Negative feedback on a perennial crop: Fusarium ... - Springer Link

2 downloads 0 Views 417KB Size Report
In a survey of 50 asparagus plantations of the province of Québec, we found that FCRR was .... (PLFA) indicators extracted from soil, and Shannon. Weaver ...
Plant and Soil (2005) 268: 75–87 DOI 10.1007/s11104-004-0228-1

© Springer 2005

Negative feedback on a perennial crop: Fusarium crown and root rot of asparagus is related to changes in soil microbial community structure C. Hamel1,2,5 , V. Vujanovic3 , R. Jeannotte2 , A. Nakano-Hylander2,4 & M. St-Arnaud3 1 Current

address: Environmental Health / Water and Nutrients, Agriculture and Agri-Food Canada, 1 Airport Road Box 1030, Swift Current (SK) S9H 2X3 Canada. 2 Natural Resource Sciences, Macdonald Campus of McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue (QC) H9X 3V9 Canada. 3 Institut de recherche en biologie v´eg´etale, Universit´e de Montr´eal and Jardin botanique de Montr´eal, 4101 Sherbrooke est, Montr´eal (QC) H1X 2B2 Canada. 4 Current address: Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden. 5 Corresponding author∗

Received 22 January 2004. Accepted in revised form 26 April 2004

Key words: Asparagus officinalis, arbuscular mycorrhizal fungi, crop management, disease development, phospholipid fatty acid profile, plant-microbe interaction, soil microbial community structure Abstract The dynamic equilibrium of an ecosystem is driven by mutual feedback interactions between plants and soil microorganisms. Asparagus exerts a particularly strong influence on its soil environment through abundant production of persistent phenolic acids, which impact selectively soil microorganisms and may be involved in Fusarium crown and root rot (FCRR) of asparagus. In a survey of 50 asparagus plantations of the province of Québec, we found that FCRR was associated with a profound cultivar-specific, reorganization of the soil microbial community, as revealed by phospholipid fatty acid (PLFA) profiling. According to PLFA indicators, microbial biodiversity as well as bacterial and fungal abundance dropped sharply with the onset of FCRR in fields planted with the cultivar Guelph Millenium. This drop was followed by a similar drop in the arbuscular mycorrhizal population. Biodiversity and microbial population size then increased to finally reach a new equilibrium. Discriminant analysis of PLFA profiles obtained from soil samples also indicated a shift in soil microbial community structure associated with FCRR development in fields planted with the cultivar Jersey Giant. Different soil biological conditions, as indicated by microbial biomass C and N and soil enzyme activities, were associated with different cultivars. Preceding crop, manure application, geographical location and tillage depth also influenced the structure of soil microbial communities in asparagus plantations, as determined by PLFA profiling. If higher FCRR incidence is a consequence of the soil microbial community reorganization, means to reduce FCRR incidence in asparagus plantations may be found among practices such as soil organic fertilization, soil tillage and intercropping strategies that would dilute the negative influence of asparagus on the soil microbial community. Finally, FCRR outbreaks were generally promoted by a previous crop of maize. It seems that maize and asparagus host a F. proliferatum teleomorph (Gibberella fujikoroi) of the same mating type. Abbreviations: FCRR – Fusarium crown and root rot; PLFA – phospholipid fatty acid; FAME – fatty acid methyl ester. Introduction A growing body of evidence indicates that soil organisms have a strong influence on plant community dynamics (Bever, 2003). Some plant species typi∗ FAX No: +1(306)778-3188. E-mail: [email protected]

cally create self-stimulating biological conditions in the soil they occupy. This enhances their growth in a positive feedback reaction. In contrast, other plants species create soil microbiological conditions that are harmful to themselves. Such negative feedback-related auto-inhibition of growth in the latter plants has been

76 related with the accumulation of pathogen in the soil of their rooting zone (Klironomos, 2002). The reason why some plants species accumulate pathogens is unclear. Negative feedback has been related to the production of allelochemicals by plants (Souto and Pellissier, 2002). While most allelochemicals would not build to toxic levels under natural conditions, allelopathy could be a problem in perennial monoculture of agricultural plants expressing negative feedback dynamics. Asparagus (Asparagus officinalis L.) is a perennial plant that releases allopathic compounds in soil. Asparagus stems, root and old litter extracts can inhibit asparagus seed germination (Young and Chou, 1985). Experiments in which concentrations of inhibitory compounds were found in asparagus rhizosphere soil extracts and root exudates revealed that they are rootproduced, and may inhibit the growth of a variety of plants in addition to being auto-toxic (Young and Chen, 1987). These inhibitory compounds were identified as phenolic acids (Young and Chen, 1987) and saponins (Lake et al., 1993). Some inhibitory materials were also located in the amino acid/carbohydrate fraction of asparagus root extracts (Lake et al., 1993). Asparagus stands decline through years, a syndrome that was attributed to the activity of pathogens. In particular, asparagus is parasitized by a complex of Fusarium spp. namely, Fusarium proliferatum (T. Matsushima) Nirenberg [synonym: F. verticilloides (Sacc.) Nirenberg previously known as F. moniliforme Sheldon (Seifert et al., 2003)], F. culmorum (Wm.G. Sm.) Sacc., F. oxysporum Schlenchtend.: Fr. f. sp. asparagi S.I. Cohen & Head (Elmer, 2000, 2001) and F. redolens Wollenw. f. sp. asparagi Baayen (Baayen et al., 2000). These Fusarium spp. cause Fusarium crown and root rot (FCRR) in asparagus. Depopulated areas in asparagus plantations are typical indications that FCRR has occurred (Elmer, 2001). Pathogenic Fusarium spp. are ubiquitous in asparagus plantations (Blok and Bollen, 1996b; Vujanovic et al., 2004), but FCRR is only expressed sometimes in pathogenic Fusarium infected plants (Blok and Bollen, 1996b; Elmer, 2000). The erratic nature of FCRR expression could be explained by a requirement for some facilitating conditions, in addition to the presence of a pathogenic Fusarium strain in the plant environment.

