MCV4U Unit 3 Test Curve Sketching (V1) Name: Knowledge: /25 ...

505 downloads 940 Views 267KB Size Report
MCV4U Unit 3 Test Curve Sketching (V1). Name: Knowledge: /25 ... Use the second derivative test to classify the critical points as local maxima, local minima,  ...
MCV4U Unit 3 Test Curve Sketching (V1) Name: Knowledge:

/25

Application:

/19

Inquiry:

/8

Comm.:

KNOWLEDGE Identify the letter of the choice that best completes the statement or answers the question.

____ 1.

The function a. b.

____ 2.

When does the function a. (0, 0) b. (1, 1)

____ 3.

When does the function a. (1, 2) b. (–1, –20)

____ 4.

Evaluate

____ 5.

____ 6.

have a local minimum? c. (1, 0) d. (–1, 0)

have a point of inflection? c. (2, 1) d. (0, –3)

.

____ 7.

c. d.

Find the absolute maximum of the function a. 6 b. 0

Find the critical point for the function a. (–1, 0) b. (1, 0.5)

If a. b.

(1 mark each)

increases on which interval? c. d.

a. 5 b. 0

on the interval c. –1 d. 8

. c. (0, 0) d. no critical point

, where a, b, c, and d are constants, find c. d.

.

/7

.

8. Analyze and graph f ( x)  2 x  6 x  8 . Show all work including intercepts, critical points, and inflection points. (11 marks) 3

Intercepts:

2

Critical Points:

Inflection points:

y

9. Find the critical points of the function f ( x)  x  12 x  1 . Use the second derivative test to classify the critical points as local maxima, local minima, or neither. (4 marks) 3

10. State the possible point(s) of inflection and the intervals of concavity of a function with f ( x)  x  8x  3x  5 . (3 marks) 4

3

Application 11. The height of a motorcycle stunt man is given by h(t )  4.9t  24.5t  2 , where h is the height in metres, t 2

seconds after the motorcycle flies off an inclined ramp. Determine the maximum and minimum height in the interval of 0  t  4 seconds. (4 marks)

x2 2x 6x 2  2 12. Given: f ( x)  , f ' ( x)  , f ' ' ( x)  . Sketch and completely label the graph using the 1 x2 1  x 2 2 1  x 2 3 following headings.

(15 marks)

x-intercept(s)

y-intercept

Vertical Asymptotes

Horizontal Asymptotes

Coordinates of Local Maxima/Minima

Intervals of Increase/Decrease

Points of inflection

Intervals of Concavity

y

x

Inquiry 13. Sketch a possible function that satisfies the following criteria:

(4 marks) 

f ' ' ( x)  0 when x  4

y

 

f ' ' ( x)  0 when x  4

 

f ' ( x)  0 for all x

  

lim f ( x)  



x 4 



lim f ( x)  

x 4

 

















x 



















lim f ( x)  2



x 

 

f (2)  0

     

14. The function f ( x)  2kx  3x  px  3 has a local minimum at x = -1 and a point of inflection at x = 1. Determine the values of k and p. (4 marks) 3

2





Communication ANSWER ONLY 15 OR 16 AND 17 15. Sketch a graph of f (x) based on the information from the table:

 ,3



f ' ( x) f ' ' ( x)

 3,0

3  

0 



0, 2

0

 0





2, 

2 0



  (4 marks)

y       x 

























      

16. Consider the function f ( x) 

1 . Use limits to determine the horizontal asymptote. x 1 2

(2 marks)

17. If f ' (a)  0 , then there will always be a local extreme at x = a . Is this statement true or false? If this is true, explain. If it is false, give a counter example to disprove it. (2 marks)

3 marks for form