987). The transition between the Mauretanian and Massylian sub-domains is also seen, although less markedly, in the Lower Cretaceous successions in both the Tell and Rif (Raoult, 1974; Lespinasse, 1975; Ge´lard, 1979;  2005 Blackwell Publishing Ltd

F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the Western Tethys

Terra Nova, Vol 17, No. 4, 358–367

Strongly deformed, basinal and platform areas (External Rif , Tell, Sicily and Southern Apennines) Strongly deformed, internal,mostly pelagic areas (Subbetic)

Fig. 1 Geological sketch map of the Alpine Chains of the Central–Western Mediterranean Region (after Boccaletti et al., 1985, modified according to Guerrera et al., 1993) with location of the studied stratigraphic successions.

Hercynian or older basements

Foredeep and post-orogenic deposits; volcanics (Upper Miocene to Recent)

Higher nappes (basement and cover), unaffected by alpine metamorphism (Malaguide-Ghomaride, socle and “Dorsale” Kabyle,Sila, Stilo, etc.)

HP-LT metamorphic Jurassic to Cretaceous ophiolites and cover; continental crust units (Veleta, Mulhacen, etc.)

Slightly deformed, mostly platform areas (Rides Prerifaines,Tunisian thrust zone, etc.) Slightly deformed, external, mostly platform areas (Prebetic)

PIEDMONTESE AND NEVADO-FILABRIDE UNITS

MAGHREBIAN FLYSCH BASIN - LUCANIAN OCEAN DOMAIN EXTERNAL DOMAINS RABAT

19

20 23

25

22

CADIZ

SEVILLA

NORTH-AFRICAN AND WEST-ADRIATIC MARGINS Unfolded foreland cover (Apulia-Sahara) and intracratonic chains (Atlas)

ORAN MELILLA

OUJDA

M NA AS EL

: 21

RIFIAN SECTOR

COLUMNS: 18

18 21

TETOUAN

24 GIBRALTAR

MALAGA

HAUTS PLATEAUX

ALGIERS CARTAGENA

GRANADA

CORDOBA

26 26 :

BETIC SECTOR

COLUMNS: 22

LISBOA

Lower nappes (basement and cover) some of them affected by alpine metamorphism (AlpujarrideRondaide, Sebtide-External Rifian Dorsale, Bagni, Castagna, etc.)

INTERNAL DOMAIN

16 17 BATNA

SAHARIAN ATLAS

LESSER KABYLIA

GREAT KABYLIA

12

14

13

11

MEDITERRANEAN SEA

LE BA

VALENCIA 20° 10°

AFRICA NORTH

0° 30° N

MESOMEDITERRANEAN MICROPLATE

PELAGIAN BLOCK KAIROUAN

TUNIS GALITE I.

ANNABA

15

COLUMNS: 11 : 17

ALGERIAN TELLIAN SECTOR IC AR

ISL

DS AN

after Boccaletti et al.(1985), modified according to Guerrera et al.(1993) SEA IONIAN

SEA BA S I N

Ophiolites and oceanic pelagic and clastic deposits (Middle Jurassic to Langhian)

: 10 MALTA I.

SICILY

10

TYRRHENIAN SEA SARDINIA

CORSICA TYRRHENIAN BA L E A R I C

40°

SOUTHERN IBERIAN MARGIN Unfolded foreland cover and intracratonic chains (Iberian Chain)

HYBLEAN PLATFORM

8 7

1 9 4 3

ROMA

NAPLES

COLUMNS: 7

SICILIAN SECTOR

2

5 6

6 : BARI

COLUMNS : 1

AP UL IA PESCARA ELBA I.

Geological sketch map of the alpine chains of the central-western mediterranean region E P O R U E

 2005 Blackwell Publishing Ltd

ATLANTIC OCEAN

SOUTHERN APENNINIC SECTOR

............................................................................................................................................................. Durand Delga, 1980b; Zaghloul et al., 2003). In the Southern Apennines, the successions of the LO can be correlated with those of the MFB, but it has not been possible to distinguish Mauretanian and Massylian sub-domains (Bonardi et al., 1988, 1996). According to Durand Delga (1969, 1980a), Bouillin (1977, 1986) and Ge´lard (1979) the sedimentary history of the MFB ends with Upper Eocene levels due to a Late Lutetian tectonic phase causing a first deformation of the MFB and leading to a new palaeogeography. The overlying Priabonian–Lower Miocene deposits should represent a different tectono-sedimentary cycle. However, the occurrence of an Eocene tectonic phase has long been debated. Many continuous Jurassic–Lower Miocene successions, whose deformation only starts from the Burdigalian, have been described (Didon et al., 1973; Chiocchini et al., 1978; Guerrera 1981/1982; Lahonde`re, 1987; Martin-Algarra, 1987; Guerrera et al., 1993; de Capoa et al., 2000, 2002, 2003, 2004; Di Staso, 2004), so pre-Neogene tectonics must be excluded. Likewise, the successions of the LO are continuous up to the Early Miocene and start to deform in the Burdigalian (Lentini, 1979; Zuppetta et al., 1984; Bonardi et al., 1988; Critelli et al., 1994; Di Staso and Giardino, 2002). This paper aims to define the stratigraphic record representing the geodynamic evolution of the MFB– LO domain from its birth (Jurassic) to its deformation (Early Miocene) by correlating successions from the Betic Cordilleras to the Southern Apennines, a distance of about 3000 km in length. With regard to the Maghrebian Chain, only the Mauretanian sub-domain has been considered because data regarding its tectono-sedimentary evolution are relatively detailed and were recently revised, while there is only a little recent data concerning the Sicilian Area (Lentini et al., 1995; de Capoa et al., 2004) for the Massylian subdomain. However, these data have been used in the final discussion. The proposed reconstruction constitutes an example of a geodynamic model which may be applied in the study of the peri-mediterranean-type chains. 359

Tectono-sedimentary evolution of the southern branch of the Western Tethys • F. Guerrera et al.