The possibility that some soils would be conducive to FCRR expression was recently raised (Fravel et al., 2003). FCRR facilitating conditions may have physicochemical and biological components. First, asparagus is auto-toxic. Inhibitory compounds may accumulate in soil with time and increase the susceptibility of asparagus itself to FCRR as the plantation ages. Furthermore, root extract of this plant were found to be inhibitory to several soil fungi, but not to Fusarium spp. (Blok and Bollen, 1996c). In particular, ferulic, caffeic and methylenedioxy cinnamic acids, have been shown to negatively affect arbuscular mycorrhizal fungi (Pederson et al., 1991). In contrast, formononetin, a molecule that stimulates arbuscular mycorrhizal fungi, has reduced the percentage of asparagus root lesions caused by Fusarium spp. when compared to a non-treated control (Elmer, 2002). Arbuscular mycorrhizal fungi are well known as wide spectrum biocontrol agents (Dehne, 1982; St-Arnaud et al., 1995), and were associated to reduce severity of FCRR in asparagus seedlings (Elmer, 2002) and in commercial asparagus plantations (Matsubara et al., 2001). Higher FCRR incidence was also associated with reduced populations of Mn-reducers, mostly fluorescent pseudomonads, among which some had biocontrol activity (Elmer, 1995a, 2003). Therefore, the incidence of FCRR in asparagus plantations might be the expression of a negative feedback created by the alteration of the soil microflora following phenolic acid release in soil. Asparagus could produce good yields for 15 years or more, but FCRR chronically affects plantations, reducing the productivity and profitability of the crop. The development of crop management strategies to reduce FCRR incidence requires a better understanding of the ecological basis of the disease. The objective of this study was then to describe the soil microbial communities that exist at different levels of FCRR expression, within the commercial asparagus plantations of the province of Québec, Canada. This article reports on the reorganization of soil microbial communities accompanying FCRR development. A companion paper reports on the ecological conditions associated with FCRR development (Hamel et al., unpublished), and an in depth description of the mycodiversity and mycogeography of the Fusarium spp. isolated from the soil and plants of this study is also reported elsewhere (Vujanovic et al., 2004).

77 Materials and methods Experimental approach Fifty commercial asparagus plantations located in the four asparagus growing regions of the province of Québec were characterized, in an attempt to find relationships between indicators of soil microbial community structure and function, and FCRR incidence. The FCRR incidence in plantations was evaluated visually and scored on a percentage scale. Eighteen continuous variables were used to describe soil microbial quality. They were: activity of dehydrogenase, phosphatase and β-glucosidase, soil microbial biomass C and N, percentage of asparagus roots harbouring arbuscular mycorrhizal colonization (Giovannetti and Mosse, 1980), total fungi and Fusarium in rhizospheric soil, in roots, in crown and in stems, the abundance of fungal-, arbuscular mycorrhizal fungi- and bacterial phospholipids fatty acid (PLFA) indicators extracted from soil, and Shannon Weaver biodiversity index calculated from PLFA profiles. Management practices that were presumed to influence the quality of the soil microbial community in asparagus plantation were monitored. These were: Fertilizers (mineral fertilizers, compost, manure of rabbit, chicken, cow, or mixture of cow and chicken manure), time of organic fertilizer application (pre-planting, in spring, after harvest, or in fall), preceding crops (strawberry, maize, green manure, cereal crops, and other infrequently used species), time of soil tillage (end of summer, in spring, in fall or only before planting), tillage tools used (disc harrow or a rotovator), cultivars (Guelph Millenium, Jersey Giant, Viking KB3, Jersey Knight, SYN-456, Mary Washington, and Lucullus) and plantation age, which spanned from 1 to 21 years old. Data collection and sample analysis The information on the crop management practices used was collected from plantation owners through a survey form filled by owners with the assistance of local agronomists. The soil and plants of two microplots, defined within the 50 asparagus fields, were sampled during the two last weeks of June 2001, a period corresponding to the end of the asparagusharvesting season. The two micro-plots, one with asymptomatic and the other with symptomatic asparagus plants, covered a triangular area with approximately 10 m between the points of the triangle. In total, six whole plants (three diseased and three

