BULLETIN of the M ALAYSIAN M ATHEMATICAL S CIENCES S OCIETY
Bull. Malays. Math. Sci. Soc. (2) 35(3) (2012), 601–610
http://math.usm.my/bulletin
Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator 1 R ASHIDAH
O MAR AND 2 S UZEINI A BDUL H ALIM
1,2 Institute
of Mathematical Sciences, Faculty of Science, Universiti Malaya, Malaysia 1 Faculty of Computer and Mathematical Sciences, Universiti Teknologi Mara, Malaysia 1
[email protected], 2
[email protected]
Abstract. Necessary and sufficient coefficient bounds and convolution condition for certain multivalent harmonic functions whose convolution with generalized hypergeometric functions is starlike of order γ are investigated. Results on extreme points, convex combination and distortion bounds using the coefficient condition are also obtained. 2010 Mathematics Subject Classification: 30C45, 30C50 Keywords and phrases: Multivalent harmonic functions, starlike functions, generalized hypergeometric functions, Dziok-Srivastava operator.
1. Introduction A complex-valued continuous function f = u + iv in a complex domain E ⊂ C is said to be harmonic if both u and v are real harmonic in E. There is an interrelation between harmonic functions and analytic functions. If E is a simply connected domain, then f = h + g¯ where h and g are analytic in E; the functions h and g are respectively called the analytic part and co-analytic part of f . The function f = h + g¯ is said to be harmonic univalent in E if the mapping z → f (z) is orientation preserving, harmonic and univalent in E. This mapping is orientation preserving and locally univalent in E if and only if the Jacobian J f of f given by J f (z) = |h0 (z)|2 − |g0 (z)|2 is positive in E [16]. From the perspective of geometric functions theory, Clunie and Sheil-Small [10] initiated the study on these functions by introducing the class SH consisting of normalized complex-valued harmonic univalent functions f defined on D = {z ∈ C : |z| < 1}. They gave necessary and sufficient conditions for f to be locally univalent and sense-preserving in D. Coefficient bounds for functions in SH were obtained. Since then, various subclasses of SH were investigated by several authors [1, 5, 8, 9, 15, 19, 20, 21]. Note that the class SH reduces to the class of normalized analytic univalent functions if the co-analytic part of f is identically to zero (g ≡ 0). Multivalent harmonic functions in D were introduced by Duren, Hengartner and Laugesen [11] via the argument principle. In [2], the class of multivalent harmonic functions ∗ (p, γ) of multivalent harmonic starlike functions of order γ, where p ≥ 1, and the class SH Communicated by V. Ravichandran. Received: May 5, 2011; Revised: October 4, 2011.
R. Omar and S. A. Halim
602
0 ≤ γ < 1 were discussed and studied. Motivated by [4], we introduce a class of multivalent harmonic functions starlike of order γ using the Dziok-Srivastava operator. Several related work using other linear operators can also be found in [3, 14, 26, 24]. n Recall that the convolution of two analytic functions ϕ(z) = ∑∞ n=0 an z and ψ(z) = ∞ n n ∑n=0 bn z defined on D is the analytic function given by ϕ(z) ∗ ψ(z) = ∑∞ n=0 an bn z = ψ(z) ∗ ϕ(z). Let SH (p) denote the class of multivalent harmonic functions f = h + g¯ where ∞
(1.1)
h(z) = z p + ∑ an+p−1 zn+p−1 ,
∞
g(z) =
n=2
∑ bn+p−1 zn+p−1 .
n=1
For αi ∈ C (i = 1, 2, . . . , l) and β j ∈ C\{0, −1, −2, . . .} ( j = 1, 2, . . . , m), the generalized hypergeometric function l Fm (α1 , . . . , αl ; β1 , . . . , βm ; z) is given by ∞
l Fm (α1 , . . . , αl ; β1 , . . . , βm ; z) =
(α1 )n . . . (αl )n
∑ (β1 )n . . . (βm )n n! zn
n=0
(l ≤ m + 1; l, m ∈ N0 := N ∪ {0}; z ∈ D) where (λ )n is the Pochhammer symbol defined, in terms of gamma function, by Γ(λ + n) (λ )n := = Γ(λ )
( 1, n = 0, λ 6= 0 λ (λ + 1)(λ + 2) · · · (λ + n − 1), n = 1, 2, 3, . . .
