Minimally invasive reduction and percutaneous

4 downloads 0 Views 2MB Size Report
in materials, implants and computed imaging have led to improvements in ...... and is a 100-‐point scale measuring pain, activity, subtalar range of movement,.
 

  Minimally  invasive  reduction  and  percutaneous  fixation   versus   open   reduction   and   internal   fixation   for   displaced  

intra-­‐articular  

calcaneal  

fractures;  

a  

systematic  review  of  the  literature   Author:   Mr.  Haroon  Majeed,  MBBS,  MRCS   Qualification  Submitted  For:     Masters  in  Trauma  &  Orthopaedics   Institution:     University  of  Salford   Year  of  Submission:     2015     This   dissertation   is   submitted   in   partial   fulfilment   of   requirement   for   the   degree   of   MSc   Trauma   and   Orthopaedics,   University   of   Salford,   May  2015.        

 

Word  Count:  12,806     1  

DECLARATION       The  author  declares  that  no  part  of  this  dissertation  has  been  taken   from   existing   published   or   unpublished   material   without   due   acknowledgement   and   that   all   the   secondary   material   used   herein   has   been   fully   referenced.   No   funding   has   been   received   from   any   source  during  the  completion  of  this  dissertation.           Signed………………   Date………………….      

                     

 

2  

CONTENTS   Acknowledgements   …………………………………………………………………………………     5   Abbreviations   …………………………………………………………………………………   6   Abstract     …………………………………………………………………………………   7   Keywords     …………………………………………………………………………………   9   1.  Introduction   …………………………………………………………………………………   10   1.1  Incidence   …………………………………………………………………………………   10   1.2  Displaced  Intra-­‐articular  Calcaneal  Fractures.…………………………….   10   1.3  Clinical  Presentation………………………………………………………………….   10   1.4  Classification……………………………………………………………………………..   11   1.5  Radiological  Assessment……………………………………………………………   12   1.6  Management……………………………………………………………………………...   13     1.6.1  Open  Reduction  and  Internal  Fixation………………………….............................   14    

1.6.2  Minimally  Invasive  reduction  and  percutaneous  Fixation………………….   15  

1.7  Why  Are  Calcaneal  Fractures  Important?....................................................   16   1.8  What  Is  Already  Known  and  What  Is  Unknown?......................................   17   2.  Methodology   ………………………………………………………………………………….   19     2.1  Research  Aim…………………………………………………………………………….   19     2.2  Research  Objectives…………………………………………………………………...   19     2.3  Literature  Search……………………………………………………………………….   19       2.3.1  Inclusion  Criteria…………….…...………………………………………………………….   19                            

                         

  2.3.1.1  Patient  Population…………………………………………………………...     2.3.1.2  Intervention…………………………………………………………………….     2.3.1.3  Outcomes………………………………………………………………………...   2.3.2  Exclusion  Criteria……………………………………………………………………………     2.3.2.1  Patient  Population…………………………………………………………...     2.3.2.1  Intervention…………………………………………………………………….   2.3.3  Electronic  Database  Search……………………………………………………………...   2.3.4  Search  Strategy……………………………………………………………………………….     2.3.4.1  MeSH  Terms……………………………………………………………………     2.3.4.2  Keywords………………………………………………………………………..   2.3.5  Types  of  Studies……………………………………………………………………………...   2.3.6  Data  Extraction…..…………………………………………………………………………...   2.3.7  Appraisal  of  Quality  Assessment………………………………………………………  

19   20   20   20   20   21   21   21   21   22   22   22   23  

               

             

3.2.2  Ethical  Standards…………………………………………………………………………....   3.2.3  Inclusion  and  Exclusion  Criteria……………………………………………………....   3.2.4  Patient  Population  and  Intervention………………………………………………...   3.2.5  Fracture  Diagnosis  and  Classification……………………………………………….   3.2.6  Intervention  Based  on  Fracture  Classification…………………………………..   3.2.7  Duration  from  Injury  to  Surgery……………………………………………………....   3.2.8  Wound  Related  Complications………………………………………………………....  

28   28   29   29   29   30   30  

           

           

3.  Results     ………………………………………………………………………………….   26     3.1  Results  of  the  Search………………………………………………………………….   26     3.2  Included  Studies………………………………………………………………………...   27       3.2.1  Results  of  RCTs  and  Comparative  Studies………………………………………...   27  

 

 

3.3  Results  of  Randomized  Controlled  Trials…………………………………….   31     3.3.1  Patient  Population…………………………………………………………………………..   31   3.3.2  Fracture  Classification……………………………………………………………………..   3.3.3  Intervention  Bases  on  Fracture  Classification…………………………………...   3.3.4  Randomization………………………………………………………………………………..   3.3.5  Duration  from  Injury  to  Surgery……………………………………………………....   3.3.6  Duration  of  Operative  Time……………………………………………………………..   3.3.7  Intraoperative  and  Postoperative  Protocols……………………………………..  

31   32   32   32   33   34  

3  

                   

                   

3.3.8  Wound  Related  Complications………………………………………………………….   34   3.3.9  Radiographic  Assessment…………………………………………………………………   34   3.3.10  Assessment  of  Functional  Outcomes………………………………………………..   36     3.3.10.1  Maryland  Foot  Score……………………………………………………….   36     3.3.10.2  AOFAS…………………………………………………………………………….   36     3.3.10.3  CNHFA……………………………………………………………………………  37   3.3.11  Assessment  of  Subtalar  Joint  Motion………………………………………………..  37   3.3.12  Return  to  Work………………………………………………………………………………   37   3.3.13  Time  to  Union………………………………………………………………………………...  38   3.3.14  Smoking  and  Diabetes…………………………………………………………………….   38  

                                 

3.4.2  Fracture  Classification………………………………………………………………………  39   3.4.3  Intervention  Bases  on  Fracture  Classification…………………………………….  39   3.4.4  Duration  from  Injury  to  Surgery………………………………………………………..  39   3.4.5  Duration  of  Operative  Time………………………………………………………………   39   3.4.6  Intraoperative  and  Postoperative  Protocols………………………………………   40   3.4.7  Wound  Related  Complications………………………………………………………….   40     3.4.7.1  Infection…………………………………………………………………………..   40     3.4.7.2  Sural  nerve  Injury…………………………………………………………….   41   3.4.8  Radiographic  Assessment………………………………………………………………...   42   3.4.9  Assessment  of  Functional  Outcomes…………………………………………………   42     3.4.9.1  AOFAS……………………………………………………………………………...   42     3.4.9.2  SF-­‐36……………………………………………………………………………….   43     3.4.9.3  FFI…….……………………………………………………………………………..   43     3.4.9.4  Other  Functional  Scores…………………………………………………....   43   3.4.10  Assessment  of  Subtalar  Joint  Motion……………………………………………….   44   3.4.11  Return  to  Work………………………………………………………………………………   44   3.4.12  Smoking  and  Diabetes…………………………………………………………………….   45  