asymptomatic plants) were taken from each field. A 100 g samples of the 0–15 cm soil layer were collected in proximity of each plant using a soil probe. The three soil samples were combined and mixed thoroughly to obtain one representative soil samples of 300 g per micro-plot. Soil and plant samples were placed in paper bags and air-dried. Soil samples were split in two parts. One part was kept at 4 ◦ C and used within a few days to determine potential dehydrogenase, phosphatase and β-glucosidase activities (Tabatabai, 1982), for microbial biomass C and N determination, using the fumigation extraction method (Voroney et al., 1993) and for Fusarium counts. Fusarium species were isolated from soil using dilution (10−2 ) series made using 3-g sub-samples from each of the soil samples taken. Plant tissues were treated with tap water to remove soil particles, surface sterilised for 3 min in 2.5% sodium hypochlorite containing 0.1% Tween 20, and rinsed three times in sterile distilled water, before isolation of microorganisms from plant roots, crowns and stems. Each plant tissue was cut into small sections with a sterile scalpel. Five sections (approximately 1 cm2 of plant tissues) were plated in each 9-cm Petri dish containing either a Fusarium selective medium, Myclobutanil agar (Vujanovic et al., 2002), or a general (PDA) medium. The myclobutanyl medium allows both the enumeration and identification of Fusarium spp., at least to the genus level. Soil dilutions and plant tissues from each of the three sampling points of each micro-plot was plated in five replicates (i.e., in five dishes). Petri dishes were incubated at 22 ◦ C in the dark and observed after 7 days. The total fungal colony forming units (CFU) counts were averaged to yield one total fungi CFU count and one Fusarium spp. CFU count for each of soil, crown, root and stem of each experimental unit, the micro-plot. Fusarium colonies were examined microscopically to confirm the identity of species using standard literature (Burgess et al., 1988; Gerlach and Nirenberg, 1982; Nelson et al., 1983). Soil microbial community structures were determined by PLFA. Soil samples had been stored at −10 ◦ C prior to phospholipids fatty acid (PLFA) extraction. Total soil lipids were extracted from six to eight grams of freeze-dried soil sample using an Accelerated Solvent Extractor ASE 200 (Dionex Corporation, Sunnyvale, CA, USA) according to the method of Macnaughton et al. (Macnaughton et al., 1997). The extraction mixture was chloroform: methanol (1:2) heated at 80 ◦ C and maintained under a pressure of 8.22 kPa for 5 min before filtration. This extraction

78 cycle was repeated three times on each sample. Lipid class separation on silicic acid gel column and fatty acid methyl ester (FAME) transformation followed the method of White and Ringelberg (White and Ringelberg, 1998). Individual fatty acids have been used as signatures for various taxonomic groups of microorganisms (Bardgett et al., 1999; Bossio et al., 1998; Grayston et al., 2001; Pankhurst et al., 2002; Yao et al., 2000). We chose C12:0, C13:0, 2OH-C12:0 and 3OHC12:0, C14:0, 2OH-C14:0 and 3OH-C14:0, 14-methC15:0, C15:0, C:16, 15-meth-C16:0, c9,10-methC16:0, C17:0, C18:0, C18:1ω9c, c9,10-meth-C:18, and C20:0 to represent bacterial PLFAs. The PLFA C18:2ω6 was taken as indicator of fungal biomass (Frostegard and Baath, 1996) and C16:1ω5, as indicator of extraradical mycorrhizal hyphae and spores (Olsson, 1999). Peak identification was based on retention time as compared to standards (Supelco 37 Component FAME Mix #47885-U, Supelco Bacterial Acid Methyl Esters #47080-U, and 11-hexadecenoic acid (C16:1ω5) methyl ester constructed from its fatty acid (Matreya/BioLynx cat. No. 1208) converted into methyl ester with BF3/methanol. The arbuscular mycorrhizal fungal biomarker (C16:1ω5) was tested against lipid extracts from Glomus intraradices hyphae and spores produced in vitro on Agrobacterium rhizogenes transformed carrot roots (St-Arnaud et al., 1996) prior to analysis. Shannon Weaver biodiversity index was calculated as H  = pi ln pi, where pi = peak area of i th peak over the area of all peaks. For this calculation, all peaks associated to fungal and bacterial indicators were utilized. Data analysis A principal component analysis was conducted to interpret the data expressing soil microbial activity, microbial abundance, disease symptom severity as related to cultivars and age of plantations. This analysis did not considered PLFA profiles, which were more appropriately analyzed by discriminant analyses. Discriminant analysis was used to assess differences in soil microbial community structure at different FCRR incidence levels, and the impact of different management practices on the soil microbial community structure. The combination of all identified PLFAs was used in these analyses. Plantation FCRR levels where grouped into classes prior to analysis (0–1%, 2–5% and more than 5%, for Guelph Millenium plantations, and 0–2%, 3–4%, 7–11% and more than 11%, for Jersey Giant). Grouping was based on the rela-

tionship found between FCRR incidence level, and biodiversity index and PLFAs levels. The range of FCRR incidence levels present in the Guelph Millenium and Jersey Giant datasets was also considered. Only functions with Eingenvalues ≥1 were retained in models. Significant canonical scores were plotted to illustrate how treatments clustered. Mahalanobis distances, which are a measure of the distance between points and their group means (centroids), were calculated to insure that PLFAs profiles were correctly classified within groups. The associated probabilities were used to detect significant separations among FCRR groupings. The relationship between FCRR incidence levels within each field and the abundance of the PLFA marker of arbuscular mycorrhizal fungi was assessed by regression analysis. Analyses were conducted on the entire dataset and on two subsets that were either related to the cultivar Guelph Millenium or to Jersey Giant, as the other cultivars were not planted into enough fields to allow meaningful analyses. All the statistical analyses were conducted using the software Systat (v. 9.1, Systat Software Inc., Richmond, CA, USA). Results Biological influence in the plantations system Cultivars behaved differently in the asparagus plantation system studied (Figure 1). In general, the more ancient cultivars were associated with FCRR incidence. Plantation age also had a large impact, as the most recently released cultivars are preferentially used when a field is planted. This is expressed in Figure 1 where cultivars are placed along an age gradient going from Guelph Millenium, with an average plantation age of 3.2 years old in the upper left corner of the graph, to Lucullus, SYN-345 and Mary Washington plantations, with average ages of 10, 10.4 and 13 years old, respectively, in the lower right area of the graph. Jersey Knight and Jersey Giant plantations, with average ages of 6.3 and 7.5 years old, are at intermediate locations in the graph. Viking KB3 plantations, with an average age of 16.8 years old, deviate from the general pattern; they are the oldest plantations, but appeared at an intermediate location in the graph. This reflects that is spite of their old age, the FCRR incidence of Viking KB3 was low (9%), ranking third only after Jersey Knight (4.9%) and Guelph Millenium (5.5%).

