Modeling and Simulation: Nanometrology Status and

0 downloads 0 Views 1MB Size Report
Modelling and simulations for nanometrology aid to: • experimentalists ... They give access to the geometrical parameters of periodic structures like structure ...... Modelling which helps in trends in commercial developments: • green electronics;.
       

Modeling  and  Simulation:     Nanometrology  Status  and    Future  Needs  Within  Europe     Publication  Date:  January  2011     Author(s):  Ana  Proykova1,  Markus  Baer2,  Jorgen  Garnaes3, Carl Frase4, Ludger Koenders4

Ana Proykova 17.1.11 13:53 Deleted:  J

  1    University  of  Sofia,  Faculty  of  Physics,  5  James  Bourchier  Blvd.  Sofia-­‐1164,                 Bulgaria     2   Physikalisch-­‐Technische  Bundesanstalt,  Abbestr.  2    -­‐  12,  10587  Berlin,    Germany   3       Danish  Fundamental  Metrology,  307  Matematiktorvet,  DK-­‐2800    Kgs.  Lyngby,                                             Denmark   4

 

Physikalisch-­‐Technische  Bundesanstalt,  Bundesallee  100,  38116  Braunschweig,  Germany  

1  

Ana Proykova 17.1.11 13:53 Deleted: o

 

1. Introduction     Nanometrology,   defined   as   science   of   measurements   at   the   nanoscale,   provides   measurements   that   characterise   processes   and   product   performance   and   covers   instrumentation     and   standards.     Advances   in   nanometrology   depend   on   understanding   the   properties   of   matter   at   the   nanoscale,   quality   of   measuring   instruments,   and   the   requirements   of   the   industry   involved   in   production  of  nanomaterials.     Nanometrology   development   is   a   result   of   the   achievements   of   nanoscience   and   nanotechnology   widely   distributed   after   the   birth   of   cluster   science   and   the   invention   of   the   scanning   tunnelling   microscope   (STM).   The   cluster   physics   showed   that   collective   phenomena   break   down  for  very  small  object  sizes.  For  example,  small  clusters  of  a  ferromagnetic  material  are  super-­‐ paramagnetic   rather   than   ferromagnetic.   Paramagnetism   is   not   a   collective   phenomenon,   which   means  that  the  ferromagnetism  of  the  macrostate  was  not  conserved  by  going  into  the  nanostate.   Because   at   the   nanoscale   most   objects   exhibit   sometimes   unexpected   properties,   new   trends   in   metrology  are  necessary  to  face  these  challenges.     Instrumentation  and  measurement  techniques  at  the  nanoscale  play  a  crucial  role  not  only   in  extending  our  knowledge  of  the  properties  of  matter  and  processes  in  nanotechnology,  but  also  in   addressing  new  measurement  needs  in  process  control  and  quality  assurance  in  industry.  Micro-­‐  and   nanotechnologies  are  now  facing  a  growing  demand  for  quantitative  measurements  to  support  the   reliability,   safety   and   competitiveness   of   products   and   services.   Quantitative   measurements   presuppose   reliable   and   stable   instruments   and   measurement   procedures   as   well   as   suitable   calibration  artifacts  to  ensure  the  quality  of  measurements  and  traceability  to  standards.       Computer  models  assist  in  designing  new  modes  of  measurements  by  giving  an  insight  into   background   physical   processes.   To   properly   simulate   the   behaviour   of   a   system   in   interest,   both   the   experimental   set-­‐up   and   the   theoretical   model   should   allow   reasonable   changes   to   meet   convergence  requirements  when  the  experimental  and  theoretical  results  are  being  compared,  Fig.1.   On   one   side   the   theorists   and   modellers   are   expected   to   provide   missing   understanding   of   the   physical   properties   for   a   simulation   technology   while   on   the   other   side   nanometrologiest   contribute   with   precise   data.   The   dynamic   connections   help   in   improving   both   experimental   methods   and   physical  models.     •

• •



 

• •

Modelling  and  simulations  for  nanometrology  aid  to:   experimentalists   fabricating   and   measuring   nanoscale   devices   for   which   numerical   simulations  can  optimise  the    output  either  by  shortcutting  device  design  or  analysing  results   of  measurement   calculate   the   physical   properties   of   nanoobjects   (clusters,   polymers)   for   a   bottom   up     design   of  nanoobjects   calculate   the   range   in   which   “the   wanted”   physical   effect   occurs,   e.g.   clusters   of   silicon   atoms   might   become   metallic   in   a   small   range.   Then   metrology   is   necessary   to   measure   and   to  control  a  small  range   simulate  measurement  tasks  obtained  by  a  device  under  variation  of  internal  (probe,   electronic)  or  external  parameters  (temperature,  vibration,  …)    to  estimate  measurement   uncertainties  (Virtual  Instrument)   theorists  developing  analytical  theory   researchers  interested  in  particular  materials  or  device  configurations.    

   

2  

 

  Fig.1  Interaction  and  feedback  between  Modelling,  Simulation  and  Experiment    

  Modelling   effort   include   large-­‐scale   finite   element   methods,   multiscale   Green's   function   methods,   classical   atomistic   simulations   (special   purpose   Monte   Carlo   Methods,   Molecular   Dynamics),     ab   initio     quantum   mechanical   calculations,   spin   or/and     time-­‐dependent   density   functional   theory,   to   mention   the   most   frequently   used   techniques   for   predicting   nanoparticle   properties.   In   section   3   we     list   the   advantages   and   limitations   of   these   computational   techniques   from   the   point   of   view   of   some   experimental   techniques   frequently   used   in   nanometrology:     electron  microscopy  (Scanning  Electron  Microscopy  -­‐  SEM,  Transmission  Electron  Microscopy  -­‐  TEM,   Low   Energy   Electron     Microscopy   -­‐   LEEM),     X-­‐ray   and   neutron   scattering,   optical   measurements   (IR,   Raman,  FT-­‐IR),  near  edge  X-­‐ray  absorption  fine-­‐structure  spectroscopy  (NEXFAS).    These  techniques   require  specific  computational  methods  to  reconstruct  the  original  image.   The  Atomic  Force  Microscopy  (AFM)  is  one  of  the  foremost  tools  for  imaging,  measuring  and   manipulating   matter   at   the   nanoscale.   AFM   has   recently   converted   into   an   every-­‐day   life   characterisation   technique   in   biology   and   medical   physics.   AFM   provides   a   three-­‐dimensional   surface  profile  without  requiring  any  special  treatments  (such  as  metal/carbon  coatings)  that  would   irreversibly   change   or   damage   the   bio-­‐   sample.   However   for   most   commercial   available   instruments   AFM   is   less   suitable   than   SEM   because   AFM   can   only   image   a   maximum   height   on   the   order   of   micrometers   and   a   maximum   scanning   area   of   around   150   by   150   micrometers.     Despite   its   advantages,   the   AFM   images   need   specific   measurement   strategy   and   data   evaluation   techniques.   Figure   2   illustrates   this   for   an   image   obtained   with   an   AFM.   Here   two   successive   numeric   manipulations   have   to   be   done   before   it   becomes   well   visible:   first,   reorientation   of   the   planes   containing  the  spots  and  second,  Fourier  filtration  to  clean  the  background.    