             

           

4.1.2Allocation  Bias………………………………………………………………………………….   47   4.1.3  Incomplete  Outcome  Data………………………………………………………………..   48   4.1.4  Observer  Bias…………………………………………………………………………………..   48   4.1.5  Bias  Due  to  lack  of  Power………………………………………………………………….  49   4.1.6  Selection  Bias…………………………………………………………………………………...  50   4.1.7  Other  Risk  of  Bias……………………………………………………………………………..  50  

         

       

                                   

3.4  Results  of  Comparative  Studies……………………………………………………  38     3.4.1  Patient  Population……………………………………………………………………………   38  

4.  Discussion     …………………………………………………………………………………..  46     4.1  Risk  of  Bias  in  the  Included  Studies……………………………………………..   46       4.1.1  Blinding…………………………………………………………………………………………..   47  

 

4.2  Effects  of  Treatment……………………………………………………………………  52     4.2.1  Primary  Outcomes……………………………………………………………………………   52     4.2.1.1  Wound  Related  Complications…………………………………………..   52   4.2.2  Secondary  Outcomes………………………………………………………………………..   52     4.2.2.1  Quality  of  Life  Assessment………………………………………………...   52     4.2.2.2  Return  to  Work…………………………………………………………………  53  

4.3  Agreements  or  Disagreements  with  Other  Studies………………………..  53   5.  Conclusion     …………………………………………………………………………………..  57   6.  References     …………………………………………………………………………………..  59   7.  Illustrations   …………………………………………………………………………………..  64   9.  Appendices     …………………………………………………………………………………..  66          

 

4  

ACKNOWLEDGEMENTS   The   author   is   grateful   to   Prof.   James   Barrie1  and   Wendy   Munro2  for   their   continuous   supervision   and   guidance   for   completion   of   this   work.     1. Consultant  Foot  and  Ankle  Surgeon   Royal  Blackburn  Hospital   Haslingden  Road   Blackburn   BB2  3HH     2. Programme  leader   C719,  Allerton  Building   University  of  Salford   Salford     M6  6PU              

 

 

5  

ABBREVIATIONS  (in  the  order  of  appearance  in  text)   DIACF      

Displaced  Intra-­‐articular  Calcaneal  Fractures  

CT  

Computed  Tomography  

 

ORIF      

Open  Reduction  and  Internal  Fixation  

MIRPF    

Minimally  Invasive  Reduction  and  Percutaneous  Fixation  

NLM    

National  Library  of  Medicine  

MeSH      

Medical  Subject  Headings  

PICO    

Patients,  Intervention,  Comparison  and  Outcome  

CASP    

Critical  Appraisal  Skills  Programme  

RCT  

 

Randomized  Controlled  Trial  

IRB  

 

Institutional  Review  Board  

SAVE    

Score  Analysis  of  Verona  

MFS    

Maryland  Foot  Score  

AOFAS    

American  Orthopaedic  Foot  and  Ankle  Society  Hind  Foot  Score  

CNHFA  

Creighton  Nebraska  Health  Foundation  Assessment  Scale  

FFI  

Foot  Function  Index  

 

SF-­‐36    

Short-­‐Form  36  

EQ-­‐5D    

EuroQol  5D  

VAS  

Visual  Analogue  Scale  

 

       

 

 

6  

ABSTRACT   BACKGROUND   Calcaneal   fractures   are   the   commonest   tarsal   bone   fractures.   The   optimal   management   of   displaced   intra-­‐articular   calcaneal   fractures   remains   controversial.   Traditional   method   of   treatment   with   open   reduction   and   internal   fixation   carries   high   incidence   of   wound   complications.   Many   authors   have   advocated   minimally   invasive   techniques   as   an   alternative   approach;   however   they  are  associated  with  their  own  technical  challenges.     OBJECTIVES   To   systematically   identify,   assess   for   quality   and   synthesize   research   evidence   available   relating   to   the   use   of   minimally   invasive   reduction   and   percutaneous   fixation  versus  open  reduction  and  internal  fixation  for  displaced  intra-­‐articular   calcaneal  fractures.     SEARCH  METHODS   Articles   from   1999   to   2014   were   searched   through   MEDLINE   (PUBMED),   Cochrane   Library,   Embase,   ScienceDirect,   Scopus   and   ISI   Web   of   Knowledge   using  Boolean  logic  and  text  words.   SELECTION  CRITERIA   Of  the  565  articles  identified  initially,  8  were  selected  including  3  randomized   controlled  trials  and  5  retrospective  comparative  studies.   DATA  EXTRACTION  &  ANALYSIS   Data   were   extracted   on   a   standardized   form   using   PICO   method   and   was   systematically   analyzed   for   quality   using   CASP   tools.   Risk   of   bias   was   assessed   for  each  study.  

 

7  

MAIN  RESULTS   These   studies   had   a   total   of   949   patients   with   1020   displaced   intra-­‐articular   calcaneal  fractures.  Mean  follow-­‐up  was  27.5  months.  Of  these,  534  (53%)  were   treated   with   minimally   invasive   technique   and   481   (47%)   were   treated   with   open   reduction   and   internal   fixation.   Overall   incidence   of   wound   complications   was  3.7%  (0-­‐13%)  in  minimally  invasive  group  and  18.2%  (11.7%-­‐35%)  in  open   reduction  group.   CONCLUSION   Overall   quality   of   the   available   evidence   is   poor   in   support   of   either   surgical   technique  due  to  small  sample  size,  flaws  in  study  designs  and  high  risk  of  bias   for   various   elements.   Individual   studies   have   reported   minimally   invasive   technique  to  be  an  effective  alternative  with  lower  risk  of  wound  complications;   however  good  quality  research  with  larger  patient  population  and  longer  follow-­‐ up  duration  is  needed.                  