Terra Nova, Vol 17, No. 4, 358–367

.............................................................................................................................................................

Fig. 2 Simplified Early Cretaceous palaeogeographical sketch of the Western Mediterranean Region (after Dercourt et al., 1986; Guerrera et al., 2000, modified). Oceanic basins and margins around the Mesomediterranean Microplate are shown.

Stratigraphy and tectonic setting of the Mauretanian and Lucanian successions The main characteristics of the Mauretanian and Lucanian successions are summarized in 26 stratigraphic columns (Figs 3–5) in which the different formations have been grouped according to main geodynamic stages: rifting, oceanization, drifting, foredeep, thrusting and successive development of piggy-back basins. Successions of the Mauretanian and Lucanian oceanic areas extend from the Jurassic to the Early Miocene; they are homogeneous along the Betic Cordilleras and Maghrebian Chain but some differences can be recognized in Southern Apennines. The base of the successions is represented by remnants of magmatic substratum, preserved in a few sections, followed by Upper Jurassic–Lowermost 360

Cretaceous radiolarites and siliceous limestones and slates (Bouillin et al., 1977, 1995; Ge´lard, 1979; Marcucci et al., 1987; Bonardi et al., 1988; Durand Delga et al., 2000). Only in the Tellian Achaı¨ ches and Sendouah-Tabellout Units (Bouillin, 1977, 1986; Bouillin et al., 1977) Upper Triassic– Middle Jurassic redbeds and limestones have been interpreted as the stratigraphic substratum of the MFB. The same interpretation has been proposed for Lower–Middle Jurassic limestones (Ouareg Series; Olivier et al., 1996) recognized at the base of the Jebel Tisire`ne Unit in the Rif (Fig. 5). The overlying Cretaceous deposits are mainly represented by turbiditic sediments associated with pelagic marls and variegated pelites. Turbidites in the lower part are marly– calcareous and quartzarenitic, becoming mostly calcareous upwards.

In some units (Tisire`ne, Guerrouch and Monte Soro), a siliciclastic succession up to 700-m-thick, represented by fine-grained quartzarenites, characterizes the Barremian–Late Albian. In the Late Cretaceous–Late Eocene the pelagic sedimentation increases and is represented by variegated clays and marls with interbedded allodapic limestones. The Oligocene is characterized by calcareous and marly–calcareous turbidites (Di Staso, 2004), containing a limited amount, or are otherwise barren of siliciclastic grains, followed upwards by an interval of varicoloured clays, marls and siltites almost lacking in calcareous turbidite beds. In all the orogenic sectors the successions end in the Early Miocene with thick siliciclastic sandy–pelitic turbidite deposits (Didon et al., 1973; Chiocchini et al., 1978; Wildi, 1983; Martin-Algarra, 1987; de Capoa et al., 2000). Within these deposits, coarse conglomerate levels have only been recognized in the Rifian Chain in the lower part of the Beni Ider Flysch (Hoyez, 1989; Zaghloul et al., 2002). These conglomerates, characterized by metamorphic, carbonatic and plutonic pebbles, were supplied from the Internal Units of the MM. The turbiditic successions often show a large amount of volcaniclastics, which are recorded in many formations along the peri-Mediterranean chains (Guerrera et al., 1998; de Capoa et al., 2002). Differences in the age of the beginning of the siliciclastic sedimentation need to be outlined: in the Betic-Rifian orogen the base of the sandy–pelitic turbidites has been attributed to the Late Oligocene, whereas it is always Early Miocene in age in the Sicilian Maghrebids and Southern Apennines. Furthermore, recent biostratigraphic data seem to indicate that in some areas (columns 3, 8, 9) the siliciclastic sedimentation starts in the Burdigalian (Critelli et al., 1994; de Capoa et al., 2000, 2002; Di Staso, 2004). These differences are probably due to difficulties in dating turbiditic deposits as fossil assemblages in them are poor and rare, and the taxa reworking is generalized. The described succession can be recognized in the Betic Cordilleras and Maghrebian Chain. In the Southern Apennines several units are similar  2005 Blackwell Publishing Ltd

Terra Nova, Vol 17, No. 4, 358–367

F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the Western Tethys

.............................................................................................................................................................

Fig. 3 Representative stratigraphic columns of the Lucanian Ocean (Southern Apennines).

to those of the MFB (columns 3–6) but they lack Jurassic–Lower Cretaceous terranes, the lowest levels being Cenomanian in age. On the other hand, other units (columns 1 and 2) show different Cretaceous–Eocene successions. These are characterized by green quartzarenites interbedded within mainly pelitic units, scarce or absent calcareous turbidites and vari 2005 Blackwell Publishing Ltd

egated pelites, abundant black shales. These minor lithological differences obviously result from deposition in a different palaeogeographical context compared to the MFB. However, the main stratigraphic features and the general depositional evolution are fully comparable. The tectonic units derived from the MFB and LO constitute oceanic

accretionary wedges and they generally overlie tectonic units originated from the external domains. Locally, the MFB terranes in the Maghrebian Chain rest above the Internal Units due to a back-thrusting. Along the Betic and Maghrebian Chains, the MFB successions are split into two nappes with Jurassic–Cretaceous terranes overriding the Palaeogene– 361

Tectono-sedimentary evolution of the southern branch of the Western Tethys • F. Guerrera et al.