 

3  

 

  Fig.2    A)  Original  image      

B)  Corrected  image  

 

C)  Filtered  image  

Scatterometry   is   the   investigation   of   micro-­‐   or   nanostructured   surfaces   regarding   their   geometry  and  dimension  by  measurement  and  analysis  of  light  diffraction  from  these  surfaces.  An   example   of   the   experimental   setup   used   in   the   PTB   departments   4.2   and   7.1   for   scatterometry   is   shown   in   Fig.   3.   Non-­‐imaging   metrology   methods   like   scatterometry   are   in   contrast   to   optical   methods   not   diffraction   limited.   They   give   access   to   the   geometrical   parameters   of   periodic   structures   like   structure   width   (CD),   pitch,   side-­‐wall   angle   or   line   height   (cf.   Fig.   3).   However,   scatterometry  requires  apriori  information.  Typically,  the  surface  structure  needs  to  be  specified  as   member  of  a  certain  class  of  gratings  and  is  described  by  a  finite  number  of  parameters,  which  are   confined   to   certain   intervals.   The   inverse   diffraction   problem   has   to   be   solved   to   determine   the   structure  parameters  from  a  measured  diffraction  pattern.     In  the  present  context,  it  is  interesting,   because   proper   scatterometric   measurements   require   an   intense   effort   regarding   modelling,   simulation  and  inverse  methods  that  shall  be  discussed  in  more  detail  below.        

    Fig.  3:  Typical  experimental  setup  for  scatterometrical  measurements.    

 

4  

 

2. Modelling  and  Simulation  Requirements  in  the  Field   The  computations  are  performed  under  well  specified  conditions.  That  is  why  the  experimental   nanometrology   is   expected   to   provide   reference   specimens   for   calibration   of   advanced   scanning   probe  microscopy.  The  measuring  apparatus  can  be  calibrated  with  standards.  In  a  few  cases  Atomic   Force   Microscopes   are   equipped   with   laser   interferometers   to   trace   back   the   displacement   measurements  to  the  SI  unit  of  length.  Although  resolution  of  about  0.1  nm  is  achievable  by  using   independent   methods   including   tuneable   and   stabilized   lasers,   Fabry-­‐Pérot   interferometry   and   laser   interferometry   the   measurement   uncertainty   is   in   the   range   of   a   few   nanometres   due   to   non-­‐ linearity  of  the  laser  interferometer,  alignment  of  the  displacement  axis  and  interferometer  axis.      

 

• • •

Efforts  in  the  fabrication  and  controlling  processes  and  events  on  nanoscale  should  include:   the  study  of  electrochemical  and  micro-­‐fluid  methods  for  producing  nanostructures;     novel  approaches  to  nanocalorimetry  for  the  study  of  interfacial  reactions;      in  situ  observations  of  nanoparticle  and  nanotube  dispersions  and  alignment.    

Due   to   uncertainty   of   experiments   at   the   nanoscale   an   incomplete   picture   of   the   structure   is   obtained.   More,   some   measurements   might   destroy   the   original   object   preventing   us   from   complementary   and   repeatable   measurements.   The   electron   microscopy   can   produce   defects   in   the   structure  being  measured,  optical  measurements  might  heat  the  smallest  metal  nanoparticles    that   can  melt;  the  atomic  force  microscope  can  trigger  structural  reorganisation  of  soft  materials.  X-­‐ray   and  neutron  scattering  provide  information  about  structure  of  cluster  containing  materials  but  often   cause   excitation   of   the   particles.   Another   obstacle   comes   from   the   high   activity   of   the   nanoparticles   which  aggregate  on  the  grid  used  for  precise  measurements  of  a  structure.  In  situ  measurements  are   either  not  possible  or  are  of  limited  resolution.         All  simulations  need  reference  data  for  the  initial  conditions  to  start  with.  The  experiments   are  expected  to  characterise  nanoparticles  in:   • size  and  shape;     • structure;     • aspect  ratio;   • volume  versus  surface  (  inner  and  outer  structure);     • conductivity;     • magnetic  properties;     • morphology  and  topography.     These   characteristics   are   needed   to   create   realistic   models.   However,   all   techniques   possess   inherent  (systematic)  sources  of  errors.  For  example,  AFM  sources  of  errors  have  been  summarised   in  1,2,3,4.     One   important   requirement   to   measurements   is   the   temperature   control.   As   temperature   directly   affects   diffusion   speeds   and   agglomeration   of   nanoparticles,   the   measurements   should   be   held  at  a  well  control  temperature.  For  material  science  20  °C  is  the  reference  temperature  used  in                                                                                                                             1  

 Francesco  Marinello,  Atomic  Force  Microscopy  in  Nanometrology:  Modeling  and  Enhancement  of  the   Instrument,  PhD  thesis  (2006)   2    Danzebrink  et  al.  Advances  in  scanning  force  microscopy  for  dimensional  metrology,  Ann.  CIRP,  vol.     55,  2  (2006)   3      A.  Yacoot  et  al.  Aspects  of  scanning  force  microscopes  and  their  effects  on  dimensional   measurement,  J.  Phys.  D:  Appl.  Phys.  41  (2008)  103001   4    http://www.nanoscience.com/education/software.html    

5  

ISO  standards.  However  materials  might  be  used  in  technical  devices  in  a  rather  large  range:    0  to   1000  K  or  higher.  For  bio-­‐objects  a  suitable  temperature  range  is  between  25  C  and  37  C.       Another  important  parameter  for  simulations  is  the  electric  field.  An  example  is  a  model  of   deflection–voltage   curves   in   atomic   force   microscopy   and   its   use   in   DC   electrostatic   nanomanipulation  experiments.  Such  a  model  predicts  the  deflection  of  the  atomic  force  microscope   probe   as   a   function   of   the   applied   probe–substrate   voltage,   as   well   as   the   distance   and   voltage   at   which  the  tip  collapses  irreversibly  onto  the  substrate  due  to  electrostatic  forces.  The  model  is  useful   in  DC  electrostatic  manipulation  of  nanoparticles.    

3. Modelling  and  Simulation  Techniques   In   the   Finite-­‐Element   Modelling   (FEM),   a   distributed   physical   system   to   be   analysed   is   divided   into   a   number   (often   large)   of   discrete   elements.   These   elements   are   connected   at   points   called   nodes.   In   solids   models,   displacements   in   each   element   are   directly   related   to   the   nodal   displacements.   The   nodal   displacements   are   then   related   to   the   strains   and   the   stresses   in   the   elements.   The   finite   element   method   tries   to   choose   the   nodal   displacements   so   that   the   stresses   are   in   equilibrium   (approximately)   with   the   applied   loads.   The   nodal   displacements   must   also   be   consistent  with  any  constraints  on  the  motion  of  the  structure.  The  division  into  elements  may  partly   correspond  to  natural  subdivisions  of   the  structure.  For  example,  the  Atomic  Force  Microscope  tip   may  be  divided  into  groups  of  elements  corresponding  to  different  material  properties.     The   finite   element   method   converts   the   conditions   of   equilibrium   into   a   set   of   linear   algebraic   equations   for   the   nodal   displacements.   Once   the   equations   are   solved,   one   can   find   the   actual   strains   and   stresses   in   all   the   elements.   By   breaking   the   structure   into   a   larger   number   of   smaller   elements,   the   stresses   become   closer   to   achieving   equilibrium   with   the   applied   loads.   Therefore   an   important   concept   in   the   use   of   finite   element   methods   is   that,   in   general,   a   finite   element   model   approaches   the   true   solution   to   the   problem   only   as   the   element   density   is   increased.   In   spite   of   the   significant   advances   that   have   been   made   in   developing   finite   element   packages,   the   results   obtained   must   be   carefully   examined   before   they   can   be   used.   The   most   significant   limitation   of   finite   element   methods   is   that   the   accuracy   of   the   obtained   solution   is   usually  a  function  of  the  mesh  resolution.  Any  regions  of  highly  concentrated  stress,  such  as  around   loading  points  and  supports,  must  be  carefully  analysed  with  the  use  of  a  sufficiently  refined  mesh.   In   addition,   there   are   some   problems   which   are   inherently   singular   (the   stresses   are   theoretically   infinite).  Special  efforts  must  be  made  to  analyse  such  problems.       Density   functional   theory   (DFT)   transformed   theoretical   chemistry,   surface   science,   and   materials   physics   and   has   created   a   new   ability   to   describe   the   electronic   structure   and   inter-­‐atomic   forces  in  molecules  with  hundreds  and  sometimes  thousands  of  atoms.     Monte   Carlo   Methods   for   classical   simulations   have   undergone   a   revolution,   with   the   development   of   a   range   of   techniques   (e.g.,   parallel   tempering,   continuum   configurationally   bias,   and   extended   ensembles)   that   permit   extraordinarily   fast   equilibration   of   systems   with   long   relaxation  times.   FEM  can  effectively  capture  the  elastic  behaviour  of  macroscopic  structures  but  includes  no   accurate   failure   criteria   since   this   depends   upon   atomic-­‐scale   behaviour.   Classical   atomistic   simulations   can   handle   enough   atoms   to   model   such   events   but   the   potentials   of   interactions   become   inaccurate   for   large   strains   and   they   can   not   effectively   handle   chemistry.   Quantum-­‐ mechanics-­‐  based  simulations  using  DFT  give  much  better  approximation  to  the  exact  solutions  but  