79

Figure 1. Factor loading plot constructed with factor 1 and factor 2 of a factorial analysis showing relationships between asparagus cultivars (cvGM, Guelph Millenium; cvJK, Jersey Knight; cvVi, Viking KB3; cvJG, Jersey Giant; cvLu, Lucullus; cvSy, SYN-456; cvMW, Mary Washington), and soil biology related variables i.e., Fusarium crown and root rot incidence (FCRR), soil enzyme activity (β-glucosidase, Gase; acid phosphatase, Pase; and dehydrogenase, Dase), soil microbial abundance (Mb-C, soil microbial biomass carbon; Mb-N, soil microbial biomass nitrogen), total cultivable fungi in plant stem (FTstem ), crown (FTcrown ), root (FTroot ) and rhizosphere soil (FTsoil ), and total Fusarium in plant stem (Fusstem ), crown (Fuscrown ), root (Fusroot ) and rhizosphere soil (Fussoil ). Factor 1 and factor 2 explained 30.4% of the variation encountered in the data set.

Interestingly, FCRR incidence showed little relationship with the abundance of Fusarium and total cultivable fungi in asparagus tissues and in rhizosphere soil. Rather, it appeared inversely related to soil enzyme activity and overall soil microbial biomass. Microbial community structure analysis The dataset was examined both as a whole and split by cultivars. Only the data subsets related to Guelph Millenium and to Jersey Giant contained enough observations for meaningful analyses. Close examination of the Guelph Millenium dataset revealed a 2-phase relationship between FCRR incidence and soil microbial biodiversity indicators including bacterial, fungal and arbuscular mycorrhizal fungi PLFA indicators values (Figure 2). At a FCRR level of 0%, microbial

biodiversity and abundance of bacterial, fungal, and arbuscular mycorrhizal fungi PLFA indicators were high. Microbial biodiversity, bacterial PLFA and fungal PLFA abundance decreased sharply to reach a minimum at 3–4% of FCRR incidence (Figures 2A, B and C). Beyond this point, the Shannon Weaver biodiversity index and abundance of the fungal PLFA indicator increased up to their initial levels, while bacterial PLFA indicators also increased, but to a lower level. A similar trend in arbuscular mycorrhizal fungal PLFA occurred, although it spanned over a longer range of FCRR incidence (Figure 2d). The relationship between arbuscular mycorrhizal fungi PLFA indicator and FCRR incidence could be described by a second degree polynomial regression equation. Examination of the Jersey Giant data did not reveal clear trends of relationship between FCRR and

80

Figure 2. Relationships found between Fusarium crown and root rot incidence, and (A) the Shannon Weaver Biodiversity Index, (B) bacterial PLFA indicators, (C) fungal PLFA indicator, and (D) arbuscular mycorrhizal fungi PLFA indicator, in Guelph Millenium planted fields.

81

Figure 4. Canonical score plots constructed with factor 1 and factor 2 of analyses on the impact of (A) organic amendments (1. Compost; 2. Rabbit manure; 3. Chicken manure; 4. Cow manure; 5. Cow and chicken manure; and 6. No organic amendment), (B) tillage depth in Guelph Millenium plantations (1. 10 cm; 3. no tillage), (C) field geographical location (1. North of Montreal; 2. Qu´ebec; 3. St-Hyacinthe; 4. Trois-Rivi`eres), and (D) preceding crops (1. Cereal; 2. Green manure; 3. Maize; 4. Strawberry), on microbial community structure in the soil of asparagus plantations of six years of age or less. The whole dataset was used for these analyses unless otherwise stated.

soil microbial Shannon Weaver biodiversity index or microorganisms-indicating PLFAs. However, Discriminant Analysis conducted on the whole microbial PLFA profiles revealed the occurrence of distinct microbial community structure (Wilk’s lambda = 0.001, P = 0.0003) under different FCRR incidence classes, in Jersey Giant planted fields (Figure 3a). As similar analysis of the cultivar Guelph Millenium PLFA profile subset also indicated the occurrence of distinct soil microbial community structure (Wilk’s lambda 11% of field area depopulated, and (B) in Guelph Millenium plantations, distinct community structures were found for the disease level classes (1) 0–2%, (2) 3–4%, (3) 5–6% and (4) >7% of field area depopulated.