Terra Nova, Vol 17, No. 4, 358–367

.............................................................................................................................................................

Fig. 4 Representative stratigraphic columns of the Mauretanian sub-domain in the Sicilian and Tellian sectors of the Maghrebian Chain. Symbols as in Fig. 3.

362

 2005 Blackwell Publishing Ltd

Terra Nova, Vol 17, No. 4, 358–367

F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the Western Tethys

.............................................................................................................................................................

Fig. 5 Representative stratigraphic columns of the Mauretanian sub-domain in the Rifian sector of the Maghrebids and Betic Cordilleras. Symbols as in Fig. 3.

 2005 Blackwell Publishing Ltd

363

Tectono-sedimentary evolution of the southern branch of the Western Tethys • F. Guerrera et al.

Terra Nova, Vol 17, No. 4, 358–367

............................................................................................................................................................. A

EUROPE PLATE

IBERIA PLATE

C S

MAGHREBIAN FLYSCH BASIN

AFRICA PLATE

C

IBERIA PLATE

ADRIA PLATE

Penibetic

OCEAN

B

tic Prebe etic Subb

LUC ANI AN

LUCANI AN OCEAN

Penibetic

EUROPE PLATE

B

Prebetic Subbetic

Alboran Block

MAGHREBIAN FLYS CH BASIN

IONIAN OCEAN

AFRICA PLATE

Late Oligocene - Aquitanian

EUROPE PLATE

B LP APB

APB

IONIAN OCEAN

IONIAN

OCEAN

AFRICA PLATE

AFRICA PLATE

Late Langhian Basins with continental crust Emerged Land

N

IBERIA PLATE

IBERIA PLATE

Oceanic Crust

AN O CEA

Burdigalian

D

EUROPE PLATE

IONI

Serravallian

Subduction-related calc-alkaline volcanism Extension-related volcanism S- dipping subduction (Europe vergent thrust)

N- and W- dipping subduction (Africa-Adria vergent thrust) Normal faults Strike-slip faults

Present-day coastlines APB Algero-Balearic-Provençal Basin B

Balearic Islands

Fig. 6 Palaeogeographical evolution of the Western Mediterranean Region during the Late Oligocene–Serravallian time span.

Miocene ones. However, locally, continuous Jurassic–Miocene successions are preserved. This splitting into two nappes, as well as the occurrence of incomplete successions, can be explained by the strong deformation caused by the building of the oceanic accretionary wedges. Langhian–Serravallian late orogenic piggy-back basin sediments, which lie unconformably above the MFB–LO units, have been recognized in Southern Apennines (Cilento Group, Amore et al., 1988), Sicilian Maghrebids (Reitano Flysch; de Capoa et al., 2004) and Tellian Maghrebids (Mioce`ne post-nappe; Durand Delga, 1980a). They consist of thick mainly arenaceous successions (up to and over 2000 m), with subordinate conglomerate and carbonate beds. Petrographic studies, particularly by the Cilento Group (Critelli, 1993), demonstrated that these deposits were supplied by the already stacked Internal Units, testifying to the unroofing of source areas. 364

Discussion and geodynamic implications The Mauretanian and Lucanian units record remarkably comparable sedimentary and tectonic evolution, both having been controlled by major geodynamic events. Only minor differences in lithologies and ages are observed when comparing the stratigraphic successions (Figs 3–5). Starting from the Late Triassic– Early Jurassic, the western part of Pangea is the site of a rifting stage. In the successions studied, this phase would result in the deposition of the siliciclastic and calcareous formations of the Achaı¨ ches and Sendouah-Tabellout Units and, probably, of the calcareous formations recognized at the base of the Jebel Tisire`ne Unit. In the Late Jurassic, the rifting is complete and the opening of an oceanic area (oceanization stage) is documented by ophiolites (mainly basalts, pillow-lavas and pillow-breccias; minor gabbros and peridotites) cov-

ered by Upper Jurassic–Lowermost Cretaceous radiolarites, cherty limestones and slates. The Cretaceous–Lowermost Miocene successions are interpreted as representative of a pre-orogenic stage, scarcely affected by tectonic activity. In this time span a drift stage occurs, probably extending up to the Late Cretaceous (Campanian) and causing the expansion of the oceanic area. Later, up to the Oligocene, the oceanic area persists as a remnant ocean. As shown by Cretaceous mixed successions, two depositional turbiditic systems, fed from the opposite margins, interfinger in the basin. This turbiditic sedimentation has been related to the repeated eustatic changes which characterize this period (Martin-Algarra et al., 1992; Durand Delga et al., 1999) and also to increases in weathering and erosion due to carbon cycle excursion (Wortmann et al., 2004). The Palaeogene is mainly characterized by pelagic marly–clayey terra 2005 Blackwell Publishing Ltd