For an analytic function h of the form (1.1), Dziok and Srivastava [12] introduced the linear operator H pl,m [α1 ] h(z) = z p l Fm (α1 , . . . , αl ; β1 , . . . , βm ; z) ∗ h(z) which includes well known operators such as the Hohlov operator [13], Carlson-Shaffer operator [7], Ruscheweyh derivative operator [22], the generalized Bernardi-Libera-Livington integral operator [6], [17], [18] and the Srivastava-Owa fractional derivative operator [25]. For a harmonic function f = h + g, ¯ with h and g given by (1.1), the Dziok-Srivastava operator is defined by H pl,m [α1 ] f (z) = H pl,m [α1 ] h(z) + H pl,m [α1 ] g(z), n+p−1 , H l,m [α ] g(z) = ∞ φ b where H pl,m [α1 ] h(z) = z p + ∑∞ ∑n=1 n n+p−1 zn+p−1 p 1 n=2 φn an+p−1 z and
(1.2)
φn =
(α1 )n−1 · · · (αl )n−1 , (β1 )n−1 · · · (βm )n−1 (n − 1)!
α1 , . . . , αl , β1 , . . . , βm are positive real numbers such that l ≤ m + 1. ∗ (p, α , γ), the class of multivalent harmonic functions satisfying Denote by SH 1 0 0 l,m l,m z H [α ] h(z) − z H [α ] g(z) p p 1 1 (1.3) Re ≥ pγ H pl,m [α1 ] h(z) + H pl,m [α1 ] g(z) ∗ (1, α , γ) ≡ S∗ (α , γ) is the class defined for p ≥ 1, 0 ≤ γ < 1, |z| = r < 1. Note that SH 1 1 H ∗ (p, 1, γ) ≡ S∗ (p, γ) is invesin [4]. In the case of l = m + 1 and α2 = β1 , . . . , αl = βm , SH H ∗ (1, 1, γ) ≡ S∗ (γ) is the class introduced by Jahangiri [15]. Further tigated in [2] and SH H
Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator
603
∗ (p, α , γ) where h and g TH∗ (p, α1 , γ), p ≥ 1 denotes the class of functions f = h + g¯ ∈ SH 1 are functions of the form ∞
h(z) = z p − ∑ |an+p−1 |zn+p−1 , g(z) =
(1.4)
n=2
∞
∑ |bn+p−1 |zn+p−1 .
n=1
2. Main results Necessary coefficient conditions for the harmonic starlike functions and harmonic convex functions can be found in [10] and [23]. Now we derive sufficient coefficient bound for the ∗ (p, α , γ). class SH 1 Theorem 2.1. Let f = h + g¯ be given by (1.1) and ∏li=1 (αi )n−1 ≥ ∏mj=1 (β j )n−1 (n − 1)!. If ∞ n + p (1 + γ) − 1 1+γ n + p (1 − γ) − 1 |an+p−1 | + |bn+p−1 | |φn | ≤ 1 − |b p | (2.1) ∑ p (1 − γ) p (1 − γ) 1 −γ n=2 where |b p | < (1 − γ)/(1 + γ) , 0 ≤ γ < 1 and φn is given by (1.2), then the harmonic function ∗ (p, α , γ). f is orientation preserving in D and f ∈ SH 1 Proof. The inequality |h0 (z)| ≥ |g0 (z)| is enough to show that f is orientation preserving. Note that ∞
|h0 (z)| ≥ p |z| p−1 − ∑ (n + p − 1)|an+p−1 ||z|n+p−2 n=2
= p|z|
p−1
≥ p|z| p−1 ≥ |z|
p−1
∞
(n + p − 1) 1− ∑ |an+p−1 ||z|n−1 p n=2 ! ∞ (n + p − 1) 1− ∑ |an+p−1 | p n=2
!
! (n + p (1 − γ) − 1) 1− ∑ |φn ||an+p−1 | p (1 − γ) n=2 ∞
By hypothesis, since |φn | ≥ 1 and by (2.1), 0
|h (z)| ≥ |z|
p−1
= |z| p−1 ≥ |z| p−1
! ∞ (n + p (1 + γ) − 1) 1+γ |b p | + ∑ |φn ||bn+p−1 | 1−γ p (1 − γ) n=2 ! ∞ (n + p (1 + γ) − 1) |φn ||bn+p−1 | ∑ p (1 − γ) n=1 ! ∞
∑ (n + p − 1)|bn+p−1 |
n=1
≥ |z| p−1
∞
!