it appears clearly that the change encountered in soil microbial populations was profound. We observed a 30% reduction in microbial biodiversity early in the Fusarium-related field depopulation process, followed by a recovery in the level of biodiversity correlated with further increase in field area affected by FCRR. This observation underscores that biodiversity in itself might not be a sufficient condition for a soil to be disease-suppressive and concurs with others on the

importance of the composition of the soil microbial community (Reeleder, 2003). The transient reduction in soil microbial diversity was concurrent with a 70% drop in the abundance of bacteria PLFA indicators that was followed by a recovery in bacteria abundance. Bacteria-indicating PLFAs abundance increased up to approximately 60% of its initial level, when the percentage of field area affected progressed further. The drop in the arbuscular mycorrhizal fungi PLFA indicator was even more dramatic with an 83% reduction. This state of low arbuscular mycorrhizal fungi abundance, which we interpret as a transition period where soil microbial populations are getting reorganized, spanned over a longer range of FCRR incidence percentages. Arbuscular mycorrhizal fungi spores are typically large and produced in very low amounts, as compared to spore production in other fungal species, and while they are commonly carried over short distance by soil animals, they are only accidentally carried by wind along with soil particles during windstorms. Evidence for succession of arbuscular mycorrhizal fungi in asparagus plantations was found in Michigan (Wacker et al., 1990). Chlamydospores of Glomus and Acaulospora spp. were prevalent in young plantations, while Gigaspora spp. predominated in asparagus plantations over 12 years of age. The slow dispersal of arbuscular mycorrhizal fungal propagules and the low biodiversity of this group of fungi in soil could explain the dramatic decrease in abundance of these fungi during initial disease development. Mycorrhizal fungi were associated to reduced severity of FCRR (Elmer, 2002; Matsubara et al., 2002). Some arbuscular mycorrhizal isolates were found more effective than others, in this regard (Matsubara et al., 2001). We do not know if the arbuscular mycorrhizal populations present before and after the shift occurs are equally effective against FCRR. If they are equally effective, this transient inhibition of the arbuscular mycorrhizal population should translate into a 3-phase pattern of disease development in asparagus plantation; first there would be a lag period with slow development of FCRR, followed by an acceleration of the rate of bare patch development in asparagus plantations and, then, the rate of increase in the area affected would level off as the arbuscular mycorrhizal population is restored, presumably with different species or strains. Agronomists observed in Québec asparagus plantations that, typically, FCRR is practically absent or present at very low levels in the first four to five years of an asparagus stand,

84 but develop rapidly between the fifth and tenth year (Jean-Guy Tessier, personnal communication). The same development pattern was also observed in Northeastern United State where decline is expected within five to ten years (Elmer, 1996). If FCRR outbreak in asparagus plantations is due to the transition phase during which arbuscular mycorrhizal fungi are practically absent, a simple way to reduce losses due to FCRR could be to inoculate asparagus seedlings with the arbuscular mycorrhizal species that are selected for in asparagus plantations, right at the propagation stage. It would be important, however, to first test early and late arbuscular mycorrhizal fungal species for their impact on asparagus growth, in case deleterious arbuscular mycorrhizal fungi were selected by asparagus plants. Yield decline under continuous corn and soybean cropping was attributed to the selection of less mutualistic arbuscular mycorrhizal fungal populations by these crop plants when monocultured (Johnson et al., 1992). In his study on the mechanism driving negative feedback reaction in some plants, Klironomos, tested and rejected the hypothesis of accumulation of deleterious arbuscular mycorrhizal fungal spp. under self-inhibitory plants. In all cases, the arbuscular mycorrhizal fungi isolated from the soil environment of the plants, enhanced rather than inhibit plant growth when they were reinoculated on the latter. The inoculation of asparagus seedlings with arbuscular mycorrhizal species that are selected by asparagus plants may be one way to reduce the impact of FCRR on plantation. This hypothesis remains, however, to be tested. According to the literature on asparagus (Pederson et al., 1991; Walters, 2003), FCRR plantations would stem from the release of phenolic acids by asparagus plants. Phenolic compounds produced by asparagus were shown to be associated with asparagus decline, with reduced asparagus root colonization by arbuscular mycorrhizal fungi (Pederson et al., 1991), with reduced abundance of microorganisms with biocontrol activity (Walters, 2003), and with increased number of pathogenic Fusarium (Elmer, 1996). Other asparagusrelated influences may also induce a transitory shift in the soil microbial community with a transitory negative impact on the plant health. Plants are known to change their soil microbial environment (Bever, 2003). The negative impact of phenolic acid in FCRR of asparagus strangely appears as a unique case. Phenolic acid production is usually seen as an expression of disease resistance in plants. Enhanced production of phenolic acids was associated to resistance to Fusar-

ium oxysporum f.sp. albedinis root infection in date palm (El Modafar and El Boustani, 2000, 2001) and to Fusarium wilt of banana (de Ascensao and Dubery, 2003). Resistance to Pythium aphanidermatum was also associated to enhanced production of phenolic compounds (Ongena et al., 2000), and the severity of Gibberella ear rot expression was negatively correlated with diferulic acid content in maize grain tissues (Bily et al., 2003). It is unclear how phenolic acids would enhance disease expression in asparagus, but would reduce it in other plants. Conclusions derived from laboratory experiments may become erroneous when plant-pathogen interactions are taken into the complexity of the soil environment. Although it is known that plant species influence the make up of soil microbial community (Eom et al., 2000; Fang et al., 2001; Hedlund, 2002) and that the practice of crop rotation is precisely aimed at preventing adverse soil microorganisms population build-up (Paulitz et al., 2002), to our knowledge, this is the first report describing profound soil microbial community reorganization in relation to disease spread, in a perennial monoculture. The changes in soil microbial community structure observed in the fields studied were occurring throughout the entire microbial communities as evaluated by PLFA indicators of large microbial taxonomic groups and went well beyond mere pathogen-antagonist interactions. If profound changes in soil microbial community structure are determinant for FCRR expression, the utilization of crop management strategies that impact on soil microbial community structure may delay or even prevent FCRR outbreak in asparagus plantations. Management factors influencing soil microbial community structure The choice of cultivar could be a factor influencing the rate of soil microbial community degradation in asparagus plantations. The fact that relationships between soil microbial community structure and FCRR incidence were found only within groups of fields planted with a single cultivar (Guelph Millenium or Jersey Giant) and not when all cultivars were confounded further suggests that different cultivars develop distinct soil microbial communities. It is also possible that the changes induced by different cultivars, although similar in nature, would occur at different rate, thus creating a variability that occults any FCRR- soil microbial community relationship.