Terra Nova, Vol 17, No. 4, 358–367

F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the Western Tethys

............................................................................................................................................................. nes and by a turbiditic calcareous formation. The latter represents an Oligocene marker level recognizable in all the orogenic sectors considered which has been related (Di Staso, 2004) to the major sea-level lowstand during the Palaeogene (Haq et al., 1987). The start of a large siliciclastic sedimentation in the Late Oligocene, or more probably in the Early Miocene, marks the beginning of the foredeep stage, related to compressional tectonics. In fact, the onset in the MM of the Africa–Adria-vergent tectogenesis changes the pelagic MFB and LO into foredeeps, which rapidly migrate towards the west, south and south-east. Within these foredeeps the sedimentation is composed of immature flysch deposits (sensu Bertrand, 1897; Arbenz, 1919), locally interfingering with Africa-derived quartzarenites. The Internal Units feed clastic sediments to the Mauretanian subdomain of the MFB, the LO, and also the piggy-back basins located above them (Vin˜uela-Sidi Abdeslam Group in the Betic-Rifian Chain; ÔOligo-Mioce`ne KabyleÕ in the Tell; Stilo-Capo d’Orlando Formation in the Calabria– Peloritani Arc). It is significant, according to a great many biostratigraphic studies, that these terranes, deposited both in foredeeps and piggy-back basins (Ge´ry et al., 1981; Guerrera 1981/1982; Gonza´lez Donoso et al., 1982; Guerrera et al., 1987; Martin-Algarra, 1987; Feinberg et al., 1990; Critelli et al., 1994; de Capoa et al., 2000, 2002; Bonardi et al., 2003; Di Staso, 2004), reach the Burdigalian or from their base are Burdigalian in age. At the same time, a calc-alkaline volcanic arc, related to a N-dipping subduction, provides abundant volcaniclastic detritus, particularly in the Sicilian MFB and LO. In contrast, the sedimentation in the Massylian subdomain still shows characteristics of a passive margin, represented by quartzarenites and pelites fed by the Africa Craton. The effects of the Early Aquitanian and Burdigalian/Langhian main erosional phases, which are related to compression tectonics, could be enhanced by the concomitant occurrence of significant sea-level lowstands (Haq et al., 1987). The sedimentary history of the Mauretanian sub-domain and LO ends with the deposition of thick  2005 Blackwell Publishing Ltd

siliciclastic turbiditic formations: these domains are affected by the compressional tectonics and the related terranes included in accretionary wedges. At the same time, the opening of the Algero-Provenc¸al Basin, the consequent break-down of the growing orogenic belt and, finally, the westwards drifting of the Alboran block also cause the inclusion of the MFB units in the Betic Cordilleras (Fig. 6). In the Langhian, Mauretanian and Lucanian terranes constitute accretionary wedges on which, in the Southern Apennines, Sicilian and Tellian Maghrebids, piggy-back basins develop, sealing the oceanic nappe pile. Later, the deformation continues to migrate towards more external zones, reaching the Massylian subdomain and the African and Adriatic margins. The deformation of the Massylian sub-domain occurs in the Middle Miocene, and in Sicily this is testified to by Serravallian piggy-back deposits unconformably lying above the Massylian Units (de Capoa et al., 2004), which mark the closure of the oceanic area. The collision between the orogenic belts docked to the Europe plate and the Africa–Adria margins occurs in the Tortonian, as testified by the Upper Tortonian deposits sealing the Internal, MFB– LO and External Units. There is no data supporting the Late Eocene continental collision between the MM and Africa–Adria plates suggested by Jolivet and Faccenna (2000) and Chalouan and Michard (2004). However, this paper supports the hypothesis of a Middle Miocene accretion of the MFB–LO units against the Africa–Adria margins (Guerrera et al., 1993; Doglioni et al., 1998, 1999; Verge´s and Sa`bat, 1999; Frizon de Lamotte et al., 2000, 2004; Mauffret et al., 2004; Roca et al., 2004). The Early–Middle Miocene history explains how, in a narrow time span, a complex and rapidly modifying geodynamic setting leads to the construction of an orogenic belt. The tectonic evolution is characterized by: high rate of uplift, erosion and sedimentation, quick basin development and consequent palaeogeographical changes, building of oceanic accretionary wedges and thrust-and-fold belts, as well as continental collision. A general sketch for the evolution of the whole

MFB–LO up to the continental collision is suggested in Fig. 6.

Acknowledgements This research was supported by MIURUrbino University, Cofin/2003 grant to F. Guerrera. Thanks to D. Frizon de Lamotte and A. Michard for revising the manuscript.