∑ (n + p − 1)|bn+p−1 ||z|n−1
n=1 ∞
=
∑ (n + p − 1)|bn+p−1 ||z|n+p−2 = |g0 (z)|
n=1
Thus, f is orientation preserving in D.
R. Omar and S. A. Halim
604
∗ (p, α , γ) by establishing condition (1.3). First, let Next, we prove f ∈ SH 1 0 0 z H pl,m [α1 ] h(z) − z H pl,m [α1 ] g(z) A(z) , w(z) = = B(z) H pl,m [α1 ] h(z) + H pl,m [α1 ] g(z)
where 0 0 A(z) = z H pl,m [α1 ] h(z) − z H pl,m [α1 ] g(z) ,
B(z) = H pl,m [α1 ] h(z) + H pl,m [α1 ] g(z) .
Now, |A(z) + p (1 − γ)B(z)| − |A(z) − p (1 + γ)B(z)| ∞
≥ (2p − pγ)|z p | − ∑ (n + 2p − pγ − 1)|φn an+p−1 zn+p−1 | n=2
∞
− ∑ (n + pγ − 1)|φn bn+p−1 zn+p−1 | − pγ|z p | n=1 ∞
∞
− ∑ (n − pγ − 1)|φn an+p−1 zn+p−1 | − ∑ (n + 2p + pγ − 1)|φn bn+p−1 zn+p−1 | n=2
n=1
∞
= 2p (1 − γ)|z p | − ∑ (2n + 2p − 2pγ − 2)|φn ||an+p−1 ||zn+p−1 | n=2
∞
− ∑ (2n + 2p + 2pγ − 2)|φ n ||bn+p−1 ||zn+p−1 | n=1
∞
(n + p − pγ − 1) |φn ||an+p−1 ||zn−1 | p (1 − γ) n=2 ! ∞ (n + p + pγ − 1) −∑ |φn ||bn+p−1 ||zn−1 | p (1 − γ) n=1
= 2p (1 − γ)|z p | 1 − ∑
∞
(n + p − pγ − 1) |φn ||an+p−1 | p (1 − γ) n=2 ! ∞ (n + p + pγ − 1) −∑ |φn ||bn+p−1 | p (1 − γ) n=1 ∞ (n + p − pγ − 1) 1+γ p = 2p (1 − γ)|z | 1 − |b p | − ∑ |an+p−1 | 1−γ p (1 − γ) n=2 (n + p + pγ − 1) + |bn+p−1 | |φn | p (1 − γ) ≥ 2p (1 − γ)|z p | 1 − ∑
The last expression is non-negative by (2.1). Since Re w ≥ pγ if and only if |A(z) + p (1 − ∗ (p, α , γ). γ)B(z)| ≥ |A(z) − p (1 + γ)B(z)|, f ∈ SH 1 ∞ For ∑n=1 (|xn+p−1 | + |y¯n+p−1 |) = 1 and x p = 0, the function (2.2) ∞ ∞ p (1 − γ) p(1 − γ) f1 (z) = z p + ∑ xn+p−1 zn+p−1 + ∑ y¯n+p−1 z¯n+p−1 [n + p(1 − γ) − 1]|φ | [n + p(1 + γ) − 1]|φ | n n n=2 n=1
Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator
605
shows equality in the coefficient bound given by (2.1). For the function f1 defined in (2.2), the coefficients are an+p−1 =
p (1 − γ) xn+p−1 [n + p(1 − γ) − 1]|φn |
and bn+p−1 =
p(1 − γ) y¯n+p−1 , [n + p(1 + γ) − 1]|φn |
∗ (p, α , γ). and since condition (2.1) holds, this implies f1 ∈ SH 1 To show that the converse need not be true, consider the function
f (z) = z p +
γ −1 p p(1 − γ) z p+1 + z¯ . [1 + p(1 − γ)]φ2 2(1 + γ)
It can be shown that h h i0 i0 p + p(1−γ) z p+1 − z¯ (γ−1) z¯ p z z [1+p(1−γ)] 2(1+γ) Re ≥ pγ, (γ−1) p p(1−γ) p+1 p + 2(1+γ) z¯ z + [1+p(1−γ)] z
(p ≥ 1, 0 ≤ γ < 1)
thus f ∈ S∗p (p, α1 , γ) but ∞
∞ n + p(1 − γ) − 1 n + p(1 + γ) − 1 |an+p−1 ||φn | + ∑ |bn+p−1 ||φn | p(1 − γ) p(1 − γ) n=2 n=1 1 + p(1 − γ) p(1 − γ) |φ2 | + 1 + γ γ − 1 > 1. = p(1 − γ) [1 + p(1 − γ)]φ2 1 − γ 2(1 + γ)
∑
∗ (p, α , γ). The next result provide a convolution condition for f to be in the class SH 1 ∗ (p, α , γ) if and only if Theorem 2.2. f ∈ SH 1 2p(1 − γ)z p + (ξ − 2p + 2pγ + 1)z p+1 H pl,m [α1 ] h(z) ∗ (1 − z)2 2p(ξ + γ)¯z p + (ξ − 2pξ − 2pγ + 1)¯z p+1 − H pl,m [α1 ] g(z) ∗ 6= 0, (1 − z¯)2
|ξ | = 1, z ∈ D.