85 Little difference in the soil physicochemical and microbiological conditions were found in micro-plots with symptomatic and asymptomatic plants (Hamel et al., unpublished; Vujanovic et al., 2004). The observation of differences in soil microbiology related variables associated with different cultivars, in this study, suggests the potential for a cultivar influence on FCRR. The Viking KB3 plantations surveyed had persisted for 16.8 years, on average, and resisted to FCRR particularly well. While higher FCRR incidence was expected in older plantations, we observed lower average FCRR incidence in Viking KB3 than in all other cultivars except Guelph Millenium and Jersey Knight, which were located in the youngest fields (3.2 and 6.3 years old, respectively). All this suggests that Viking KB3 is relatively tolerant to FCRR. The seemingly larger tolerance of Viking KB3 remains to be confirmed in controlled experiments. Biological control agents, in particular nonpathogenic Fusarium, have reduced FCRR incidence (Blok, 1997; Reid et al., 2002). Disease suppression after NaCl application was associated with increases in the densities of fluorescent pseudomonads and Mnreducing bacteria in rhizosphere soil (Elmer, 2003). This suggests that a solution to the problem of FCRR in asparagus may be found in the management of soil microorganisms. We observed that the addition of organic amendments to soil, tillage depth, geographical location and preceding crop, could all influence soil microbial community structure on the long-term. The preceding crop was particularly influential. Maize increased disease severity markedly, suggesting that maize may be a host for asparagus pathogens or favours their survival. FCRR is thought to be caused by a specific Fusarium population (Elmer, 2001), but maize and asparagus may have a pathogenic Fusarium in common. Maize seedling blight is caused by a complex of Fusarium species including F. oxysporum Schlechtend., F. verticilloides [previously known as F. moniliforme (Seifert et al., 2003)] (Munkvold and O’Mara, 2002), a similar species assemblage as in asparagus. The teleomorph of F. verticilloides and F. proliferatum is Gibberella fujikuroi, which has sexually distinct mating populations termed ‘A–E’ (Leslie, 1991). Isolates of F. proliferatum from asparagus belong to the ‘D’ mating population (Elmer, 1995b). In a survey conducted in the maize growing area of Slovakia, the organisms most frequently isolated on maize ear rot samples were strains of F. verticillioides, F. proliferatum and F. subglutinans, belonging to mating populations ‘A, D and E’ of

the teleomorph G. fujikuroi (Srobarova et al., 2002). The mating population ‘D’ of G. fujikuroi (anamorph: F. proliferatum) was also found on maize ear rot in Argentina (Chulze et al., 2000). It seems, therefore, that one of the causing agents of maize ear rot could also cause FCRR in asparagus. No relationship between soil organic amendment and the percentage of FCRR was observed in this study. Nevertheless, it can not be concluded that organic amendments have no impact on FCRR; there was little consistency in the application of organic amendments in the plantations surveyed. A range of organic materials were used and their application rate and frequency varied from site to site. A few studies have examined the effect of organic materials on FCRR. Compost, chitin and phosphoramidadate, a nematicide, had no effect on yield of asparagus (Elmer et al., 1999), but coconut charcoal and coffee residues have reduced the severity of FCRR (Matsubara et al., 2002).

Conclusion This study revealed three research avenues that could lead to the control of FCRR in asparagus. We observed that a profound reorganization of the soil microbial community was parallel to the process FCRR infection development in asparagus plantations. This may indicate that asparagus induces its own decline through soil microorganism-mediated negative feedback. If this is true, manipulation of soil microbial community through cropping practices that influence soil microorganisms could provide means to reduce the impact of FCRR. Second, the impact of cultivars on soil microbial populations and activity, and the higher tolerance to FCRR in Viking KB3, suggests a potential for the development of asparagus cultivars tolerant to pathogenic Fusarium strains or FCRR suppressive. Interestingly, some plant species were found to have fungitoxic effects on F. udum (Singh and Rai, 2000). Some plant species might similarly be toxic on the Fusarium spp. pathogenic to asparagus. Finally, we also observed that maize as a preceding crop favours FCRR incidence, presumably by sharing a common F. proliferatum teleomorph (Gibberella fujikoroi) of the same mating type. Although this remains to be experimentally confirmed, our results indicate that maize should not precede the establishment of an asparagus plantation.

86 Acknowledgements This research, was financially supported by the Conseil des recherches en pêches et agroalimentaire du Québec (CORPAQ) and by the Natural Science and Engineering Research Council of Canada (NSERC). We thank Jean-Guy Tessier for his invaluable help in planning the survey and the other agronomists of Québec Ministry of Agriculture who help us collect the crop management data. Thanks are also expressed to Richard Reeleder who critically reviewed the manuscript and to Stéphane Daigle for assistance with statistical analysis.