References Amore, F.O., Bonardi, G., Ciampo, G., de Capoa, P., Perrone, V. and Sgrosso, I., 1988. Relazioni tra ÔÔflysch interniÕÕ e domini appenninici: reinterpretazione delle Formazioni di Pollica, San Mauro e Albidona e l’evoluzione infra-medio-miocenica delle zone esterne sudappenniniche. Mem. Soc. Geol. Ital., 41, 285– 297. Arbenz, P., 1919. Probleme der sedimentation und ihre Beziehungen zur Gebirgsbildung in den Alpen. Naturforsch. Ges. Zu¨rich Viert., 64, 246–275. Bertrand, M., 1897. Structure des Alpes franc¸aises et recourrence de certaines facie`s se´dimentaires. CR Int. Geol. Congr., 1984, 161–177. Boccaletti, M., Conadera, C., Dainelli, P. and Gocev, P., 1985. Tectonic map of the Western Mediterranean Area. Scale 1:2.500.000. Litogr. Artist. Cartogr. Firenze. Bonardi, G., Amore, F.O., Ciampo, G., de Capoa, P., Miconnet, P. and Perrone, V., 1988. Il «Complesso Liguride» Auct.: stato delle conoscenze e problemi aperti sulla sua evoluzione appenninica ed i suoi rapporti con l’Arco calabro. Mem. Soc. Geol. Ital., 41, 17–35. Bonardi, G., Giunta, G., Messina, A., Perrone, V. and Russo, S., 1996. The Calabria-Peloritani Arc and its correlation with Northern Africa and Southern Europe. IGCP 276 Newsletter, 6 (special issue), 27–86. Bonardi, G., Cavazza, W., Perrone, V. and Rossi, S., 2001. Calabria-Peloritani Terrane and Northern Ionian Sea. In: Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (G.B. Vai and I.P. Martini, eds), pp. 287–306. Kluwer Academic Publishers, Dordrecht/Boston/London. Bonardi, G., de Capoa, P., Di Staso, A., Estevez, A., Martı´ n-Martı´ n, M., Martı´ nRojas, I., Perrone, V. and Tent-Manclu´s, J.E., 2003. Oligocene to Early Miocene depositional and structural evolution of the Calabria-Peloritani Arc southern subterrane (Italy) and geodynamic correlations with the Spain Betics and Morocco Rif. Geodin. Acta, 16, 149–169. Bouillin, J.P., 1977. Ge´ologie alpine de la Petite Kabylie dans les re´gions de Collo

365

Tectono-sedimentary evolution of the southern branch of the Western Tethys • F. Guerrera et al.

Terra Nova, Vol 17, No. 4, 358–367

............................................................................................................................................................. et d’El Milia (Alge´rie). The`se Univ. Paris, Paris, pp. 1–511. Bouillin, J.P., 1986. Le «bassin maghre´bin»: une ancienne limite entre l’Europe et l’Afrique a` l’Ouest des Alpes. Bull. Soc. Ge´ol. Fr., 2, 547–558. Bouillin, J.P., Durand Delga, M., Ge´lard, J.P., Leikine, M., Raoult, J.F., Tefiani, M. and Vila, J.M., 1970. De´finition d’un flysch massylien et d’un flysch maure´tanien au sein des flyschs allochtones de l’Alge´rie. CR Acad. Sci. Paris, 270, 249–252. Bouillin, J.P., Kornprobst, J. and Raoult, J.F., 1977. Donne´es pre´liminaires sur le complexe volcano-se´dimentaire de Rekkada-Metle-tine (ex-Texenna) en Petite Kabylie (Alge´rie). Bull. Soc. Ge´ol. Fr., 19, 805–814. Bouillin, J.P., Durand Delga, M. and Olivier, Ph., 1986. Betic-Rifian and Tyrrhenian Arcs: distinctive features, genesis and development stages. In: The Origin of Arcs (F. Wezel, ed.), pp. 321– 338, Elsevier, Amsterdam. Bouillin, J.P., Dumont, T., Giunta, G. and Ondrejickova`, A., 1995. Un te´moin des se´ries jurassiques du Bassin Maghre´bin en Sicile: la formation de la Contrada Lanzeri, a` la base du flysch maure´tanien du Monte Soro. CR Acad. Sci. Paris, 320, 601–607. de Capoa, P., Guerrera, F., Perrone, V., Serrano, F. and Tramontana, M., 2000. The onset of the syn-orogenic sedimentation in the Flysch Basin of the Sicilian Maghrebids: state of the art and new biostratigraphic constraints. Eclogae Geol. Helv., 93, 65–79. de Capoa, P., Di Staso, A., Guerrera, F., Perrone, V., Tramontana, M. and Zaghloul, M.N., 2002. The Lower Miocene volcaniclastic sedimentation in the Sicilian sector of the Maghrebian Flysch Basin: geodynamic implications. Geodin. Acta, 15, 141–157. de Capoa, P., Di Staso, A., Guerrera, F., Perrone, V. and Tramontana, M., 2003. The extension of the Maghrebian Flysch Basin in the Apenninic Chain: palaeogeographic and palaeotectonic implications. Atti Congr. ÔÔEtat des connaissances ge´ologiques des re´gions nord du Maroc: la Chaıˆ ne Rifaine dans son cadre Me´diterrane´en occidental, Rabat (Maroc). Trav. Inst. Sci. Rabat Se´rie Ge´ol. Ge´ogr. Phys., 21, 77–92. de Capoa, P., Di Staso, A., Guerrera, F., Perrone, V. and Tramontana, M., 2004. The age of the oceanic accretionary wedge and continental collision in the Sicilian sector of the Maghrebian Chain. Geodin. Acta, 17, 331–348. Chalouan, A. and Michard, A., 2004. The Alpine Rif Belt (Morocco): a case of mountain building in a subduction–subduction–transform fault triple junction. Pure Appl. Geophys., 161, 489–519.