 

6  

they   are   efficient   for   a   few   hundred   atoms.   A   combination   of   all   three   modelling   techniques   is   required  to  accurately  model  device  behaviour  at  the  nanoscale5.      

  Fig.4  FEM  model  of  a  rigid  100  nm  diameter   sphere  indenting  an  Al  sample  to  a  depth  of   10nm6.  

Fig.5  Diagram  of  a  hybrid  simulation  for   obtaining  the  vacancy  formation  energy  at   different  positions  relative  to  an  edge   dislocation.  The  large  box  represents  the  FEM   cell  in  which  the  DFT  region  containing  the   vacancy  was  embedded.  

  At  the  macrostate  FEM  simulates  the  elastic  behaviour  of  a  nanomechanical  system.  Figure  4   shows   an   Al   sample   indented   by   a   rigid   100   nm   diameter   sphere.   The   indenter   and   three   of   the   sample  quadrants  have  been  removed  to  highlight  the  resulting  stress  distribution  after  indenting  10   nm.  The  FEM  is  fine  enough  to  use  the  predicted  elastic  displacement  fields  to  generate  boundary   conditions  and  initial  atom  positions  for  an  atomistic  simulation  using  classical  potentials.  The  use  of   classical  potentials  in  a  large  simulation  cell  allows  the  correct  propagation  of  the  long  range  stresses   to   the   critical   regions   where   bond   distortions   are   large   or   where   the   chemistry   effects   need   to   be   explored.   In   these   regions   a   DFT   simulation   should   be   performed.   The   classical   cell   is   relaxed   with   the   help   of   a   Monte   Carlo   algorithm.   An   application   of   the   hybrid   technique   described   has   been   determination   of   the   vacancy   formation   energy   in   aluminium   as   a   function   of   distance   (at   a   fixed   angle)  away  from  an  edge  dislocation.  The  simulation  geometry  is  shown  in  the  Figure  5.  Connection   to  experimental  measurements  requires  careful  force  calibration  of  the  indenter  and  calibrated  AFM   measurements   of   the   indenter   tip.   The   AFM   data   are   used   to   generate   a   FEM   mesh   for   the   simulations.   Inverse   Methods   are   required   if   the   desired   quantity   cannot   be   measured   directly,   but   is   related  to  the  outcome  of  the  actual  measurement  by  a  well-­‐specified  mathematical  model  as,  e.  g.   in   scatterometry   (see   above).   There,   the   desired   dimensional   quantities   of   microelectronic   and   optical  devices  can  be  reconstructed  by  the  combination  of  measurement  data  stemming  from  the   scattering   process   of   UV   light   at   the   sample   with   simulations   of   a   mathematical   model   (Maxwell                                                                                                                             5    Ana  Proykova,  Challenges  of  Computations  at  the  Nanoscale,  Journal  of  Computational  and  Theoretical   Nanoscience,  v.7,  pp.1806-­‐1813  (2010)   6   http://www.indiananotechnology.com/uploads/Nanometrology_nist.pdf  

 

7  

equations)  of  the  process7,8.  The  inverse  method  is  needed,  because  the  geometric  quantities  can  be   obtained   only   from   finding   the   geometric   parameters,   for   which   the   simulations   best   fit   the   measured   data.     A   further   challenge   is   the   determination   of   the   uncertainties   of   quantities   reconstructed   by   inverse   methods   that   require   a   statistical   treatment   of   the   inverse   problem.     To   illustrate  potential  and  challenges  of  inverse  problems  for  nanometrology,  the  case  of  scatterometry   is  discussed  in  more  detail  below.     The   conversion   of   measurement   data   into   desired   geometrical   parameters   at   the   heart   of   scatterometry    depends  crucially  on  a  high  precision  rigorous  solution  of  Maxwell's  equations,    which   can   be   reduced   to   the   two-­‐dimensional   Helmholtz   equation   if   geometry   and   material   properties   are   invariant   in   one   direction.   The   typical   transmission   conditions   of   electro-­‐magnetic   fields   yield   continuity   and   jump   conditions   for   the   transverse   field   components;   the   radiation   conditions   at   infinity   are   well   established.   For   the   numerical   solution,   rigorous   methods   have   been   developed.     Often  the  finite  element  method  (FEM)  is  used,  where  the  infinite  domain  of  computation  is  reduced   to  a  finite  one  by  coupling  it  with  boundary  elements    (cf.  Fig.  4).      

 

Fig.   6:   CoG   grating   –   Chromium   on   a   glass   mask   used   for   forward   calculations   and   reconstruction   tests   (d   =   1120  nm,  hCr  =  50  nm,  hCrO  =  18  nm,  hSiO2  =  6.35  mm).  

                                                                                                                          7

    H.   Gross,   R.   Model,   M.   Bär,   M.   Wurm,   B.   Bodermann   and   A.   Rathsfeld   (2006).   Mathematical   modelling   of   indirect   measurements   in   periodic   diffractive   optics   and   scatterometry.   Measurement   39,  782-­‐794.  

8

 

 H.  Groß,  A.  Rathsfeld,  F.  Scholze  and  M.  Bär  (2009).  Profile  reconstruction  in  extreme  ultraviolet  (EUV)   scatterometry:  modelling  and  uncertainty  estimates.  Meas.  Sci.    Technol.  20,  105102  -­‐  105112.  

8  

Apart  from  the  forward  computations  of  the  Helmholtz  equation,  the  solution  of  the  inverse   problem,   i.e.   the   reconstruction   of   the   grating   profiles   and   interfaces   from   measured   diffraction   data,   is   the   essential   task   in   scatterometry.   The   problem   is   equivalent   to   the   minimization   of   an   objective   functional   describing   the   difference   between   the   calculated   and   the   given   efficiency   pattern  in  dependence  of  the  assumed  model  parameters.   Fig.  7  shows  the  shape  of  the  objective  functional  calculated  by  varying  the  heights  of  the  Cr-­‐   and  the  CrO-­‐layer  of  chromium  on  a  glass  mask  (cf.  Fig.  6).  For  the  selected  admissible  range  of  the   two   heights   the   coordinates   of   the   minimum   values   of   the   objective   functional   are   near   to   the   expected   values,   e.g.   50   nm   for   hCr   and   18   nm   for   hCrO.   Because   we   use   gradient-­‐based   optimization  methods  the  admissible  range  of  model  parameters  and  their  initial  values  can  have  a   strong   influence   on   the   accuracy   of   the   reconstruction   result   and   need   to   be   taken   into   account.    

  Fig.  7.  Objective  functions  for  test  case  CoG  mask:  hCr  versus  hCrO  for  a  suitable  subset  of  efficiencies.  