     

8  

KEYWORDS     Calcaneus   Intra-­‐articular  fractures   Percutaneous  fixation   Minimally  invasive  approach   Open  reduction   Wound  infection                                    

 

9  

1.  INTRODUCTION     1.1  INCIDENCE   Calcaneal  fractures  comprise  2%  of  all  fractures  in  the  human  body  (Ibrahim  et   al.,   2007).   They   are   the   most   common   fractures   in   the   tarsal   bones,   accounting   for   60%   of   all   the   tarsal   fractures   (Rammelt   &   Zwipp,   2004).   Most   calcaneal   fractures  (60%)  occur  in  patients  who  are  still  in  their  wage-­‐earning  age  (i.e.  30   to  50  years  old)  (Siebe  De  Boer  et  al.,  2014).    

1.2   DISPLACED   INTRA-­‐ARTICULAR   CALCANEAL   FRACTURES   (DIACF)   Calcaneal   fractures   are   broadly   divided   into   intra-­‐articular   and   extra-­‐articular   fractures.   Approximately   three-­‐quarters   (75%)   of   calcaneal   fractures   are   intra-­‐ articular   and   displaced   fractures   (Ibrahim   et   al.,   2007).   Majority   of   displaced   intra-­‐articular  calcaneal  fractures  involves  the  posterior  facet,  which  is  the  major   weight-­‐bearing   surface   of   the   sub-­‐talar   joint.   These   fractures   typically   result   from  high-­‐energy  trauma  such  as  fall  or  jump  from  a  height  or  high-­‐speed  road   traffic  accidents.  

1.3  CLINICAL  PRESENTATION   Patients  with  calcaneal  fractures  present  with  a  painful,  swollen  and  bruised  heel   and   the   arch   of   the   foot.   There   may   be   an   associated   obvious   deformity.   Patients   are  usually  unable  to  weight-­‐bear.  Significant  swelling  may  lead  to  blistering  of  

 

10  

the  skin.  Approximately  15%  of  all  calcaneal  fractures  have  an  associated  open   wound  and  5%-­‐10%  involve  both  heels  (Sanders,  2000).  

1.4  CLASSIFICATION   Sanders  classification  system  is  used  to  assess  intra-­‐articular  calcaneal  fractures.   This  classification  is  useful  not  only  in  understanding  the  fracture  patterns  of  the   calcaneus,  but  also  in  predicting  their  outcome.  Sanders  classification  is  based  on   computed  tomography  (CT)  scan  and  uses  the  coronal  plane,  where  the  posterior   subtalar  joint  is  at  its  widest  and  the  sustentaculum  tali  is  visible.  It  is  based  on   the   number   of   fracture   lines   with   more   than   2mm   displacement.   A   displaced   fracture   with   one   fracture   line   extending   through   the   posterior   joint   is   called   a   type   II   fracture.   Fracture   with   two   fracture   lines   is   called   type   III   fracture,   and   type  IV  fracture  displays  three  or  more  fracture  lines.  Fracture  lines  are  lettered   from  lateral  to  medial  as  A,  B  and  C.  Hence  three  different  forms  of  type  II  and  III   fractures   exist,   depending   upon   the   location   of   fracture   lines   (Sanders,   2000)   (Fig.  1).  

 

11  

  Figure   1.   Sanders   classification   of   displaced   intra-­‐articular   calcaneal   fractures   (non-­‐copyright   image,  courtesy  of  Dr.  Matt  Skalski,  Radiopaedia.org)  

 

1.5  RADIOLOGICAL  ASSESMENT   Conventional   radiography   is   the   primary   imaging   modality   in   cases   of   suspected   fractures  around  the  foot  and  ankle;  however  plain  radiographs  provide  limited   information   for   the   assessment   of   complex   fractures   of   tarsal   bones.   In   particular,   in   cases   of   calcaneal   fractures,   the   relationship   of   the   multiple   fracture   fragments   is   difficult   to   appreciate   on   plain   radiographs.   Therefore   in   most  cases  supplemental  imaging  is  needed  to  define  the  fracture  characteristics   and   planning   their   optimal   management   (Dodson,   Dodson,   &   Shromoff,   2008).   Computed   tomography   (CT)   is   considered   the   modality   of   choice   for   calcaneus  

 

12  

fractures   before   surgery   for   the   reasons   discussed   above,   and   after   surgical   intervention   in   order   to   assess   the   accuracy   of   restoration   of   the   anatomy   (i.e.   calcaneal   width   and   length,   Bohler’s   angle   and   Gissane’s   angle)   and   the   congruency  of  the  subtalar  joint  (Buckingham,  Jackson,  &  Atkins,  2003).  

1.6  MANAGEMENT   The   optimal   management   of   displaced   intra-­‐articular   calcaneal   fractures   is   controversial   (Gougoulias,   Khanna,   McBride,   &   Maffulli,   2009;   Jiang,   Lin,   Diao,   Wu,   &   Yu,   2012).   Historically,   DIACFs   were   treated   non-­‐operatively   with   a   combination  of  rest,  elevation,  ice  and  immobilization  with  plaster  cast,  followed   by   physiotherapy   and   gradual   mobilization   (Sanders,   2000).   However,   this   often   required  delayed  reconstruction  of  the  mal-­‐united  fracture,  leaving  the  patients   with   a   painful   and   stiff   foot,   which   delayed   or   permanently   prevented   their   return   to   work   and   other   pre-­‐injury   activities   (Sanders,   Fortin,   DiPasquale,   &   Walling,  1993).  Until  the  1970s,  operative  treatment  was  considered  technically   challenging,   and   often   led   to   postoperative   infection,   mal-­‐union,   non-­‐union   and   amputation   (McLaughlin,   1963).   During   the   last   20   years,   improvements   in   anaesthesia,   antibiotic   prophylaxis,   advances   in   principles   of   fixation,   advances   in   materials,   implants   and   computed   imaging   have   led   to   improvements   in   outcome   after   operative   treatment.   This   has   popularized   the   fixation   of   most   fractures,   including   those   of   the   calcaneus   as   well.   Operative   treatments   for   DIACFs  include  open  reduction  and  internal  fixation  (ORIF),  minimally  invasive   reduction   with   percutaneous   fixation   (MIRPF)   or   primary   arthrodesis   (joint   fusion).  Controversies  and  variable  opinion  still  exist  among  the  foot  and  ankle   surgeons   regarding   the   choice   of   operative   or   non-­‐operative   treatment   for  