366

Chalouan, A., Michard, A., Feinberg, H., Montigny, R. and Saddiqi, O., 2001. The Rif mountain building (Morocco): a new tectonic scenario. Bull. Soc. Ge´ol. Fr., 172, 603–616. Chiocchini, U., Franchi, R., Guerrera, F., Ryan, W.B.F. and Vannucci, S., 1978. Geologia di alcune successioni torbiditiche Cretaceo-Terziarie appartenenti ai ÔÔFlysch Maure´taniensÕÕ e alla ÔÔNappe NumidienneÕÕ del Rif settentrionale (Marocco). Stud. Geol. Camerti, 4, 37–66. Critelli, S., 1993. Sandstone detrital modes in the Paleogene Liguride Complex, accretionary wedge of the Southern Apennines (Italy). J. Sed. Petrol., 63, 464–476. Critelli, S., de Capoa, P., Le Pera, E. and Perrone, V., 1994. Stratigrafia e petrografia delle Arenarie di Albanella (Valle del Calore, Appennino Campano). Boll. Soc. Geol. Ital., 113, 451–463. Dercourt, J., Zonenshain, L.P., Ricou, L.E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sorokhtin, O., Geyssant, J., Lepvrier, C., Sborshschikov, I.V., Boulin, J., BijuDuval, B., Sibuet, J.C., Savostin, L.A., Westphal, M. and Laver, J.P., 1986. Pre´sentation de 9 cartes pale´oge´ographiques au 1/20.000.000 sÕe´tendant de lÔAtlantique au Pamir pour la pe´riode du Lias a` l’Actuel. Bull. Soc. Ge´ol. Fr., 1, 637–652. Di Staso, A., 2004. Biostratigrafia integrata, significato ed eta` degli apporti torbiditici carbonatici Terziari nel «Bacino dei Flysch Maghrebidi» e nella sua continuazione nella Catena Appenninica. Tesi di Dottorato in Geologia del Sedimentario, Universita` di Napoli Federico II (XV Ciclo), pp. 1–220. Di Staso, A. and Giardino, S., 2002. New integrate biostratigraphic data about the Saraceno Formation (North-Calabrian Unit; Southern Apennines). Boll. Soc. Geol. Ital. Vol. Spec., 1, 517–526. Didon, J., 1969. Etude Ge´ologique du Campo de Gibraltar (Espagne me´ridionale). The`se Univ. Paris, Paris, pp. 1–539. Didon, J. and Hoyez, B., 1978. Les se´ries mixtes, numidien et gre´so-micace´, dans le Rif occidental (Maroc). CR Somm. Soc. Ge´ol. Fr., 6, 304–307. Didon, J., Durand Delga, M. and Kornprobst, J., (1973). Homologies ge´ologiques entre les deux rives du de´troit de Gibraltar. Bull. Soc. Ge´ol. Fr., 15, 77–105. Doglioni, C., 1992. Main differences between thrust belts. Terra Nova, 4, 152–164. Doglioni, C., Mongelli, F. and Pialli, G., 1998. Boudinage of the Alpine belt in the Apenninic back-arc. Mem. Soc. Geol. Ital., 52, 457–468. Doglioni, C., Fernandez, M., Gueguen, E. and Sabat, F., 1999. On the inter-

ference between the early ApenninesMaghrebides back-arc extension and the Alps-Betics orogen in the Neogene geodynamics of the Western Mediterranean. Boll. Soc. Geol. Ital., 118, 75–89. Durand Delga, M., 1969. Mise au point sur la structure du nord-est de la Berberie. Publ. Serv. Ge´ol. Alge´rie, 39, 89–131. Durand Delga, M., 1980a. La Me´diterrane´e occidentale: e´tapes de sa gene`se et proble`mes structuraux lie´s a` celle-ci. Me´m. H. Se´r. Soc. Ge´ol. Fr., 10, 203–224. Durand Delga, M., 1980b. Conside´rations sur les Flyschs du Cre´tace´ infe´rieur dans les chaıˆ nes alpines d’Europe. Bull. Soc. Ge´ol. Fr., se´r. 7, 22, 15–30. Durand Delga, M. and Fontbote´, J.M., 1980. Le cadre structural de la Me´diterrane´e occidentale. Bur. Rech. Ge´ol. Min. Me´m., 115, 67–85. Durand Delga, M., Gardin, S. and Olivier, P., 1999. Datation des flyschs e´ocre´tace´s maure´taniens des Maghre´bides: la formation du Jbel Tisire`ne (Rif, Maroc). CR Acad. Sci. Paris, 328, 701–709. Durand Delga, M., Rossi, P., Olivier, P. and Puglisi, D., 2000. Situation structurale et nature ophiolitique des roches basiques jurassiques associe´es aux flyschs maghre´bins du Rif (Maroc) et de Sicile (Italie). CR Geosci., 331, 29–38. Feinberg, H., Maate´, A., Bouhdadi, S., Durand Delga, M., Maate´, M., Magne´, J. and Olivier, Ph., 1990. Signification des de´poˆts de l’Oligoce`ne supe´rieur et du Mioce`ne infe´rieur du Rif interne (Maroc) dans lÕe´volution ge`odynamique de l’Arc de Gibraltar. CR Acad. Sci. Paris, 310, 1487–1495. Frizon de Lamotte, D., Saint Bezar, B., Brace`ne, R. and Mercier, E., 2000. The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19, 740–761. Frizon de Lamotte, D., Crespo-Blanc, A., Saint-Bezar, B., Fernandez, M., Zeyen, H., Ayarza, P., Robert-Charrue, C., Chalouan, A., Zizi, M., Teixell, A., Arboleya, M.L., Alvarez-Lobato, F., Julivert, M. and Michard, A., 2004. TRANSMED-transect I [Betics, Alboran Sea, Rif, Moroccan Meseta, High Atlas, Jbel Saghro, Tindouf basin]. In: The TRANSMED Atlas – the Mediterranean Region from Crust to Mantle (W. Cavazza, F. Roure, W. Spakman, G.M. Stampfli and P.A. Ziegler, eds). Springer, Berlin/Heildelberg. Ge´lard, J.P., 1969. Le flysch a` base schistogre´seuse de la bordure me´ridionale et orientale du massif de Chellata: le flysch maure´tanien (Grande Kabylie). Bull. Soc. Ge´ol. Fr., 7, 676–686. Ge´lard, J.P., 1979. Ge´ologie du nord-est de la Grande Kabylie (Un segment des zones internes de l’oroge`ne littoral