∗ (p, α , γ) is given by (1.3) and we Proof. A necessary and sufficient condition for f ∈ SH 1 have 0 0 l,m l,m z H [α ] g(z) z H [α ] h(z) − p p 1 1 1 Re − pγ ≥ 0. p(1 − γ) l,m l,m H p [α1 ] h(z) + H p [α1 ] g(z)
Since 0 0 l,m l,m z H [α ] h(z) − z H [α ] g(z) p p 1 1 1 − pγ p(1 − γ) l,m l,m H p [α1 ] h(z) + H p [α1 ] g(z) " # n−1 − z¯ p ∞ (n + p − 1)φ b n−1 p + ∑∞ 1 n n+p−1 z n=2 (n + p − 1)φn an+p−1 z z p ∑n=1 − pγ = n−1 + z¯ p ∑∞ φ b n−1 p(1 − γ) 1 + ∑∞ p n=2 φn an+p−1 z n=1 n n+p−1 z z
=1
R. Omar and S. A. Halim
606
at z = 0, the above required condition is equivalent to 0 0 l,m l,m z H [α ] h(z) − z H [α ] g(z) p p 1 1 1 ξ −1 (2.3) , − pγ 6= p(1 − γ) ξ +1 l,m l,m H p [α1 ] h(z) + H p [α1 ] g(z) |ξ | = 1, ξ 6= −1, 0 < |z| < 1. Simple algebraic manipulation in (2.3) yields 0 0 l,m l,m l,m l,m 0 6= (ξ + 1) z H p [α1 ] h(z) − z H p [α1 ] g(z) − pγH p [α1 ] h(z) − pγH p [α1 ] g(z) − (ξ − 1)p(1 − γ)H pl,m [α1 ] h(z) − (ξ − 1)p(1 − γ)H pl,m [α1 ] g(z) (1 − p)z p (2pγ + pξ − p)z p zp l,m − − = H p [α1 ] h(z) ∗ (ξ + 1) (1 − z)2 (1 − z) (1 − z) ! ¯ − p)z p p p z (2pγ + p ξ (1 − p)z l,m − H p [α1 ] g(z) ∗ (ξ¯ + 1) − + (1 − z)2 (1 − z) (1 − z) 2p(1 − γ)z p + (ξ − 2p + 2pγ + 1)z p+1 = H pl,m [α1 ] h(z) ∗ (1 − z)2 2p(ξ + γ)¯z p + (ξ − 2pξ − 2pγ + 1)¯z p+1 − H pl,m [α1 ] g(z) ∗ . (1 − z¯)2 The coefficient bound for class TH∗ (p, α1 , γ) is determined in the following theorem. Furthermore, we use the coefficient condition to obtain extreme points, convex combination and distortion bounds. Theorem 2.3. Let f = h + g¯ be given by (1.4). Then f ∈ TH∗ (p, α1 , γ) if and only if ∞ n + p (1 − γ) − 1 n + p (1 + γ) − 1 1+γ (2.4) ∑ |an+p−1 | + |bn+p−1 | |φn | ≤ 1 − |b p | p (1 − γ) p (1 − γ) 1 −γ n=2 where |b p | < (1 − γ)/(1 + γ) , 0 ≤ γ < 1 and φn is given by (1.2). ∗ (p, α , γ), sufficiency part follows from Theorem 2.1. To Proof. Since TH∗ (p, α1 , γ) ⊂ SH 1 prove the necessity part, suppose that f ∈ TH∗ (p, α1 , γ). Then we obtain p n+p−1 − ∞ (n + p − 1)|b ¯ n+p−1 |φ¯n z¯n+p−1 pz − ∑∞ ∑n=1 n=2 (n + p − 1)|an+p−1 |φn z Re ≥ pγ, n+p−1 + ∑∞ |b ¯ ¯ n+p−1 z p − ∑∞ n=2 |an+p−1 |φn z n=1 n+p−1 |φn z¯
and the result follows by letting r → 1− along real axis. Let clco TH∗ (p, α1 , γ) denote the closed convex hull of TH∗ (p, α1 , γ). Now we determine the extreme points of clco TH∗ (p, α1 , γ). Theorem 2.4. Let f be given by (1.4). Then f ∈ clco TH∗ (p, α1 , γ) if and only if f can be expressed in the form ∞
(2.5)
f=
∑ (Xn+p−1 hn+p−1 +Yn+p−1 gn+p−1 ) ,
n=1
Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator
607
where h p (z) = z p , hn+p−1 (z) = z p −
p(1 − γ) zn+p−1 [n + p(1 − γ) − 1]|φn |
(n = 2, 3, ...),
p(1 − γ) z¯n+p−1 (n = 1, 2, 3, ...), [n + p(1 + γ) − 1]|φn | φn is given by (1.2), and ∑∞ n=1 (Xn+p−1 +Yn+p−1 ) = 1, with Xn+p−1 ≥ 0,Yn+p−1 ≥ 0. In particular, the extreme points of TH∗ (p, α1 , γ) are hn+p−1 and gn+p−1 . gn+p−1 (z) = z p +
Proof. Let f be of the form (2.5), then we have ∞ f (z) = X p h p (z) + ∑ Xn+p−1 z p −
p(1 − γ) zn+p−1 [n + p(1 − γ) − 1] |φn | n=2 ∞ p(1 − γ) + ∑ Yn+p−1 z p + z¯n+p−1 [n + p(1 + γ) − 1] |φn | n=1
∞
p(1 − γ) Xn+p−1 zn+p−1 [n + p(1 − γ) − 1] |φ | n n=2
= zp − ∑ ∞
p(1 − γ) Yn+p−1 z¯n+p−1 . [n + p(1 + γ) − 1] |φ | n n=1
+∑
(2.6) Furthermore, let |an+p−1 | =
p(1 − γ) Xn+p−1 [n + p(1 − γ) − 1] |φn |
and
|bn+p−1 | =
p(1 − γ) Yn+p−1 . [n + p(1 + γ) − 1] |φn |
Then ∞
p(1 − γ) Xn+p−1 [n + p(1 − γ) − 1] |φn | ∞ [n + p (1 + γ) − 1] |φn | p(1 − γ) +∑ Yn+p−1 p (1 − γ) [n + p(1 + γ) − 1] |φn | n=1
[n + p (1 − γ) − 1] |φn | ∑ p (1 − γ) n=2
∞
=
∞
∑ Xn+p−1 + ∑ Yn+p−1 = 1 − Xp ≤ 1.
n=2
n=1
TH∗ (p, α1 , γ).