 

13  

displaced   calcaneal   fractures,   however,   a   recently   published   multicentre   randomized   controlled   trial   on   long-­‐term   results   of   calcaneal   fractures   showed   that   the   patient-­‐reported   clinical,   functional   and   quality   of   life   outcomes   were   better   after   operative   treatment   at   8   to   12   years   follow-­‐up   (Agren,   Mukka,   Tullberg,   Wretenberg,   &   Sayed-­‐Noor,   2014).   Although   advances   in   surgical   techniques  might  have  improved  functional  outcome  for  many  patients,  surgical   fixation  of  these  fractures  is  still  technically  challenging  and  carries  the  risks  of   complications,   such   as   wound   infection,   sural   nerve   injury   and   failure   of   the   implants  (Backes  et  al.,  2014;  Chen,  Zhang,  Hong,  Lu,  &  Yuan,  2011;  Rammelt  &   Zwipp,  2004;  Xia,  Lu,  Wang,  Wu,  &  Wang,  2014).   1.6.1  OPEN  REDUCTION  AND  INTERNAL  FIXATION  (ORIF)   Open   reduction   and   internal   fixation   (ORIF)   with   conventional   plate   via   an   extensile  lateral  L-­‐shaped  approach  has  been  regarded  as  a  standard  treatment   for  displaced  intra-­‐articular  calcaneal  fractures  because  it  provides  an  excellent   exposure  of  the  fracture  and  allows  direct  reduction  of  the  depressed  posterior   facet   fragment   (Kline,   Anderson,   Davis,   Jones,   &   Cohen,   2013).   However,   the   extensile   approach   has   been   fraught   with   high   incidence   of   wound   related   complications   (5.8%   to   35.3%   reported   in   various   studies),   including   wound   edge   necrosis,   dehiscence,   deep   infection,   formation   of   haematoma   (due   to   the   creation  of  a  dead  space  between  the  lateral  wall  of  the  calcaneus  and  the  flap),   damage  to  sural  nerve  and  increased  length  of  operating  time  due  to  meticulous   technique  required  for  preparation  and  closure  of  the  wound  (Assous  &  Bhamra,   2001;   DeWall   et   al.,   2010;   Folk,   Starr,   &   Early,   1999;   Stromsoe,   Mork,   &   Hem,   1998;   Tennent,   Calder,   Salisbury,   Allen,   &   Eastwood,   2001;   Weber,   Lehmann,  

 

14  

Sagesser,  &  Krause,  2008).   1.6.2   MINIMALLY   INVASIVE   REDUCTION   AND   PERCUTANEOUS   FIXATION   (MIRPF)   In   order   to   lower   these   wound   related   complications   and   soft   tissue   trauma,   numerous   minimally   invasive   procedures   have   recently   been   introduced,   including  percutaneous  reduction  and  internal  fixation,  arthroscopically-­‐assisted   fixation,  and  minimal  incision  techniques  via  medial,  modified  lateral  (the  sinus   tarsi   approach),   posterior,   or   combined   approaches   (DeWall   et   al.,   2010;   Schepers,   2011;   Xia   et   al.,   2014).   Some   of   these   minimally   invasive   techniques   have   become   more   popular   than   the   others,   depending   on   specific   fracture   patterns  (Wu  et  al.,  2012).  Careful  study  of  preoperative  CT  scan  is  vital  before   attempting   minimally   invasive   reduction,   as   it   helps   the   operating   surgeon   to   understand   the   fracture   anatomy.   The   surgeon   must   be   aware   of   the   approximate   size   of   the   displaced   fragments   and   whether   the   articular   surface   is   depressed  medially,  laterally  or  in  total.  The  information  obtained  from  CT  scan   also   helps   to   choose   the   correct   size   of   the   bone   punch   and   to   direct   it   appropriately,  as  the  intraoperative  fluoroscopic  lateral  view  of  the  hind  foot  can   only   help   to   locate   the   depressed   fragment   in   the   sagittal   plane   (Xia   et   al.,   2014).   Percutaneous   reduction   and   fixation   technique   was   mainly   recommended   for   Sanders  type  II  and  type  III  fractures  and  good  results  have  been  reported  (Chen   et   al.,   2011;   Tornetta,   2000).   The   major   concern   with   the   minimally   invasive   approach   for   these   fractures   is   incomplete   reduction,   especially   in   cases   of   complex  fracture  patterns.  In  addition,  the  cancellous  bone  screw  and  the  K-­‐wire   commonly   used   in   minimally   invasive   techniques   may   not   be   able   to   provide  

 

15  

adequate   restoration   of   the   width   and   the   height   of   the   calcaneus,   and   some   loss   of  reduction  can  occur  subsequently  (Gavlik,  Rammelt,  &  Zwipp,  2002;  Rammelt   &  Zwipp,  2004;  Stulik,  Stehlik,  Rysavy,  &  Wozniak,  2006).  

1.7  WHY  ARE  CALCANEAL  FRACTURES  IMPORTANT?   The   ideal   treatment   for   displaced   intra-­‐articular   calcaneal   fractures   remains   a   topic   of   intense   debate.   However,   it   is   generally   agreed   that   the   restoration   of   intra-­‐articular   anatomy   is   essential   to   restore   the   normal   gait   biomechanics,   early   return   to   work   and   minimize   the   need   for   subsequent   subtalar   arthrodesis   (Kumar  et  al.,  2014;  Rammelt  &  Zwipp,  2004;  Sanders,  2000).  During  the  recent   years,   a   lot   of   attention   has   been   paid   to   the   extensile   lateral   approach   with   regards   to   soft   tissue   management   by   creating   full-­‐thickness   flaps   and   a   “no-­‐ touch”   technique.   However,   despite   the   advances   in   meticulous   soft   tissue   handling   techniques,   postoperative   wound   related   complications   still   occur   (Benirschke  &  Kramer,  2004).     The   economic   impact   of   calcaneal   fractures   to   the   patients   and   the   society   is   considerable  and   is  a   consequence  of  extended  hospital  stay,  cost  of  treatment,   residual  pain,  time  to  mobilization  and  delayed  return  to  work  (Schepers  et  al.,   2007).  Time  to  resume  professional  work  could  be  as  much  as  five  to  ten  months   (Buckley  et  al.,  2002).  Some  studies  have  reported  that  a  considerable  number  of   patients  may  not  be  able  to  resume  their  work  even  after  one  year  of  sustaining   the   injury   (Schepers,   van   Lieshout,   van   Ginhoven,   Heetveld,   &   Patka,   2008;   Siebe   De   Boer   et   al.,   2014).   These   fractures   may   remain   symptomatic   for   one   to   two   years   and   secondary   arthrodesis   may   be   needed   in   up   to   16%   of   the   non-­‐

 

16  

operatively  treated  patients  (Buckley  et  al.,  2002).    