 2005 Blackwell Publishing Ltd

Terra Nova, Vol 17, No. 4, 358–367

F. Guerrera et al. • Tectono-sedimentary evolution of the southern branch of the Western Tethys

............................................................................................................................................................. maghre´bin). The`se Univ. Dijon, Dijon, pp. 1–335. Ge´ry, B., Feinberg, H., Lorenz, C. and Magne´, J., 1981. De´finition d’une se´rietype de lÕÔÔOligo-Mioce`ne KabyleÔÔ ante´nappes dans le Djebel Aı¨ ssa-Mimoun (Grande Kabylie, Alge´rie). CR Acad. Sci. Paris, 292, 1529–1532. Gonza´lez Donoso, J.M., Linares, D., Molina, E., Serrano, F. and Vera, J.A., 1982. Sobre la edad de la formacion de la Vin˜uela (Cordilleras Be´ticas, provincia de Malaga). Bol. Roy. Soc. Esp. Hist. Nat. (Geol.), 80, 255–275. Grasso, M., Guerrera, F., Loiacono, F., Puglisi, D., Romeo, M., Balenzano, F., Carmisciano, R., Di Pietro, M., Gonza´lez Donoso, J.M. and Martin Algarra, A., 1987. Caratterizzazione sedimentologica, biostratigrafica e mineralogicopetrografica di ÔÔSuccessioni MisteÕÕ inframioceniche affioranti in Spagna (Catena Betica) e in Italia meridionale (M.ti Nebrodi e Appennino lucano). Boll. Soc. Geol. Ital., 106, 475–516. Guerrera, F., 1981/1982. Successions turbiditiques dans les flysch maure´tanien et numidien du Rif (Maroc). Rev. Ge´ogr. Phys. Ge´ol. Dyn., 23, 85–96. Guerrera, F., Loiacono, F. and Grasso, M., 1986. Dati preliminari sulle successioni oligo-mioceniche ÔÔmisteÕÕ affioranti lungo la Catena Betico-MaghrebideAppennino Meridionale: una famiglia di flysch con evidenti implicazioni paleogeografiche e paleotettoniche. Boll. Soc. Geol. Ital., 105, 99–110. Guerrera, F., Coccioni, R., Loiacono, F., Puglisi, D. and Moretti, E., 1987. Sequenze fliscioidi Oligo-Mioceniche tipo ÔÔMaure´tanienÕÕ (sinorogene e tardorogene) della Cordigliera Betica (Spagna) e del Tell orientale (Algeria): confronti nel Rif, nella Catena nord-Siciliana e nell’Appennino meridionale. Mem. Soc. Geol. Ital., 38, 551–576. Guerrera, F., Loiacono, F., Puglisi, D. and Moretti, E., 1992. The Numidian Nappe in the Maghrebian Chain: state of the art. Boll. Soc. Geol. Ital., 111, 217–253. Guerrera, F., Martı´ n-Algarra, A. and Perrone, V., 1993. Late Oligocene-Miocene syn-/-late-orogenic successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova, 5, 525–544. Guerrera, F., Mattioli, M., Renzulli, A., Santi, P., Puglisi, D., Veneri, F., Assorgia, A. and Balogh, K., 1998. An overview of the Upper Oligocene-Lower Miocene volcanogenic sediments in the Western Mediterranean and their possible source areas. Rom. J. Stratigr., 78, 43–56. Guerrera, F., Perrone, V. and Tramontana, M., 2000. The ÔÔFlysch BasinÕÕ in the Western Mediterranean Alpine Chains. 31st. I.G.C., Rio de Janeiro, Brazil, August 6–17, 2000, Abstr.