Furthermore   it   is   well   known   that   the   solution   of   the   inverse   problem   might   fail   if   it   is   based   on   insufficient   or   improper   input   data.   Based   on   a   sensitivity   analysis,   algorithms   for   finding   optimal   sets  of  efficiency  data  suitable  for  the  inverse  problem  can  be  developed.    If  the  inverse  problem  is   solved,   one   needs   to   employ   Monte-­‐Carlo   simulations   or   approximation   methods   to   estimate   the   measurement  uncertainty.  Recent  studies9    have  revealed  also  strong  influences  of  systematic  errors   that   require   advanced   data   evaluation   as   well   as   improved   models   in   future   research   activities.   A   major   challenge   is   the   correct   estimation   of   measurement   uncertainty   that   will   require   research                                                                                                                             9

  J.   Kaipio,   E.   Somersalo   (2005).   Statistical   and   computational   inverse   problems.   (Springer   Verlag,   New  York).    

 

9  

activities  that  go  far  beyond  of  existing  guidelines  like  the  ISO-­‐Guide  on  Evaluation  of  Uncertainties  in   Measurement   (GUM).     Inverse   problems   occur   also   in   a   number   of   other   applications   of   nanometrology,  e.g.  the  localization  of  magnetic  nanoparticles  in  medicine,  and  are  expected  to  play   a  more  prominent  role  as  the  field  of  nanometrology  expands  further.     Molecular   Dynamics   (MD)   with   fast   multi-­‐pole   methods   for   computing   long-­‐range   inter-­‐ atomic   forces   has   made   accurate   calculations   possible   on   the   dynamics   of   millions   and   sometimes   billions   of   atoms.   When   combined   with   the   DFT   calculations   it   is   used   instead   of   the   classical   convolution   approach   to   tip–sample   artefacts   that   is   not   valid   for   measurements   of   nano-­‐specimens   due  to  the  quantum-­‐mechanical  nature  of  small  objects.  As  interatomic  forces  act  on  the  sample  and   the   tip   of   the   microscope,   the   atoms   of   both   relax   in   order   to   reach   equilibrium   positions.   This   leads   to   changes   in   those   quantities   that   are   finally   interpreted   as   the   AFM   tip   position   and   influences   the   resultant  dimensional  measurements.  Sources  of  uncertainty  connected  with  tip–surface  relaxation   at   the   atomic   level   are   discussed   in10.   Results   of   both   density   functional   theory   modelling   and   of   classical  molecular  dynamics  of  AFM  scans  on  typical  systems  used  in  nanometrology,  e.g.,  fullerenes   and  carbon  nanotubes,  on  highly  oriented  pyrolytic  graphite  substrates  are  presented.  We  study  also   the  effects  of  tip–surface  relaxation  on  critical  measurements  of  the  dimensions  of  these  objects.   The  Car-­‐Parrinello  method  for  ab-­‐initio  molecular  dynamics  with  simultaneous  computation   of  electronic  wavefunctions  and  interatomic  forces  has  opened  the  way  for  exploring  the  dynamics   of  molecules  in  condensed  media  as  well  as  complex  interfaces.     New   mesoscale   methods   (including   Dissipative   Particle   Dynamics   and   Field   Theoretic   Polymer   Simulation)   have   been   developed   for   describing   systems   with   long   relaxation   times   and   large   spatial   scales,   and   are   proving   useful   for   the   rapid   prototyping   of   nanostructures   in   multicomponent  polymer  blends.     In   the   case   of   hybrid   technique   of   modelling   one   should   pay   a   great   attention   to   the   correct   interfacing   between   models   operating   at   different   length   scales   to   ensure   that   models   properly   capture   the   physics   of   both   the   components   and   total   systems11,   Fig.8.   However,   the   space-­‐time   calculations   localised   in   a   specific   region   can   not   always   be   transferred   into   the   neighbour   region   because  some  of  the  properties  do  not  scale.  For  instance,  when  particle  size  becomes  comparable   with  the  Fermi  wavelength  of  an  electron,  the  optical,  electronic,  and  chemical  properties  of  metal   clusters   differ   dramatically   from   large   nanoparticles.   In   the   smallest   size   regime   metal   clusters   become   molecular   species   and   discrete   states   with   strong   fluorescence   can   be   observed.   These   molecule-­‐like   properties   of   highly   polarizable   and   emissive   few-­‐atom   metal   clusters   open   new   opportunities   for   biological   labels,   energy-­‐transfer   pairs,   light-­‐emitting   sources   in   nanoscale   optoelectronics,  and  test  targets  in  nanometrology.     The  tools  of  theory  have  advanced  as  much  as  the  experimental  tools  in  nanoscience  over   the   past   15   years.   It   has   been   a   true   revolution   by   increased   computer   power.   The   rise   of   fast   workstations,  cluster  computing,  and  new  generations  of  massively  parallel  computers  complete  the   picture  of  the  transformation  in  theory,  modelling,  and  simulation  over  the  last  decade  and  a  half.   Moreover,   these   hardware   (and   basic   software)   tools   are   continuing   on   the   Moore’s   Law,   Fig.   9   exponential   trajectory   of   improvement,   doubling   the   computing   power   available   on   a   single   chips                                                                                                                             10

Anna Campbellová, Petr Klapetek and Miroslav Valtr, Meas.  Sci.  Technol.  20  084014  (2009)    Ana  Proykova,  Molecular  Dynamics  simulation  of  gas  adsorption  and  absorption  in  Nanotubes,  in  Carbon   Nanotubes:  from  Basic  Research  to  Nanotechnology,  Springer,    pp.187-­‐207,  Vol.  222    eds.  Popov,  Valentin  N.;   Lambin,  Philippe  (Eds.)    (2006)  

11

 

10  

every   18   months.   Computational   Grids   are   emerging   as   the   next   logical   extension   of   cluster   and   parallel  computing.    

    Fig.  8  The  space-­‐time  calculations  localised  in  a  specific  region  can  not  always  be  transferred  into  the   neighbouring  region  because  some  of  the  properties  do  not  scale.  

 

 

Fig.  9    Plot  of  CPU  transistor  counts  against  dates  of  introduction.  The  curve  shows  counts  doubling   every  two  years.    

11  

  Because   nanomaterials   exhibit   different   properties   from   their   bulk   counterparts   due   to   quantum   nature   of   the   materials   and   the   processes   at   the   nanoscale,   the   techniques   of   measurements   and   modelling   are   distributed   in   two   classes   -­‐   for   particle   characterisation   and   for   processes.  The  techniques  should  also  respect  the    low  dimensionality  of  most  nanomaterials  :  (0D)  -­‐     quantum  dots,  (1D)  -­‐  carbon    nanotubes,  (2D)  -­‐  thin-­‐film-­‐multilayers.        