1.8  WHAT  IS  ALREADY  KNOWN  AND  WHAT  IS  UNKNOWN?   Historically,  displaced  calcaneal  fractures  were  treated  non-­‐operatively,  but  this   frequently   led   to   mal-­‐union,   poor   function,   stiffness   and   inability   to   return   to   work  and  other  physical  activities  (Sanders,  2000).  During  the  last  20-­‐30  years,   open  reduction  and  internal  fixation  using  the  extensile  lateral  approach  became   the   preferred   treatment   for   these   fractures,   paying   a   careful   consideration   to   patient-­‐related  risk  factors  including  smoking,  diabetes  and  other  significant  co-­‐ morbidities   (Buckley   et   al.,   2002).   This   approach   is   considered   to   offer   certain   benefits,   which   include   adequate   exposure   of   the   fractured   lateral   wall   of   the   calcaneus   and   the   subtalar   joint,   appropriate   reduction   of   the   subtalar   and   the   calcaneocuboid  joints,  insertion  of  a  compression  screw  into  the  sustantaculum   tali  and  stabilization  of  the  fracture  by  internal  fixation  plate  (Kline  et  al.,  2013;   Rammelt  &  Zwipp,  2004;  Wu  et  al.,  2012;  Xia  et  al.,  2014).  However,  the  potential   surgical  risks  remain  a  major  challenge.  Despite  of  the  fact  that  modern  surgical   intervention   has   improved   post-­‐fracture   outcome   for   many   patients,   there   remains  a  lack  of  consensus  on  the  use  of  surgery  for  the  optimal  management  of   calcaneal  fractures.     During   more   recent   years,   minimally   invasive   techniques   have   been   advocated   by   many   studies   with   reports   of   fewer   complications   and   similar   outcomes   compared   to   the   extensile   approach   (Arastu,   Sheehan,   &   Buckley,   2014;   Ebraheim,   Elgafy,   Sabry,   Freih,   &   Abou-­‐Chakra,   2000;   Hammond   &   Crist,   2013;   Rammelt,  Amlang,  Barthel,  Gavlik,  &  Zwipp,  2010;  Schepers  et  al.,  2007;  Walde,  

 

17  

Sauer,   Degreif,   &   Walde,   2008).   However   the   literature   lacks   a   comprehensive   review   to   assess   the   quality   and   strengths   of   the   available   evidence   to   support   the   use   of   either   surgical   approach.   In   view   of   many   published   studies   in   the   recent   years   with   reports   of   similar   outcomes   of   the   two   approaches,   it   is   important   to   analyze   their   collective   outcomes   in   order   to   search   for   stronger   evidence.  

                       

18  

2.  METHODOLOGY     2.1  RESEARCH  AIM   •

To   systematically   identify,   assess   for   quality   and   synthesize   research   evidence  available  relating  to  the  use  of  minimally  invasive  reduction  and   percutaneous   fixation   versus   open   reduction   and   internal   fixation   for   displaced  intra-­‐articular  calcaneal  fractures.  

2.2  RESEARCH  OBJECTIVES   •

To   identify   methodological   studies   comparing   the   practice   of   minimally   invasive  reduction  techniques  with  standard  and  traditionally  used  open   reduction  technique  



To  evaluate  the  quality  of  the  available  studies  against  a  set  criteria  



To  synthesize  the  results  of  the  studies  and  relate  their  implications  to  the   routine  surgical  practice  in  the  management  of  calcaneal  fractures  

2.3  LITERATURE  SEARCH   2.3.1  INCLUSION  CRITERIA   2.3.1.1  PATIENT  POPULATION   Studies  reporting  the  outcomes  of  the  following  were  included:   -­‐  

Displaced  intra-­‐articular  calcaneal  fractures  (Sanders  types  II,  III  and  IV)   19  

-­‐

Patients  above  the  age  of  16  years  

-­‐

Closed  fractures  

-­‐

Acute  fractures  (operated  on  within  3  weeks  of  sustaining  the  injury)  

2.3.1.2  INTERVENTION   Studies  comparing  the  outcomes  of  the  following  were  included:   -­‐

Minimally  invasive  reduction  and  percutaneous  fixation  

-­‐

Open  reduction  and  internal  fixation  using  the  extensile  lateral  approach  

2.3.1.3  OUTCOMES   Studies   that   reported   the   results   of   calcaneal   fractures   with   reference   to   validated  functional  scoring  systems  were  included.   2.3.2  EXCLUSION  CRITERIA   2.3.2.1  PATIENT  POPULATION   Studies  that  reported  the  results  of  the  following  were  excluded:   -­‐

Open  calcaneal  fractures  

-­‐

Calcaneal  fractures  associated  with  multiple  other  injuries  

-­‐

Calcaneal  fractures  associated  with  neurological  or  vascular  injuries  

-­‐

Calcaneal  fractures  in  patients  with  alcohol  excess  and  drug  users  

 

 

20  

2.3.3.2  INTERVENTION   Studies  that  reported  the  outcomes  of  the  following  were  excluded:   -­‐

Non-­‐operative  treatment  of  calcaneal  fractures  

-­‐

Comparison  of  non-­‐operative  treatment  with  surgical  treatment  

-­‐

Studies  reporting  the  results  of  open  reduction  alone  

-­‐

Studies  reporting  the  results  of  minimally  invasive  surgery  alone  

2.3.3  ELECTRONIC  DATABASE  SEARCH   An   extensive   search   was   performed   through   the   available   literature   from   1999   to   2014.   Search   was   limited   to   articles   in   English   language   only.   The   databases   that  were  searched  included  MEDLINE  (PUBMED),  Cochrane  Library  (Cochrane   Systematic   Reviews   and   Cochrane   Bone,   Joint   and   Muscle   Trauma   Group),   Embase,   ScienceDirect,   Scopus   and   ISI   Web   of   Knowledge.   The   databases   chosen   were  used  to  provide  a  variety  of  medical  references,  although  some  overlap  was   found  between  different  databases.   2.3.4  SEARCH  STRATEGY   2.3.4.1  MeSH  TERMS   The   National   Library   of   Medicine’s   (NLM)   Medical   Subject   Headings   (MeSH)   terms   were   selected   and   used   along   with   text   words.   MeSH   terms   provided   a   consistent  way  to  retrieve  information  where  different  terms  had  been  used  by   authors   for   the   same   concept.   However,   text   words   were   also   useful,   as   the   indexers  don’t  always  incorporate  certain  pathologies  into  the  index.    