References Baayen R P, van den Boogert P, Bonants P J M, Poll J T K, Blok W J and Waalwijk C 2000 Fusarium redolens f.sp asparagi, causal agent of asparagus root rot, crown rot and spear rot. Eur. J. Plant Pathol. 106, 907–912. Bardgett R D, Lovell R D, Hobbs P J and Jarvis S C 1999 Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands. Soil Biol. Biochem. 31, 1021–1030. Bever J D 2003 Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. 157, 465–473. Bever J D, Westover K M and Antonovics J 1997 Incorporating the soil community into plant population dynamics: The utility of the feedback approach. J. Ecol. 85, 561–573. Bily A C, Reid L M, Taylor J H, Johnston D, Malouin C, Burt A J, Bakan B, Regnault-Roger C, Pauls K P, Arnason J T and Philogene B J R 2003 Dehydrodimers of ferulic acid in maize grain pericarp and aleurone: Resistance factors to Fusarium graminearum. Phytopathology 93, 712–719. Blok W J, Zwankhuizen M J and Bollen G J 1997 Biological control of Fusarium oxysporum f.sp. asparagi by applying nonpathogenic isolates of F. oxysporum. Biocontrol Sci. Technol. 7, 527–541. Blok W J and Bollen G J 1996a Etiology of asparagus replant bound early decline. Eur. J. Plant Pathol. 102, 87–98. Blok W J and Bollen G J 1996b Inoculum sources of Fusarium oxysporum f.sp. asparagi in asparagus production. Ann. Appl. Biol. 128, 219–231. Blok W J and Bollen G J 1996c Interactions of asparagus root tissue with soil microorganisms as a factor in early decline of asparagus. Plant Pathol. 45, 809–822. Bossio D A, Scow K M, Gunapala N and Graham K J 1998 Determinants of soil microbial communities: effects of agricultural management, season and soil type on phospholipid fatty acid profiles. Microb. Ecol. 36, 1–12. Burgess L W, Liddell C M and Summerell B A 1988 Laboratory Manual for Fusarium Research. University of Sydney, Sydney. Chulze S N, Ramirez M L, Torres A and Leslie J F 2000 Genetic variation in Fusarium section Liseola from no-till maize in Argentina. Appl. Environ. Microbiol. 66, 5312–5315. de Ascensao A and Dubery I A 2003 Soluble and wall-bound phenolics and phenolic polymers in Musa acuminata roots exposed to elicitors from Fusarium oxysporum f.sp cubense. Phytochemistry 63, 679–686.

Dehne H W 1982 Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72, 1115– 1119. El Modafar C and El Boustani E 2001 Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum. Biol. Plant. 44, 125–130. El Modafar C and El Boustani E 2000 Relationship between cell wall susceptibility to cellulases and pectinases of Fusarium oxysporum and susceptibility of date palm cultivars. Biol. Plant. 43, 571–576. Elmer W H 1995a Association between Mn-reducing root bacteria and NaCl applications in suppression of Fusarium crown and root rot of asparagus. Phytopathology 85, 1461–1467. Elmer W H 1995b A single mating population of Gibberella fujikuroi (Fusarium proliferatum) predominates in asparagus fields in Connecticut, Massachusetts, and Michigan. Mycologia 87, 68–71. Elmer W H 1996 Epidemiology and management of the diseases causal to asparagus decline. Plant Dis. 80, 117–125. Elmer W H 2000 Incidence of infection of asparagus spears marketed in Connecticut by Fusarium spp. Plant Dis. 84, 831–834. Elmer W H 2001 Fusarium diseases of asparagus. In Fusarium: Paul E. Nelson Memorial Symposium. Eds. B A Summerell, J F Leslie, D Backhouse, W L Bryden and L W Burgess. pp. 248–262. APS Press, St. Paul. Elmer W H 2002 Influence of formononetin and NaCl on mycorrhizal colonization and Fusarium crown and root rot of asparagus. Plant Dis. 86, 1318–1324. Elmer W H 2003 Local and systemic effects of NaCl on root composition, rhizobacteria, and Fusarium crown and root rot of asparagus. Phytopathology 93, 186–192. Elmer W H, LaMondia J A and Benson B 1999 Studies on the supression of Fusarium crown and root rot of asparagus with NaCl. Acta Hort. 479, 211–217. Eom A H, Hartnett D C and Wilson G W T 2000 Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122, 435–444. Fang C W, Radosevich M and Fuhrmann J J 2001 Characterization of rhizosphere microbial community structure in five similar grass species using FAME and BIOLOG analyses. Soil Biol. Biochem. 33, 679–682. Fravel D, Olivain C and Alabouvette C 2003 Fusarium oxysporum and its biocontrol. New Phytol. 157, 493–502. Frostegard A and Baath E 1996 The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22, 59–65. Gerlach W and Nirenberg H 1982 The Genus Fusarium – A Pictorial Atlas. Verlag Paul Parey, Berlin. 406 p. Giovannetti M and Mosse B 1980 An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500. Grayston S J, Griffith G S, Mawdley J L, Campbell C D and Bardgett R D 2001 Accounting for variability in soil microbial communities of temperate upland grassland ecosystems. Soil Biol. Biochem. 33, 533–551. Hedlund K 2002 Soil microbial community structure in relation to vegetation management on former agricultural land. Soil Biol. Biochem. 34, 1299–1307. Johnson N C, Copeland P J, Crookston R K and Pfleger F L 1992 Mycorrhizae: Possible explanation for yield decline with continuous corn and soybean. Agron. J. 84, 387–390. Klironomos J N 2002 Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70.