 2005 Blackwell Publishing Ltd

Haq, B.U., Hardenbold, J. and Vail, P.R., 1987. Chronology of fluctuating sea levels since the Triassic. Science, 235, 1156– 1167. Hoyez, B., 1976. Pre´cisions stratigraphiques, se´dimentologiques et tectoniques sur les massifs de flyschs au Nord de Medjana (Wilaya de Se´tif, Alge´rie). Ann. Soc. Ge´ol. Nord, 96, 89–97. Hoyez, B., 1989. Le Numidien et les flyschs oligo-mioce`nes de la bordure sud de la Me´diterrane´e occidentale. The`se Univ. De Lille, De Lille, pp. 1–459. Jolivet, L. and Faccenna, C., 2000. Mediterranean extension and the Africa-Eurasia collision. Tectonics, 19, 1095–1106. Lentini, F., 1979. Le Unita` Sicilidi della Val d’Agri (Appennino Lucano). Geol. Romana, 18, 215–225. Lentini, F., Carbone, S., Catalano, S. and Grasso, M., 1995. Principali lineamenti strutturali della Sicilia nord-orientale. Stud. Geol. Camerti Vol. Spec., 2, 319–329. Lespinasse, P., 1975. Ge´ologie des zones externes et des flyschs entre Chaouen et Zoumi (Centre de la chaıˆne Rifaine, Maroc). The`se Univ. Paris, Paris, pp. 1–248. Marcucci, M., Conti, M. and Spadea, P., 1987. Radiolarian association in cherts from Timpa delle Murge (Lucanian Apennine; Italy). Ofioliti, 12, 411–414. Martin-Algarra, A., 1987. Evolucio`n geolo`gica del contacto entre las Zonas Internas y las Zonas Externas de la Cordillera Be´tica. Doctoral Thesis, University of Granada, Granada, pp. 1–1171. Martin-Algarra, A., Ruiz-Ortiz, P.A. and Vera, J.A., 1992. Factors controlling Cretaceous turbidite deposition in the Betic Cordillera. Rev. Soc. Geol. Esp., 5, 53–80. Mauffret, A., Frizon de Lamotte, D., Lallemant, S., Gorini, C. and Maillard, A., 2004. E–W opening of the Algerian Basin (Western Mediterranean). Terra Nova, 16, 257–264. Michard, A., Chalouan, A., Feinberg, H., Goffe´, B. and Montigny, R., 2002. How does the Alpine belt end between Spain and Morocco? Bull. Soc. Ge´ol. Fr., 173, 3–15. Olivier, Ph., Durand Delga, M., Manivit, H., Feinberg, H. and Beybernes, B., 1996. Le substratum jurassique des flyschs maure´taniens de l’ouest des Maghre´bides: l’unite´ de Ouareg (Re´gion de Targuist, Rif, Maroc). Bull. Soc. Ge´ol. Fr., 167, 609–616. Platt, J. and Vissers, R.L., 1989. Extensional collapse of thickened continental lithosphere: a working hypothesis for the Alboran Sea and Gibraltar arc. Geology, 17, 540–543. Platt, J., Whitehouse, M.J., Kelley, S.P., Carter, A. and Hollick, L., 2003. Simul-

taneous extensional exhumation across the Alboran basin: implications for causes of late-orogenic extension. Geology, 31, 259–262. Raoult, J.F, 1974. Ge´ologie du centre de la Chaıˆ ne Numidique (Nord du Constantinois, Alge´rie). Me´m. Soc. Ge´ol. Fr., 121, 1–162. Roca, E., Frizon de Lamotte, D., Mauffret, A., Brace`ne, R., Verge´s, J., Benauouli, N., Fernandez, M., Munoz, J.A. and Zeyen, H., 2004. TRANSMED-transect II [Aquitaine basin, Pyrenees, Ebro basin, Catalan coastal ranges, Valancia trough, Balearic promontory, Algerian basin, Tell, Sahara Atlas, Sahara platform]. In: The TRANSMED Atlas – the Mediterranean region from Crust to Mantle (W. Cavazza, F. Roure, W. Spakman, G.M. Stampfli and P.A. Ziegler, eds). Springer, Berlin/Heildelberg. Verge´s, J. and Sa`bat, F., 1999. Constraints on the western Mediterranean kinematic evolution along a 1,000-km transect from Iberia to Africa. In: On the Mediterranean Basins: Tertiary Extension Within Alpine Orogen (B. Durand, L. Jolivet, F. Horva´th and M. Se´ranne, eds). Geol. Soc. Spec. Publ., 134, 63–80. Wildi, W., 1983. La chaıˆ ne tello-rifaine (Alge´rie-Maroc-Tunisie): structure, stratigraphie et e´volution du Trias au Mioce`ne. Rev. Ge´ogr. Phys. Ge´ol. Dyn., 24, 201–297. Wortmann, U.G., Herrle, J.O. and Weissert, H., 2004. Altered carbon cycling and coupled changes in Early Cretaceous weathering patterns: evidence from integrated carbon isotope and sandstone records of the Western Tethys. Earth Planet. Sci. Lett., 220, 69–82. Zaghloul, M.N., Guerrera, F., Loiacono, F., Maiorano, P. and Puglisi, D., 2002. Stratigraphy and petrography of Beni Ider Flysch in the Te´touan area (Rif Chain, Morocco). Boll. Soc. Geol. Ital., 121, 69–85. Zaghloul, M.N., Guerrera, F., Tucker, M.E., El Moutchoun, B., Ouazani Touhami, A. and Puglisi, D., 2003. New petrographic and sedimentological data from Early Cretaceous mixed succession (Flysch Basin Domain; Northern Rif, Morocco): provenance and paleogeography of the Mauretanian and Massylian sub-domains. 17e`me Colloque des Bassins Sedimentaires Marocains (CBSM), Rabat, Abstr., pp. 153–155. Zuppetta, A., Russo, M. and Turco, E., 1984. Alcune osservazioni sulle Tufiti di Tusa nell’area compresa tra Valsinni e Rocca Imperiale (confine calabro-lucano). Boll. Soc. Geol. Ital., 103, 623–627. Received 4 August 2004; revised version accepted 4 February 2005

367