21  

2.3.4.2  KEYWORDS   The   search   strategies   used   the   keywords:   “fracture   calcaneus,   calcaneous,   calcaneal;  surgical  treatment,  management;  open  reduction;  minimally  invasive;   percutaneous  reduction;  internal  fixation;  Sanders”.  Initially,  in  order  to  identify   the   surgical   techniques   for   the   treatment   of   displaced   intra-­‐articular   calcaneal   fractures   in   adults   (Sanders   II   and   III),   the   keywords   were   used   combined   by   Boolean   logic   (AND   and   OR):   “fracture   calcaneus   OR   calcaneous   OR   calcaneal   AND   surgical   treatment   OR   management”.   Afterwards   the   keywords   were   used   combined   by   Boolean   logic   relating   to   the   treatment   techniques:   “fracture   calcaneus  OR  calcaneous  OR  calcaneal  AND  surgical  treatment  OR  management   AND   open   reduction   OR   minimally   invasive   OR   percutaneous   reduction   OR   internal  fixation”.     2.3.5  TYPES  OF  STUDIES   Two   types   of   relevant   study   designs   were   identified.   Prospective   randomized   controlled   trials   (RCTs)   and   comparative   retrospective   clinical   studies,   which   compared   the   outcomes   of   minimally   invasive   techniques   with   open   reduction   and   internal   fixation   for   displaced   intra-­‐articular   calcaneal   fractures   were   eligible   for   inclusion.   Retrospective   studies   were   also   included   in   the   review   because  of  the  limited  types  and  number  of  studies  available.   2.3.6  DATA  EXTRACTION   Data   extraction   was   carried   out   keeping   the   focus   on   maintaining   quality   and     research   objectives.   A   standardized   extraction   form   (Microsoft   Excel®)   was   used   to   record   the   data.   The   parameters   used   in   the   extraction   form   addressed   the    

22  

concepts   of   bias,   variability   and   the   quality   of   the   reporting.   Clear   definitions   for   the  responses  of  ‘yes’,  ‘no’  and  ‘unclear’  were  recorded  against  each  parameter.   The  author  and  a  reviewer  (JB)  independently  examined  the  titles  and  abstracts   of   the   articles   identified   in   the   search   as   potentially   relevant   trials   and   studies   and  reached  a  consensus.   STAGE  I:   In   the   first   stage,   the   apparent   studies   according   to   title   or   abstract,   which   presented   surgical   interventions   for   the   treatment   of   displaced   intra-­‐articular   calcaneal  fractures  were  identified.     STAGE  II:   In   the   second   stage   the   studies   that   fulfilled   the   inclusion   criteria,   as   discussed   earlier,   were   identified.   Later   on   full   texts   of   these   articles   were   obtained.   Endnote®  software  was  used  to  organize  and  manage  the  articles  throughout  the   process  of  manuscript  preparation.   2.3.7  APPRAISAL  OF  QUALITY  OF  STUDIES   PICO   method   and   CASP   tools   were   used   to   appraise   the   selected   studies   and   their  results.  PICO  method  (Population,  Intervention,  Comparison  and  Outcome)   was  selected  because  of  being  widely  used  in  research  and  is  considered  helpful   to   assist   in   organizing   and   focusing   the   foreground   question   into   a   searchable   query.   Dividing   into   the   PICO   elements   helps   to   identify   search   terms   and   concepts   to   use   in   the   process   of   searching   the   literature.   CASP   tools   (Critical   Appraisal  Skills  Programme)  assess  both  internal  and  external  validity  of  a  study  

 

23  

and   address   the   epidemiological   principles   behind   the   study   types   with   particular   attention   on   the   study   validity.   All   the   study   tools   are   divided   into   three   sections   relating   to   internal   validity,   the   results   and   their   relevance   to   practice.  The  reason  for  selecting  these  tools  was  to  examine  the  validity  of  the   selected   studies,   analyze   their   results   and   appraise   their   applicability   and   generalizability  in  clinical  practice.   Two-­‐tailed   t-­‐test   was   used   to   analyze   the   significance   of   timing   of   surgery   and   incidence  of  wound  related  complications  in  the  two  groups.  Fisher’s  exact  test   was   used   to   analyze   the   categorical   values   in   the   data.   The   p  value   of   less   than   0.05  was  considered  significant.   The   reasons   for   inclusion   and   exclusion   were   documented   for   each   study   and   there   were   no   disagreements   between   the   author   and   the   reviewer   (JB)   regarding   inclusion   and/or   exclusion   of   the   selected   studies.   In   relation   to   the   collection   of   data,   the   information   was   recorded   on   a   standardized   form   to   gather  the  following  parameters,  which  are  also  summarized  in  the  Appendices  1   and  2:     METHODS:  question  from  the  survey,  study  design,  sample  size,  randomization   and   blinding   process,   Sanders   classification   (type   II   to   IV),   details   of   surgical   techniques   used,   duration   from   injury   to   surgery,   assessment   of   bias   related   to   allocation,   assessment,   incomplete   outcome   data,   selective   reporting,   observer   bias,  duration  of  the  postoperative  follow-­‐up  and  statistical  calculations  used.   PARTICIPANTS:   according   to   inclusion   and   exclusion   criteria,   number   of   fractures   and   age   bracket,   surgical   technique   adopted,   incidence   of   superficial  

 

24  

and   deep   infection   and   other   wound   related   complications,   clinical   and   functional   outcome   according   to   the   validated   functional   scoring   systems,   radiological   assessment   based   on   plain   radiographs   and/or   CT   scans,   ethical   approval  and  conflict  of  interests.    