Thus f ∈ clco Conversely, suppose that f ∈ clco TH∗ (p, α1 , γ). Set Xn+p−1 =
[n + p (1 − γ) − 1]|φn ||an+p−1 | p (1 − γ)
[n + p (1 + γ) − 1]|φn ||bn+p−1 | p (1 − γ) ∞ and define X p = 1 − ∑∞ X − ∑ n+p−1 n=2 n=1 Yn+p−1 . Then, Yn+p−1 =
∞
∞
n=2 ∞
n=1
(n = 2, 3, ...), (n = 1, 2, ...),
f (z) = z p − ∑ |an+p−1 |zn+p−1 + ∑ |bn+p−1 |¯zn+p−1 ∞ p (1 − γ)Yn+p−1 p (1 − γ)Xn+p−1 zn+p−1 + ∑ z¯n+p−1 =z −∑ [n + p (1 − γ) − 1]|φ | [n + p (1 + γ) − 1]|φ | n n n=2 n=1 p
R. Omar and S. A. Halim
608
∞ p = X p z + ∑ Xn+p−1 z p −
p (1 − γ) zn+p−1 [n + p (1 − γ) − 1]|φn | n=2 ∞ p (1 − γ) + ∑ Yn+p−1 z p + z¯n+p−1 [n + p (1 + γ) − 1]|φn | n=1
∞
=
∑ (Xn+p−1 hn+p−1 +Yn+p−1 gn+p−1 )
n=1
as required. Theorem 2.5. The class TH∗ (p, α1 , γ) is closed under convex combination. Proof. For i = 1, 2, 3, ..., suppose that fi (z) ∈ TH∗ (p, α1 , γ) , where fi is given by ∞
∞
n=2
n=1
fi (z) = z p − ∑ |ai,n+p−1 |zn+p−1 + ∑ |bi,n+p−1 |¯zn+p−1 . By Theorem 2.3, ∞
∞ n + p (1 − γ) − 1 n + p (1 + γ) − 1 |φ ||a | + n i,n+p−1 ∑ p (1 − γ) ∑ p (1 − γ) |φn ||bi,n+p−1 | ≤ 1. n=2 n=1
(2.7)
For ∑∞ i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of f i may be written as, ! ! ∞
∞
∞
∑ ti fi (z) = z p − ∑ ∑ ti |ai,n+p−1 |
i=1
n=2
i=1
∞
zn+p−1 + ∑
n=1
∞
∑ ti |bi,n+p−1 |
z¯n+p−1 .
i=1
Then, by (2.7) ∞
! ∞ ∑ ti |ai,n+p−1 | i=1 ! ∞ [n + p (1 + γ) − 1]|φn | ∞ +∑ ∑ ti |bi,n+p−1 | p (1 − γ) n=1 i=1
[n + p (1 − γ) − 1]|φn | ∑ p (1 − γ) n=2
= ∑ ti i=1 ∞
! ∞ [n + p (1 − γ) − 1]|φn | [n + p (1 + γ) − 1]]|φn | |ai,n+p−1 | + ∑ |bi,n+p−1 | ∑ p (1 − γ) p (1 − γ) n=1 n=2 ∞
∞
≤ ∑ ti = 1. i=1
∗ Hence, ∑∞ i=1 ti f i (z) ∈ TH (p, α1 , γ). In the last theorem below we give distortion inequalities for f in the class TH∗ (p, α1 , γ).
Theorem 2.6. If f ∈ TH∗ (p, α1 , γ) with φn ≥ φ2 , then for |z| = r < 1, | f (z)| ≤ (1 + |b p |) r p + r p+1
p (1 + γ)|b p | p (1 − γ) − [p (1 − γ) + 1]|φ2 | [p (1 − γ) + 1]|φ2 |
and p
| f (z)| ≥ (1 − |b p |) r − r
p+1
p (1 + γ)|b p | p (1 − γ) − . [p (1 − γ) + 1]|φ2 | [p (1 − γ) + 1]|φ2 |
Multivalent Harmonic Functions Defined by Dziok-Srivastava Operator
609
Proof. Since ∞ p (1 − γ) + 1 |φ2 | ∑ (|an+p−1 | + |bn+p−1 |) p (1 − γ) n=2 ∞
n + p (1 − γ) − 1 (|an+p−1 | + |bn+p−1 |) |φn | p (1 − γ) n=2 ∞ n + p (1 − γ) − 1 n + p (1 + γ) − 1 ≤∑ |an+p−1 | + |bn+p−1 | |φn |, p (1 − γ) p (1 − γ) n=2 ≤
∑
the result of Theorem 2.3 gives ∞
∑ (|an+p−1 | + |bn+p−1 |) ≤
(2.8)
n=2
p (1 − γ) 1+γ 1− |b p | . [p (1 − γ) + 1]|φ2 | 1−γ
Next, again since f ∈ TH∗ (p, α1 , γ), we have from (2.8) and |z| = r that ∞ ∞ p | f (z)| = z − ∑ |an+p−1 |zn+p−1 + ∑ |bn+p−1 |¯zn+p−1 n=2 n=1 ∞
∞
≤ |z p | + ∑ |an+p−1 | |z|n+p−1 + ∑ |bn+p−1 | |¯z|n+p−1 n=2 ∞
n=1
∞
= r p + ∑ |an+p−1 |rn+p−1 + ∑ |bn+p−1 |rn+p−1 n=2
n=1
!