3.1.  Techniques  for  particle  characterisation  at  the  nanoscale     3.1.1  Diffraction  and  pair  distribution  function     In  statistical  mechanics,  a  radial  distribution  function  (RDF),  g(r),  describes  how  the  atomic   density  varies  as  a  function  of  the  distance  from  one  particular  atom.  More  precisely,  if  there  is  an   atom   at   the   origin   0,   and   if   n  =  N/V   is   the   average   number   density,   then   the   local   density   at   a   distance  r  from  0  is  ng(r).  Given  a  potential  energy  function,  the  radial  distribution  function  can  be   found   either   via   computer   simulation   methods   like   the   Monte   Carlo   method,   or   via   the   Ornstein-­‐ Zernike  equation,  using  approximative  closure  relations  like  the  Perckus-­‐Yevick  approximation  or  the   Hypernetted  Chain  Theory.    It  is  possible  to  measure  g(r)  experimentally  with  neutron  scattering  or   x-­‐ray  scattering  diffraction  data.     For  small  particles  it  is  possible  to  estimate  their  size  and  shape  by  calculating  the  diffraction   pattern   using   the   Debye   equation12.   The   size   is   limited   by   the   calculation   power   of   computers.     Current   powers   enable   us   to   compute   in   a   reasonable   time   properties   of   atomic   clusters   with   diameters  about  50  nm.  The  usual  procedure  includes  a  model  of  the  atomic  structure,  which  makes   it   possible   calculation   of   the   pair   distribution   function   (PDF);   finally   the   diffraction   pattern   is   calculated.   The   total   powder   diffraction   pattern   includes   the   Bragg   and   diffuse   scattering   contributions  to  the  PDF;  no  periodicity  is  assumed  for  nanopowders.  For  particle  sizes  comparable   with   the   crystallographic   unit   of   the   lattice,   considering   the   periodicity   of   the   lattice   is   questionable.   The  computed  patterns  are  compared  with  experimental  data,  and  the  procedure  is  repeated  until   the   model   and   experiment   match.   The   atomic   pair   distribution   function   (PDF)   G(r)   denotes   the   probability   of   finding   an   atom   at   a   distance   r   with   respect   to   another   atom.   As   PDF   is   obtainable   from  diffraction  patterns  important  conclusions  can  be  drawn  about  the  nature  of  infrasonic  bonds   and   the   atomic   structure   of   nano-­‐objects.   The   traditional   usage   of   PDF   requires   a   model   for   the   interaction  potential  which  is  implemented  in  either  molecular  dynamics  or  Monte  Carlo  calculations   for  structure  optimisation.       A   comparison   of   a   PDF   computed   for   the   case   of   a   methane   cluster   (1.6   nm   in   size)   with   the   peak   distribution   for   bulk   methane   (in   two   distinct   phases  –   face-­‐centred   cubic   (fcc)   and   icosahedral   (ico)   demonstrates   the   finite-­‐size   effects   observed   in   most   measurements   of   nanosized   materials:   shift  and  broadening  of  the  peaks,  very  low  intensity  of  some  peaks. The  surface  atoms  (molecules)   of   the   clusters   if   they   are   embedded   in   a   less-­‐dense   medium,   could   organize   themselves   in   a   collective   motion   revealed   in   the   vibrational   spectrum.   The   role   of   the   surface   collective   motion                                                                                                                             12

   W.  Lojkowski,  R.  Turan,  A.  Proykova,  and  A.  Daniszewska,  eds.,  Nanometrology,  Eight  Nanoforum  report,     http://www.nanoforum.org/  (2006)  

 

12  

decreases   with   the   cluster   size   increase.   If   the   measurements   are   in   thin   films,   the   surface   (2D)   effects  could  prevail  over  the  3D  properties,  for  instance  a  shift  in  the  colour  of  the  emitted  light.    

A  couple  of  comments  are  due:   •

Intensity   of   the   X-­‐rays   should   be   high   in   order   to   register   diffraction   data   within   the   diffraction   patterns   taken   from   the   nano-­‐objects;   this   is   why   the   usage   of   synchrotron   radiation  is  highly  recommended.  Several  centres  in  Europe  provide  facilities  necessary  for   this  purpose.  The  European  Crystallographic  Association  (ECA)  has  approved  Special  Interest   Groups13     that   should   be   contacted   in   order   to   find   out   the   conditions   for   using   their   premises;  



Neutron   diffraction   is   a   complementary   tool   which   is   less   harmful   to   nanomaterials   than   intense   X-­‐ray   sources   and   provides   valuable   information   about   new   structures   with   unknown   properties.   The   Rutherford   Appleton   Laboratory   (ISIS   Facility)   in   the   UK   has   a   well   developed  infrastructure  for  specific  measurements  and  standardization.  

  3.1.2.   Monte   Carlo   modelling   of   SEM   image   formation   is   used   to   generate   artificial   SEM   images   or   signal   profiles   for   the   development   and   testing   of   new   CD   evaluation   algorithms.   Therefore,  the  generated  images  have  to  be  close  enough  to  real  SEM  images  to  allow  us  to  transfer   results   of   a   CD   evaluation   at   a   simulated   image   to   real  SEM  measurements.  The  electron  diffusion  in   the   sample   and   the   excitation   and   emission   of   secondary   electrons   are   simulated   by   Monte   Carlo   routines.   Central   part   of   the   simulation   procedure   is   the   iterative   (i.e.   stepwise)   calculation   of   electron   trajectories   in   solid   state   (Fig.   4).   Random   numbers   are   used   to   determine   the   scattering   angles   from   scattering   cross   sections   and   the   distances   between   the   scattering   points   from   the   total   mean  free  path.  Simulated  electron  trajectories  in  a  two-­‐dimensional  silicon  line  structure  are  shown   in   Fig.   5   (top).   The   local   SE   yield   as   a   function   of   the   scan   position   forms   a   signal   profile   that   is   characteristic   for   topography   and   material   composition   of   the   specimen   (centre).   A   number   of   subsequent  scan  lines  form  a  typical  SEM  grey-­‐level  image  (bottom).  Monte  Carlo  based  SEM  image   modelling   is   a   valuable   and   indispensable   tool   for   traceable   dimensional   measurements   with   the   scanning  electron  microscope14.   3.1.3.   Monte-­‐Carlo   Method   provides   an   effective   approach   to   evaluate   the   measurement   uncertainty  of  instruments,  e.g.  SFM,  SEM,  for  a  given  measurement  tasks.  The  key  of  building  the   Virtual  SFM  is  the  construction  of  the  proper  model  of  SFMs  and  its  software  realisation.  According   to   generic   measurement   principles   of   SFMs,   the   main   error   sources   of   SFMs   are   classified   into   several  sub-­‐blocks.  The  first  is  the  instrument  itself,  for  instance  the  geometric  errors  of  the  scanner,   the  cantilever  detection  sensor,  and  the  tip-­‐surface.  The  second  concerns  the  artefact,  for  instance,   its   misalignment   and   in-­‐homogeneity.   The   third   comes   from   the   environment   conditions,   for   instance,   the   acoustic/ground   vibration,   temperature,   humidity,   static   electric   charge.   In   addition,   the  measurement  performance  of  a  SPM  may  also  be  influenced  by  the  operator,  for  instance,  the   selection   of   the   scan   mode,   scanning   parameters,   and   servo   parameters.   Besides   the   modelling   of                                                                                                                             13  

 http://www.ecanews.org/sig.htm  

14  

C  G  Frase,  D  Gnieser  and  H  Bosse:  “Model-­‐based  SEM  for  dimensional  metrology  tasks  in  semiconductor  and   mask  industry“,  J.  Phys.  D:  Appl.    Phys.  42  (2009)  183001  

 

13  

SFMs  and  the  software  realisation,  several  typical  measurement  tasks  are  simulated  in  Virtual  SFM.     After   selecting   the   desired   measurement   task,   virtual   measurement   procedures   can   be   simulated   by   hundreds   of   times   where   the   influence   factors   vary   randomly.   Based   on   this   procedure,   propagation   of   the   stochastic   and   systematic   error   sources   is   simulated.   The   uncertainty   budget   can   finally   be   determined  from  the  distribution  of  the  simulated  measurement  results.  Until  now,  our  virtual  SFM   model/software  is  able  to  simulate  both  commercial  and  metrological  SFMs,  and  is  able  to  estimate   measurement   uncertainty   of   simple   measurement   tasks,   such   as   step   height   and   1D   or   2D   pitch   measurement.    