                         

25  

3.  RESULTS    

3.1  RESULTS  OF  THE  SEARCH   By   using   the   search   strategies   described   earlier,   in   stage   I,   565   articles   were   identified  related  to  the  surgical  management  of  calcaneal  fractures.  In  stage  II,   48  articles  were  identified  related  to  the  use  of  minimally  invasive  reduction  and   percutaneous   fixation   and   open   reduction   and   internal   fixation   for   displaced   intra-­‐articular  calcaneal  fractures.  Their  titles  and  abstracts  were  reviewed  and   by   strictly   following   the   inclusion   and   exclusion   criteria,   eight   articles   were   selected   for   final   inclusion.   A   flow   chart   of   the   study   selection   process   is   presented  in  Figure  2.  

  Figure  2.  Flow  chart  of  selection  of  studies  

 

 

26  

3.2  INCLUDED  STUDIES   3.2.1  COMBINED  RESULTS  OF  RCTs  AND  COMPARATIVE  STUDIES   The   literature   search   identified   three   prospective   randomized   clinical   trials   (RCTs)   of   surgical   treatments   of   Sanders   II,   III   and   IV   intra-­‐articular   calcaneal   fractures  in  adults,  which  directly  compared  the  outcomes  of  minimally  invasive   reduction   and   percutaneous   fixation   with   open   reduction   and   internal   fixation   using   the   extensile   lateral   approach.   In   addition,   there   were   five   comparative   studies   found,   which   directly   compared   the   results   of   these   two   methods   of   fixation   for   displaced   intra-­‐articular   fractures.   Basic   demographic   data   of   the   included  studies  is  summarized  in  Table  1.    

Mean  F/U   (Months)  

ORIF  

MIRPF  

No  of   Fractures  

No  of  Patients  

Type  of  Study  

Studies  

Duration   (Years)  

Year   Published  

Table  1.  

Xia  et  al.  

2014  

3.5  

RCT  

108  

117  

64  

53  

19  

Kumar  et  al.  

2014  

1.5  

RCT  

42  

45  

22  

23  

12  

Chen  et  al.  

2011  

2.5  

78  

78  

38  

40  

24  

De  Boer  et  al.  

2014  

10  

110  

110  

61  

49  

72  

Kline  et  al.  

2013  

3  

112  

112  

33  

79  

30  

Wu  et  al.  

2012  

6  

329  

383  

213  

170  

12  

De  Wall  et  al.  

2010  

7.5  

RCT   Retrospective   case-­‐control   Retrospective   case  series   Retrospective   case-­‐control   Retrospective   case-­‐control  

120  

125  

79  

41  

23  

Weber  et  al.  

2008  

11  

Retrospective   case-­‐control  

50  

50  

24  

26  

28  

Total  

 

 

 

949  

1020  

534  

481  

27.5  

   

 

27  

3.2.2  ETHICAL  STANDARDS   The   three   randomised   controlled   trials   were   approved   by   the   relevant   ethics   committees  of  the  individual  institutions  where  they  were  performed  and  their   authors  followed  the  essential  ethical  standards  (Chen  et  al.,  2011;  Kumar  et  al.,   2014;   Xia   et   al.,   2014).   The   other   five   comparative   studies   obtained   approval   from   Institutional   Review   Board   (IRB)   related   to   each   individual   performing   hospital  and  were  performed  in  accordance  with  the  ethical  standards  (De  Boer   et  al.,  2014;  DeWall  et  al.,  2010;  Kline  et  al.,  2013;  Weber  et  al.,  2008;  Wu  et  al.,   2012).   Informed   consents   were   obtained   from   all   the   patients   for   all   these   studies  prior  to  their  enrollment  in  to  each  study.  The  weighted  average  duration   of  all  the  studies  was  5.6  years  (18  months  to  11  years).   3.2.3  INCLUSION  AND  EXCLUSION  CRITERIA   All   these   studies   had   similar   inclusion   and   exclusion   criteria.   The   fractures   included,  were  displaced,  intra-­‐articular  and  closed.   Displacement   was   defined   as   ‘more   than   2mm   gap’   at   the   fracture   site   in   7   studies  and  as  ‘more  than  1mm  gap’  in  one  study  (Kumar  et  al.,  2014).  Patients   were  excluded  if  they  were  below  16  years  of  age,  had  open  fractures,  multiple   injuries,   severe   medical   co-­‐morbidities   and   peripheral   vascular   disease.   Long-­‐ term   smokers   were   excluded   in   one   study   (Xia   et   al.,   2014).   Patients   with   diabetes  were  excluded  in  one  study  (Chen  et  al.,  2011)  and  patients  with  alcohol   excess  and  drug  users  were  excluded  in  another  study  (De  Boer  et  al.,  2014).    

 

28  

3.2.4  PATIENT  POPULATION  AND  INTERVENTION   The   eight   included   studies   had   a   total   of   949   patients   (average:   118   per   study;   range:   42   to   329)   with   1020   displaced   intra-­‐articular   calcaneal   fractures   (average:  127;  range:  45  to  383)  (Table  1).  The  weighted  average  follow-­‐up  was   27.5   months   (range:   12   to   72   months).   Of   these   1020   fractures,   534   (53%)   were   treated   using   minimally   invasive   reduction   and   percutaneous   fixation   and   481   (47%)   were   treated   with   open   reduction   and   internal   fixation   via   the   extensile   lateral  approach.  Mean  age  of  the  patients  in  the  minimally  invasive  group  was   38.6  years  and  in  the  ORIF  group  was  38.2  years.   3.2.5  FRACTURE  DIAGNOSIS  AND  CLASSIFICATION   All   these   studies   defined   the   fracture   types   based   on   CT   scans   according   to   Sanders  classification  system.  Combining  all  the  patients  in  these  studies,  there   were   591   type   II   fractures   (58%)   and   349   were   type   III   fractures   (36%).   Four   of   these   studies   also   included   type   IV   fractures   and   there   were   67   type   IV   fractures   (6%)  included  in  the  final  outcomes  of  these  studies  (Chen  et  al.,  2011;  De  Boer   et  al.,  2014;  Wu  et  al.,  2012;  Xia  et  al.,  2014).     3.2.6  INTERVENTION  BASED  ON  FRACTURE  CLASSIFICATION   Of   all   the   type   II   fractures,   308   (52%)   fractures   were   treated   with   minimally   invasive  reduction  and  percutaneous  fixation  and  the  remaining  283  (48%)  were   treated   with   open   reduction   and   internal   fixation   using   the   extensile   lateral   approach.   Of   all   the   type   III   fractures,   177   (51%)   fractures   were   treated   with   minimally   invasive   technique   and   172   (49%)   were   treated   with   the   extensile   approach.   Of   all   the   type   IV   fractures,   37   (55%)   fractures   were   fixed   with    

29  

minimally   invasive   technique   and   30   (45%)   were   treated   with   the   extensile   lateral   approach.   The   details   of   Sanders   types   II,   III   and   IV   are   summarized   in   Table  2.              Table  2.  