∞
p
≤ (1 + |b p |)r +
∑ (|an+p−1 | + |bn+p−1 |)
r p+1
n=2 p
≤ (1 + |b p |)r + r
p+1
p (1 + γ)|b p | p (1 − γ) − [p (1 − γ) + 1]|φ2 | [p (1 − γ) + 1]|φ2 |
which gives the first result. In a similar manner, we obtain the following lower bound. ∞
∞
| f (z)| ≥ r p − ∑ |an+p−1 |rn+p−1 − ∑ |bn+p−1 |rn+p−1 n=2
n=1
∞
= (1 − |b p |)r p − ∑ (|an+p−1 | + |bn+p−1 |) rn+p−1 n=2
p
≥ (1 − |b p |)r − r
p+1
p (1 + γ)|b p | p (1 − γ) − . [p (1 − γ) + 1]|φ2 | [p (1 − γ) + 1]|φ2 |
Acknowledgement. The authors thank the referees for useful comments and suggestions. This research was supported by a grant from University Malaya (IPPP/UPGP/geran(RU/ PPP)/PS207/2009A). References [1] O. P. Ahuja, Use of theory of conformal mappings in harmonic univalent mappings with directional convexity, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 775–784. [2] O. P. Ahuja and J. M. Jahangiri, Multivalent harmonic starlike functions, Ann. Univ. Mariae CurieSkłodowska Sect. A 55 (2001), 1–13.
610
R. Omar and S. A. Halim
[3] O. P. Ahuja, S. Joshi and N. Sangle, Multivalent harmonic uniformly starlike functions, Kyungpook Math. J. 49 (2009), no. 3, 545–555. [4] H. A. Al-Kharsani and R. A. Al-Khal, Univalent harmonic functions, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), no. 2, Article 59, 8 pp. [5] K. Al-Shaqsi and M. Darus, On harmonic functions defined by derivative operator, J. Inequal. Appl. 2008, Art. ID 263413, 10 pp. [6] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429–446. [7] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737–745. [8] R. Chandrashekar, G. Murugusundaramoorthy, S. K. Lee and K. G. Subramanian, A class of complex-valued harmonic functions defined by Dziok-Srivastava operator, Chamchuri J. Math., 1 (2009), no. 2, 31–42. [9] Sh. Chen, S. Ponnusamy and X. Wang, Coefficient estimates and Landau-Bloch’s constant for planar harmonic mappings, Bull. Malays. Math. Sci. Soc. (2) 34 (2011), no. 2, 255–265. [10] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25. [11] P. Duren, W. Hengartner and R. S. Laugesen, The argument principle for harmonic functions, Amer. Math. Monthly 103 (1996), no. 5, 411–415. [12] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1–13. [13] E. Hohlov, Operators and operations in the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1978), 83–89. [14] J. M. Jahangiri, B. S¸eker and S. S. Eker, S˘al˘agean-type harmonic multivalent functions, Acta Univ. Apulensis Math. Inform. No. 18 (2009), 233–244. [15] J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470–477. [16] H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689–692. [17] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755–758. [18] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352–357. [19] G. Murugusundaramoorthy, K. Vijaya and R. K. Raina, A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator, Arch. Math. (Brno) 45 (2009), no. 1, 37–46. [20] G. Murugusundaramoorthy, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Southwest J. Pure Appl. Math. 2003, no. 2, 90–95. [21] T. Rosy, B. A. Stephen, K. G. Subramanian and J. M. Jahangiri, Goodman-Rønning-type harmonic univalent functions, Kyungpook Math. J. 41 (2001), no. 1, 45–54. [22] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115. [23] T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. (2) 42 (1990), no. 2, 237–248. [24] P. Sharma and N. Khan, Harmonic multivalent functions involving a linear operator, Int. J. Math. Anal. (Ruse) 3 (2009), no. 5–8, 295–308. [25] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106 (1987), 1–28. [26] K. G. Subramanian, B. A. Stephen and S. K. Lee, Subclasses of multivalent harmonic mappings defined by convolution, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 3, 717–726.