3.2.  Techniques  for  modelling  processes   3.2.1.  Time  dependent  Monte  Carlo  method  simulates  processes  occurring  in  a  three-­‐phase   batch   reactor   working   at   isobar   and   isotherm   conditions.   It   calculates   the   dose   in   time-­‐dependent   geometry;   the   results   of   three-­‐dimensional   calculations   are   usually   performed   separately   and   combined.   This   approach   becomes   cumbersome   when   high   temporal   resolution   is   required,   if   the   geometry  is  complex,  or  if  interplay  effects  between  different,  independently  moving  systems  are  to   be   studied.   Standards   in   energy   deposition   can   be   established   by   implementing   this   technique.   Quantum  Monte  Carlo  methods  now  promise  to  provide  nearly  exact  descriptions  of  the  electronic   structures  of  molecules.       3.2.2.  Raman  spectroscopy  and  related  calculations     The   Raman   Effect   occurs   when   light   in   the   visible,   near   infrared,   or   near   ultraviolet   range   impinges  upon  a  molecule  and  interacts  with  the  electron  cloud  and  the  bonds  of  that  molecule.  The   incident   photon   excites   the   molecule   into   a   virtual   state.   A   change   in   the   molecular   polarisation   potential  —  or  amount  of  deformation  of  the  electron  cloud  —  with  respect  to  the  vibrational  co-­‐ ordinate   is   required   for   the   molecule   to   exhibit   the   Raman   Effect.   For   the   spontaneous   Raman   Effect,  the  molecule  will  be  excited  from  the  ground  state  to  a  virtual  energy  state,  and  relax  into  a   vibrational   excited   state.   The   laser   light   interacts   with   phonons   or   other   excitations   in   the   system,   resulting   in   the   energy   of   the   laser   photons   being   shifted   up   or   down.   The   shift   in   energy   gives   information   about   the   phonon   modes   in   the   system.   Two   series   of   lines   exist   around   this   central   vibrational   transition.   They   correspond   to   the   complementary  rotational   transition.  Anti-­‐Stokes  lines   correspond  to  rotational  relaxation  whereas  Stokes  lines  correspond  to  rotational  excitation.     The   Raman   spectroscopy   (RS)   measures   vibrational,   rotational,   and   other   low-­‐frequency   modes   in   a   system.   The   amount   of   the   polarizability   change   determines   the   Raman   scattering   intensity,  whereas  the  Raman  shift  is  equal  to  the  vibrational  level  that  is  involved.  The  modes  can   be  computed  from  the  first  principles  which  make  the  RS  very  useful  for  matching  experimental  data   with  theoretical  predictions.       Resonance  Raman  Spectroscopy  (RRS)  is  more  sensitive  than  the  ordinary  RS  and  can   investigate  details  of  the  structure  including  the  carbon  nanotube  chirality.  RRS  is  a  test  of  ab  initio   methods  for  the  computation  of  molecular  potential  energy  surfaces.    

3.2.3.  Photophysics  in  nanometrology    

    The  photophysics  is  related  to  molecular  fluorescence  in  condensed  media.  Current  research   is   focused   on   biomedical   sensing,   sol-­‐gel   nanoparticle   structure   and   dynamics,   nanotomography   using   fluorescence   resonance   energy   transfer,   single   molecule   studies   and   developing   ultrafast   techniques   such   as   multi-­‐photon   excitation.   The   fluorescence   lifetime   photophysics   of   ensembles   and   single   molecules   combined   with   surface   enhanced   resonance   Raman   studies   to   determine   dynamical   structure   and   distance   as   paths   towards   making   molecular   nanomovies.   This   includes   characterization   and   control   of   simulated   natural   environments   using   hydrated   sol-­‐gel   nanopores    

14  

and   nanoparticles   of   oxides   and   noble   metals.   Detecting   medically   important   metabolites,   such   as   glucose,   proteins,   metal   ions   and   others   down   to   the   single   molecule   level   under   controlled   conditions   provides   a   better   understanding   of   the   fundamental   building-­‐blocks   of   bio-­‐molecular   interaction  that  underpins  the  life  sciences  and  medicine.    

3.2.4  Molecular  Transport  and  Molecular  Nanometrology  

         WKB   models,   direct   tunneling   (Simmons   model)   and   field   emission   tunnelling   (Fowler-­‐ Nordhaim  tunneling),  could  be  used  to  model  conductivity  in  single  molecular  structure  at  low  and   elevated   biased.   Potentially,   Simmons   model   could   extract   two   molecular   barriers,   one   for   electrons   and   one   for   holes   from   conductivity   spectra.   Following   this   assumption   electrical   and   optical   gap-­‐ probed  molecular  nanometrology  (GMN)  could  be  developed.  The  main  GMN  principle  is  the  small   difference   between   the   values   of   the   HOMO-­‐LUMO   energy   gap   detected   by   electrical   and   optical   measurements.   A   comparison   of   experimentally   derived   electrical   and   optical   probed   gap   and   energy   offsets   between   EF   and   nearest   molecular   orbital   makes   it   possible   the   applicability   and   feasibility  of  this  approach15.  

4. Future  Needs  and  Challenges   By   identifying   the   challenges   both   in   computations   and   precise   measurements   the   groups   working   in   the   field   can   be   invited   to   meet   and   work   out   the   ways   to   overcome   obstacles   related   both  with  measurement  techniques  and  computations.     The  close  future  needs  include:   •

Modelling   and   simulation   of   nanoscale   materials,   structures,   and   processes   that   take   into   account   fabrication   and   integration   processes,   production   equipment   and   characterisation   of   instrumentation   supports   and   drives   the   real   experiments   towards   new  research  directions.  



Modelling   of   manufacturing   processes   -­‐   solidification,   3D   injection   with   or   without   reinforcement,   fibres,   anisotropy   -­‐   and   systems   (virtual   and   accurate   products,   conduction   positions).   These   include   combinatorial   chemistry   and   genetic   techniques   that   have   opened   the   door   to   the   synthesis   of   new   bio-­‐molecular   materials   and   the   creation   of   nanointerfaces   and   nanointerconnects   between   hard   and   soft   matter.   Nanoscience   arose   from   the   entire   ensemble   of   these   and   other   new   experimental   techniques,  which  have  created  the  building  blocks  of  nanotechnology.  



Processes   important   for   self-­‐organisation   of   nanomaterials   differ   several   orders   of   magnitude  when  the  temperature  changes  in  relatively  narrow  margins.  That  is  why  only   devices  based  on  preliminary  understanding  of  the  physical  processes  on  the  nanoscale   could  provide  precise  measurements  .  



Understanding    specific  restrictions    and  limitations  relevant  to  nanometrology  

Fundamental  challenges  in  simulations  are  related  to  multi-­‐scales.  Multiscale  modelling  predicts   material   properties   or   system   behaviour   on   one   level   using   information   or   models   from   different   levels.   On   each   level   particular   approaches   are   used   and   sequence   levels   are   usually   distinguished:   a   level   of   quantum   mechanical   models   (information   about   electrons   is   included),   a   level   of   molecular                                                                                                                             15  

 

 Burtman,  Vladimir;  Pakoulev,  Andrei  V.  WKB  modeling  of  single  molecular  transport  and  Molecular   Nanometrology,  APS  March  Meeting,  March  16-­‐20,  2009,  abstract  #H38.007  