Studies   Xia  et  al.   Kumar  et  al.   Chen  et  al.   De  Boer  et  al.   Kline  et  al.   Wu  et  al.   De  Wall  et  al.   Weber  et  al.  

Type  2   treated   with   MIRPF   39   7   29   46   20   115   32   20  

Type  2   treated   with   ORIF   31   9   32   38   42   92   19   20  

Type  3   treated   with   MIRPF   25   2   9   12   13   74   27   15  

Type  3   treated   with   ORIF   22   10   8   10   27   61   15   19  

Type  4   treated   with   MIRPF   0   6   0   2   0   24   5   0  

Type  4   treated   with   ORIF   0   11   0   1   0   17   1   0  

Total  

308  

283  

177  

172  

37  

30  

  3.2.7  DURATION  FROM  INJURY  TO  SURGERY   The   average   combined   duration   from   injury   to   surgery   in   the   minimally   invasive   group   was   7   days   and   in   the   open   reduction   group   was   10   days,   the   difference   being  statistically  significant  (p=0.01).  The  main  decision  factor  on  the  timing  of   surgery  described  in  all  the  studies  was  the  condition  of  soft  tissues  (i.e.  swelling,   blisters).     3.2.8  WOUND  RELATED  COMPLICATIONS   The   average   combined   reported   incidence   of   wound   related   complications   in   patients  treated  with  the  minimally  invasive  technique  was  3.7%  (0  to  13%,  20   of  534  fractures)  compared  with  18.2%  (11.7%  to  35%,  88  of  481  fractures)  in   patients   treated   with   the   open   reduction   and   internal   fixation.   This   was   found   significantly   lower   in   the   minimally   invasive   group   (p=0.005).   Wound   related    

30  

complications   and   timing   of   surgery   for   each   surgical   technique   described   in   individual  studies  are  listed  in  Table  3.   Table  3.  

Studies   Xia  et  al.   Kumar  et  al.   Chen  et  al.   DeBoer  et  al.   Kline  et  al.   Wu  et  al.   DeWall  et  al.   Weber  et  al.  

Wound     Complications   MIRPF   Nil   Nil   1  (1.2%)   8  (13%)   2  (6%)   4  (1.8%)   5  (6%)   1  (4.2%)  

Wound   Complications     ORIF   10  (15%)   7  (30%)   5  (12.5%)   8  (16%)   23  (29%)   20  (11.7%)   15  (35%)   4  (15.3%)  

Injury  to  Surgery   MIRPF  (days)   7.4   8.6   5   2   10   5.7   9.3   8  

Injury  to  Surgery   ORIF  (days)   7.4   12.4   10   6   15   5.7   13.6   8  

Total  

20  (3.7%)  

88  (18.2%)  

7  

10  

 

3.3  RESULTS  OF  RANDOMIZED  CONTROLLED  TRIALS   3.3.1  PATIENT  POPULATION   The  three  RCTs  had  a  total  of  228  patients  (range:  42  to  108)  with  240  displaced   intra-­‐articular  calcaneal  fractures  (range:  45  to  117)  (Chen  et  al.,  2011;  Kumar  et   al.,  2014;  Xia  et  al.,  2013).  The  average  follow-­‐up  was  18.3  months  (range:  12  to   24   months).   The   average   duration   was   2.5   years   per   trial   (range:   1.5   to   3.5   years).  All  the  RCTs  had  comparable  number  of  patients  in  each  group  and  both   the  groups  had  similar  distribution  of  patients  with  regards  to  their  age,  gender   and  medical  co-­‐morbidities  without  any  statistically  significant  differences.   3.3.2  FRACTURE  CLASSIFICATION   There  were  a  total  of  147  type  II  Sanders  fractures,  76  type  III  fracture  and  17   type  IV  fractures  in  the  three  trials  (Table  2).  

 

31  

3.3.3  INTERVENTION  BASED  ON  FRACTURE  CLASSIFICATION   Minimally   invasive   techniques   were   used   in   75   type   II   fractures,   36   type   III   fractures  and  6  type  IV  fractures.  Open  reduction  and  internal  fixation  was  used   in  72  type  II  fractures,  40  type  III  fractures  and  11  type  IV  fractures  (Table  2).   3.3.4  RANDOMIZATION   In  the  RCT  by  Xia  et  al.  (2014),  the  patients  were  randomized  by  the  method  of   coin   tossing   by   one   of   the   authors   who   was   kept   blind   till   the   end   of   the   study   in   order  to  reduce  the  bias  from  the  treating  surgeons.  In  addition,  all  the  patients   and  the  statistical  analyst  were  also  kept  blind  till  the  end  of  the  study.   In   the   RCT   by   Kumar   et   al.   (2014)   the   patients   were   randomized   by   lottery   method  at  the  time  of  admission  but  prior  to  obtaining  a  preoperative  CT  scan  to   avoid  allocation  bias,  therefore  the  operating  surgeons  had  no  control  of   fracture   distribution   according   to   Sanders   types   between   the   groups.   However,   this   allocation   method   led   to   an   unequal   distribution,   with   more   type   II   fractures   undergoing  minimally  invasive  surgery  in  this  trial.     In   the   third   RCT   by   Chen   et   al.   (2011)   the   patients   were   randomly   allocated   into   2   groups,   however,   the   authors   did   not   describe   any   specific   randomization   protocol.   3.3.5  DURATION  FROM  INJURY  TO  SURGERY   The  average  duration  from  the  time  of  injury  to  undergoing  surgery  was  7  days   (range:   5   to   8.6   days)   in   the   MIRPF   group   compared   with   10   days   (7.4   to   12.4   days)  in  the  ORIF  group.  

 

32  

3.3.6  DURATION  OF  OPERATIVE  TIME   Xia   et   al.   (2014)   reported   that   the   average   duration   of   the   operative   time   was   significantly   shorter   in   the   minimally   invasive   group   compared   to   the   ORIF   group,   and   was   62   minutes   and   93   minutes   in   both   the   groups   respectively   (p