Demidovich, B. P. and I. A. Maron; Computational Mathematics. Mir Publishers,
Moskow,. 1976. 7. Atkinson, K. E.; An Introduction to Numerical Analysis, John ...
Module 5 : Solving Nonlinear Algebraic Equations Section 7 : Summary
7 Summary In these lecture notes, we have developed methods for efficiently solving nonlinear algebraic equations. These methods can be classified as derivative free and derivative based methods. Issues related to existence and uniqueness of the solutions and convergence of the iterative schemes have also been discussed briefly. References 1. Bazara, M.S., Sherali, H. D., Shetty, C. M., Nonlinear Programming, John Wiley, 1979. 2. Biegler, L. T., I. E. Grossman, Westerberg, A. W., Systematic Method of Chemical Process Design, Prentice-Hall International, 1997. 3. Gupta, S. K.; Numerical Methods for Engineers. Wiley Eastern, New Delhi, 1995. 4. Gourdin, A. and M Boumhrat; Applied Numerical Methods. Prentice Hall India, New Delhi. 5. Strang, G.; Linear Algebra and Its Applications. Harcourt Brace Jevanovich College Publisher, New York, 1988. 6. Demidovich, B. P. and I. A. Maron; Computational Mathematics. Mir Publishers, Moskow, 1976. 7. Atkinson, K. E.; An Introduction to Numerical Analysis, John Wiley, 2001. 8. Linfield, G. and J. Penny; Numerical Methods Using Matlab, Prentice Hall, 1999. 9. Linz, P.; Theoretical Numerical Analysis, Dover, New York, 1979. 10. Economou, C. G. An operator Theory Approch to Nonlinear Controller Design. Ph.D. Dissertation. California Institute of Technology, 1985. 11. Rao, S. S., Optimization: Theory and Applications, Wiley Eastern, New Delhi, 1978. 12. Rall, L. B.; Computational Solutions of Nonlinear Operator Equations. John Wiley, New York, 1969.