15  

dynamics   models   (information   about   individual   atoms   is   included),   mesoscale   or   nano   level   (information  about  groups  of  atoms  and  molecules  is  included),  level  of  continuum  models,  level  of   device   models.   Each   level   addresses   a   phenomenon   over   a   specific   window   of   length   and   time.   Multi-­‐scale   modelling   is   particularly   important   in   integrated   computational   materials   engineering   since   it   allows   to   predict   material   properties   or   system   behaviour   based   on   knowledge   of   the   atomistic  structure  and  properties  of  elementary  processes.   A  key  challenge  in  nanoscience  is  the  range  of  length  and  time  scales  that  need  to  be  bridged.  It   seems  likely  that  fundamentally  new  mathematics  will  be  needed  to:   • to  bridge  electronic  through  macroscopic  length  and  time  scales   • to  determine  the  essential  science  of  transport  mechanisms  at  the  nanoscale   • to  devise  theoretical  and  simulation  approaches  to  study  nanointerfaces,  which  dominate   nanoscale  systems  and  are  necessarily  highly  complex  and  heterogeneous   • to  simulate  with  reasonable  accuracy  the  optical  properties  of  nanoscale  structures  and  to   model  nanoscale  opto-­‐electronic  devices   • to  simulate  complex  nanostructures  involving  “soft”  biologically  or  organically  based   structures  and  “hard”  inorganic  ones  as  well  as  nano-­‐interfaces  between  hard  and  soft   matter   • to  simulate  self-­‐assembly  and  directed  assembly   • to  devise  theoretical  and  simulation  approaches  to  quantum  coherence,  de-­‐coherence,  and   spintronics   • to  develop  self-­‐validating  and  benchmarking  methods     In  summary:  there  must  be  robust  tools  for  quantitative  understanding  of  structure  and   dynamics  at  the  nanoscale  and  a  strong  link  to  real  world  and  measurement  values.     4.1  Steps  to  be  followed  to  meet  the  needs  and  challenges   To   coordinate   exchange   of   information   about   the   needs   of   SMEs   with   the   alliances   of   software  developers,  it  is  necessary:   •   •   •

to   identify     'a   home'   (this   could   be   NPL,   UK   because   of   the   utilities   and   facilities   available   for   testing  of  new  ideas  in  measurements)  where  regular  meetings  will  take  place   to  organize  meetings  with  the  representatives  of  European  Technology  Platforms    -­‐  NESSI,   Photonics21,  EuMat   to  establish  alliances  and  teams  of  experimentalists,  theorists,  applied  mathematicians,  and   computer  and  computational  scientists  to  meet  the  challenges  of  nanometrology.  

Several  formations  have  already  been  established  in  Europe.  Examples  are:   •

Modelling  for  Nanotechnology  (M4nano)  is  a  WEB-­‐based  initiative  taking  by  four  Spanish   institutions.  The  aim  is  to  maintain  a  systematic  flow  of  information  among  research  groups   and  to  avoid  that  research  efforts  in  Nanomodelling  remain  fragmented.  A  total  of  139   Spanish  research  groups  are  registered16    

                                                                                                                          16

   http://www.m4nano.com/m4nanoc_m4/index.php  

 

16  



At  the  University  of  Leeds,  a  Centre  for  Nano-­‐Device  Modelling  coordinates  the  work  of   nanotechnology  device  modelling  within  the  University17.  

  Italy   The  issue  of  AFM  calibration  is  addressed  in  http://paduaresearch.cab.unipd.it/1295/.  A  new   concept  of  calibration  standards  is  introduced,  based  on  optical  fiber  technology.  It  is  shown  how   fiber  micro-­‐cylinders  can  be  applied  for  accurate  calibration  of  horizontal  and  vertical  AFM  axes,  in   the  whole  scan  range.  Crosstalk  error  evaluation  and  correction  are  also  discussed.  A  method  for   modeling  distortions  due  to  tip  wear  rate  in  contact  mode  AFM  is  eventually  proposed,  based  on   lateral  force  monitoring.   Czech  Republic   A  department  of  nanometrology  was  established  in  2007  in  the  Czech  republic  to  develop  scanning   probe  techniques  for  metrology  purposes:       http://cmi.eu/index.php?dwn=1&par=4208&wdc=67&lang=2     The  main  research  topics  are  as  follows:   −

development  of  metrology  SPM  



improvement  of  SPM  methods  used  obtaining  local  physical    quantities,  e.  g.local  optical,   magnetic,  thermal  or  mechanic  properties  



modelling  of  tip-­‐sample  interactions  and  their  effects  on  measurement  uncertainty  in  AFM   measurements  

  Currently,  the  following  instruments  are  being  used  for  both  the  measurements  and   research:   -­‐                  Microscope  Accurex  (Thermomicroscopes),  with  AFM,  MFM  and  EFM  capabilities  within  range   of  100x100x10  micrometers   −

Microscope  Explorer  (Veeco),  with  AFM,  STM  and  SthM  capabilities  within  range   100x100x10  micrometers.  

-­‐                  Near-­‐field  scanning  optical  microscope  Aurora  (Veeco).   Great  Britain       The  University  of  Strathclyde  has  won  a  £5m  award  to  expand  its  ground  breaking  research   into  nanometrology  -­‐  the  ability  to  measure  and  characterise  molecules.       The  prestigious  Science  and  Innovation  Award  announced  today  is  made  up  of  £2.8m  from   the  Engineering  and  Physical  Science  Research  Council  (EPSRC),  £1.5M  from  the  Scottish  and  Higher   Education  Funding  Councils  and  £0.5M  institutional  support.                                                                                                                             17

   http://www.amsta.leeds.ac.uk/cndm/  

 

17  

  The   project   is   led   by   Professor   David   Birch,   Head   of   the   Department   of   Physics,   in   collaboration   with   Professor   John   Pickup's   team   at   King's   College   London   School   of   Medicine.   The   Strathclyde   team   includes   Professor   Duncan   Graham,   Pure   and   Applied   Chemistry,   and   Professor   Martin  Dawson,  Strathclydes  Institute  of  Photonics.     These  awards  aim  to  address  the  shortage  of  academics  capable  of  leading  future  research   in  areas  of  strategic  importance  to  the  UK,  and  will  lead  to  the  recruitment  and  support  costs  of  at   least  three  lecturers,  six  research  fellows  and  six  Ph.D.  students,  across  the  two  institutions.     The  project  will  be  focused  around  the  new  Centre  for  Molecular  Nanometrology,  set  up  at   Strathclyde  in  2005  with  over  2  million  investment.  The  Centre  combines  capabilities  in  physics  and   chemistry   based   on   novel   molecular   properties   for   emitting   and   scattering   light   as   means   of   revealing  molecular  structure  and  dynamics  on  the  nanometre  scale.(  http://nano.strath.ac.uk/  )   Non  European     •

At   Rensselaer   Polytechnic   Institute,   USA   a   Computational   Center   for   Nanotechnology   Innovation  (CCNI)  has  one  of  the  most  powerful  computers  dedicated  to  simulations  in  the   fields  of  nanoelectronic  devices  and  molecular  systems18.  



Research   and   academic   programs   at   Department   of   Electrical   Engineering   and   Computer   Science,   MIT,   USA   seek   to   develop   improved   methods   of   nanoscale   simulation   and   modelling19.  



nanoHUB.org   was   created   by   the   NSF-­‐funded   Network   for   Computational   Nanotechnology   (NCN).   NCN   is   a   network   of   universities   with   a   vision   to   pioneer   the   development   of   nanotechnology   from   science   to   manufacturing   through   innovative   theory,   exploratory   simulation,  and  novel  cyberinfrastructure20.  

International  research  in    Nanometrology   Having  in  mind  that  modelling  is  dependent  on  standards  in  measurements  we  have  looked  at   recent  patents  related  to  the  field.     US  Patent    -­‐  Nanometrology  device  standards  for  scanning  probe  microscopes  and  processes  for   their  fabrication  and  use  http://www.patentstorm.us/patents/7472576.html     Nanometrology  device  standards  and  methods  for  fabricating  and  using  such  devices  in   conjunction  with  scanning  probe  microscopes  are  described.  The  fabrication  methods  comprise:  (1)   epitaxial  growth  that  produces  nanometer  sized  islands  of  known  morphology,  structural,   morphological  and  chemical  stability  in  typical  nanometrology  environments,  and  large  height-­‐to-­‐ width  nano-­‐island  aspect  ratios,  and  (2)  marking  suitable  crystallographic  directions  on  the  device   for  alignment  with  a  scanning  direction.   4.2  Software  developers     open  software  packages   •  Tinker,    Molecular  Modelling  Toolkit  (MMTK  http://dirac.cnrs-­‐orleans.fr/MMTK/)   • LAMMPS    http://lammps.sandia.gov/                                                                                                                                 18   19   20  

 

 http://www.rpi.edu/research/ccni/    http://engineering.mit.edu/research/initiatives/cce.php    https://nanohub.org/  

18  

commercial  software  packages     • Materials  Studio   •

QuantumWise  First-­‐principles  simulation  software  for  nanoscience  

  4.3  Producers  of  nanotechnology  products   As   a   result   of   a   Project   on   Emerging   Nanotechnologies,   an   Inventory   of   nanotechnology-­‐ based   consumer   products   currently   on   the   market   has   been   created.   From   this   inventory,   the   following  European  producers  of  nanotechnology  products  have  been  identified:     Nanotechnology   Concept   (surface   treatments),   Aquanova   (Micelle),   Bonderite   (ceramic   coatings),   Continental   (tyres),   Geohumus   (water   storing   granulate),   Schott/Minox   (optical   multicoating),   Jack   Wolfskin   (fabric),   Finy   (surface   sealing),   Head   (carbon   fibre   racquets),   Akzo   Nobel/BASF   (paint),   Adidas   (carbon   nanotube   reinforced   plate   for   running   shoes),   Kleinmann   (surface  coatings),  Starnberger  (surface  coatings),  Nanogate  (surface  coating),  Percenta  (sealing  and   cleaning  foam),  Tencel  (nanofibrils),  Nanit  (toothpaste  additive),  SCF  Technologies  (glass  coating  and   nano-­‐structured   materials),   Sandvik   (metal   alloy),   Bianchi   (carbon   fibre   bicycles),   NanoSphere   (surface  coating),  SwissDent  (toothpaste),  Oxonica  (fuel  borne  catalyst).        

5. Future  Directions      

It  is  obvious  that  the  electronics  industry  will  not  risk  deploying  billions  of  devices  based  on   molecular   electronics,   even   when   they   can   be   built,   unless   they   are   thoroughly   understood   and   manufacturing   processes   are   made   predictable   and   controllable21.   The   electronics   industry   must   have  new  simulations  and  models  for  nanotechnology  that  are  at  least  as  powerful  and  predictive  as   the  ones  in  use  today  for  conventional  integrated  circuits  before  it  can  chance  marketing  molecular   electronics   devices   for   a   myriad   of   applications.   It   can   be   argued   that   biological   applications   of   nanotechnology   will   require   the   same   level   of   quantitative   understanding   before   they   are   widely   applied.  Currently  available  metrology  tools  are  also  beginning  to  reach  the  limits  of  resolution  and   accuracy   and   are   not   expected   to   meet   future   requirements   for   nanotechnology   or   nanomanufacturing:     The  generic  measurement  tasks  to  be  performed  in  micro-­‐  and  nano-­‐metrology  are:   •   Distance   as   defined   between   two   surfaces   oriented   in   the   same   direction.   Example:   distance   between  two  lines  of  a  line  grating  or  two  planes  in  a  microstructure.     •  Width  as  defined  by  the  distance  between  two  opposing  surfaces.  Example:  width  of  a  channel.     •   Height   as   defined   by   the   distance   between   two   surfaces   of   same   orientation   but   placed   in   a   vertical  direction.  Example:  depth  of  microfluidic  channel.     •   Geometry   (or   form)   as   defined   by   the   distance   between   the   surface   of   the   object   and   a   pre-­‐ defined  reference.  Example:  flatness  of  wafer.     •   Texture   and   roughness   defined   as   geometries   of   surface   structures   whose   dimensions   are   small   compared  to  the  object  under  investigation.  This  poses  a  particular  challenge  for  micro  or  nano   sized  objects  because  the  surface  becomes  dominant  with  respect  to  object  volume..                                                                                                                               21

   http://www.mel.nist.gov/programs/nnp.htm  

 

19  

•  Thickness  of  layers     •  Aspect  ratio  as  defined  by  the  depth  of  a  structure  divided  by  its  width.    

Typical measurement tasks are performed in the fields of Semiconductors, Microsystems, Nanotechnology. Miniaturisation has been one of the driving forces of technology during the last 20 years. As predicted by Taniguchi in 1983 by now the technologies have moved into the nano-processing era and even for precision machining processes sub-µm precision is achievable. Fig. 1 illustrates Taniguchi’s prediction. This development has been made very clear in the semiconductor industry during the last 30 years, where the number of components on a chip has been doubled each 18 months approximately. This phenomenon is usually referred to as Moore’s law. Today the semiconductor industry is moving below 90 nm in pitch and need for proper process and quality control is evident.   N ew   res ear ch   dir ecti ons :   •

• • • • • • •  

encompasses  nanoscale  materials  and  structures   simulation  of  integration  processes,     design  of  novel  equipment  for  nanometrology,     modelling  of  open  quantum  systems  such  as  those  encountered  in  nanometrology   integration  of  multi-­‐scale  functional  systems   simulation  of  three  dimensional  nanoscale  metrology,  production-­‐hardened  metrology,  and   other  areas  driven  by  industrial  applications   advances  in  extensibility  and  portability  of  the  software   validation  and  verification  of  the  modelling  codes   20  

m o d e l l i n g   t h a t   e

  Computational  simulation  is  riding  a  hardware  and  software  wave  that  has  led  to  revolutionary   advances   in   many   fields   represented   by   both   continuous   and   discrete   models.   TRACS   and   HPC-­‐ Europe22   initiatives   of   the   EU   have   fostered   capabilities   that   make   simulations   with   millions   of   degrees  of  freedom  on  thousands  of  processors  for  tens  of  days  possible.         Modelling  which  helps  in  trends  in  commercial  developments:     • green  electronics;     • organic  and  large  area  electronics;     • bio-­‐markers,     • bio-­‐chips  &  drug  design;     • drug  delivery  on  a  spot.       The   diverse   phenomena   within   nanoscience   will   lead   to   a   plethora   of   models   with   widely   varying   characteristics.   For   this   reason,   it   is   difficult   to   anticipate   all   the   areas   of   mathematics   which   are   likely   to   contribute   and   serendipity   will   undoubtedly   play   a   role.   As   models   and   their   supporting   mathematics   mature,   new   algorithms   will   be   needed   to   allow   for   efficient   utilization   and   application   of  the  models.           Feedback   received   after   the   distribution   of   the   paper   published   in   November   2009   (courtesy   Dr.   James  Johnstone,  Nanotechnology  Knowledge  Transfer  Network)       1)  The  need  for  SME's  to  use  easy  packages  which  might  take  you  80%  there  in  a  specific  problem   and  then  you  might  need  to  call  in  the  academic  experts  to  help  refine  things  later.   2)  The  need  to  embed  modelling  into  industrial  collaborative  projects  at  national  and  European  level   as  funding  authorities  are  unlikely  to  call  modelling  topics  in  isolation  except  for  certain  things  like   nanotoxicology  for  example  where  the  field  is  more  academic.   3)  The  development  of  new  data  mining  processes  and  procedures  to  cope  with  the  sheer  amount  of   data  that  can  be  generated  these  days.   4)  Modelling  is  good  for  the  sustainability  agenda  as  it  reduces  the  amount  of  expensive   experimentation  for  industry  and  academia  alike.    

                                                                                                                          22

 

   http://www.hpc-­‐europa.eu  

21