87 Lake R J, Falloon P G and Cook D W M 1993 Replant problem and chemical components of asparagus roots. New Zealand J. Crop Horicult. Sci. 21, 53–58. Leslie J F 1991 Mating populations of Gibberella fujikuroi (Fusarium Section Liseola). Phytopathology 81, 1058–1060. Macnaughton S J, Jenkins T L, Wimpee M H, Cormier M R and White D C 1997 Rapid extraction of lipid biomarkers from pure culture and environmental samples using pressurized accelerated hot solvent extraction. J. Microbiol. Methods 31, 19–27. Matsubara Y, Hasegawa N and Fukui H 2002 Incidence of Fusarium root rot in asparagus seedlings infected with arbuscular mycorrhizal fungus as affected by several soil amendments. J. Jpn. Soc. Hortic. Sci. 71, 370–374. Matsubara Y, Ohba N and Fukui H 2001 Effect of arbuscular mycorrhizal fungus infection on the incidence of Fusarium root rot in asparagus seedlings. J. Jpn. Soc. Hortic. Sci. 70, 202–206. Munkvold G P and O’Mara J K 2002 Laboratory and growth chamber evaluation of fungicidal seed treatments for maize seedling blight caused by Fusarium species. Plant Dis. 86, 143–150. Nelson P E, Toussoun T A and Marasas W F O 1983 Fusarium Species: An Illustrated Manual for Identification. The Pennsylvania State University Press, University Park. 193 pp. Olsson P A 1999 Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29, 303–310. Ongena M, Daayf F, Jacques P, Thonart P, Benhamou N, Paulitz T C and Belanger R R 2000 Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathol. 49, 523–530. Pankhurst C E, Pierret A, Hawke B G and Kirby J M 2002 Microbiological and chemical properties of soil associated with macropores at different depths in a red-duplex soil in NSW Australia. Plant Soil 238, 11–20. Pederson C T, Safir G R, Siqueira J O and Parent S 1991 Effect of phenolic compounds on asparagus mycorrhiza. Soil Biol. Biochem. 23, 491–494. Reeleder R D 2003 Fungal plant pathogens and soil biodiversity. Can. J. Soil Sci. 83, 331–336. Reid T C, Hausbeck M K and Kizilkaya K 2002 Use of Fungicides and biological controls in the suppression of Fusarium crown and root rot of asparagus under greenhouse and growth chamber conditions. Plant Dis. 86, 493–498. Seefelder W, Gossmann M and Humpf H U 2002 Analysis of fumonisin B-1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography – Electrospray ionization mass spectrometry. J. Agric. Food Chem. 50, 2778–2781. Seifert K A, Aoki T, Baayen R P, Brayford D, Burgess L W, Chulze S, Gams W, Geiser D, de Gruyter J, Leslie J F, Logrieco A, Marasas W F O, Nirenberg H I, O’Donnell K, Rheeder J, Samuels G J, Summerell B A, Thrane U, Waalwijk C 2003 The name Fusarium moniliformae should no longer be used. Mycol. Res. 107, 643–644. Singh R and Rai B 2000 Antifungal potential of some higher plants against Fusarium udum causing wilt disease of Cajanus cajan. Microbios 102, 165–173.

Souto X C and Pellissier F 2002 Feedback mechanism in the chemical ecology of plants: role of soil microorganisms. In Chemical Ecology of Plants: Allelopathy in Aquatic and Terrestrial Ecosystems. Eds. I Mallik and A U Mallik. pp. 89–97. Birkhauser Verlag, Switzerland. Srobarova A, Moretti A, Ferracane R, Ritieni A and Logrieco A 2002 Toxigenic Fusarium species of Liseola section in preharvest maize ear rot, and associated mycotoxins in Slovakia. Eur. J. Plant Pathol. 108, 299–306. St-Arnaud M, Hamel C, Caron M and Fortin J A 1995 Endomycorrhizes V A et sensibilité aux maladies: Synthèse de la littérature et mécanismes d’interaction probables. In Mycorrhizal Symbiosis. Eds. C Charest and R Bernier. pp. 51–87. Orbis, Frelighsburg, Québec. St-Arnaud M, Hamel C, Vimard B, Caron M and Fortin J A 1996 Enhanced hyphal and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100, 328–332. Tabatabai M A 1982 Soil enzymes. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Ed. A L Page. pp. 903–947. American Society of Agronomy, Madison, WI, U.S.A. Voroney R P, Winter J P and Beyaert R P 1993 Soil microbial biomass C and N. In Soil Sampling and Methods of Analysis. Ed. M Carter. pp. 277–286. CRC Press, Boca Raton, U.S.A. Vujanovic V, Hamel C, Jabaji-Hare S and St-Arnaud M 2002 Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from asparagus fields. Can. J. Microbiol. 48, 841–847. Vujanovic V, Hamel C, Yergeau E and St-Arnaud M 2004 Mycodiversity and mycogeography of Fusarium species from northeastern North American asparagus fields, based on microbiological and molecular approaches. Microbiol. Ecol. (in press). Wacker T L, Safir G R and Stephenson S N 1990 Evidence for succession of mycorrhizal fungi in Michigan asparagus fields. Acta Agric. ISHS 271, 273–278. Walters D R 2003 Polyamines and plant disease. Phytochem. 64, 97–107. Warncke D D, Reid T C and Hausbeck M K 2002 Sodium chloride and lime effects on soil cations and elemental composition of asparagus fern. Commun. Soil Sci. Plant Anal. 33, 3075–3084. White D C and Ringelberg D B 1998 Signature lipid biomarker analysis. In Techniques in Microbial Ecology. Eds. R S Burlage, R Atlas, D Stahl, G Geesey and G Sayler. Oxford University Press, New York, U.S.A. Yao H, He Z, wilson M J and Campbell C D 2000 Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb. Ecol. 40, 223–237. Young C C and Chen S H 1987 Phytotoxic study in the soil and root exudates of Asparagus officinalis L. Asparagus Res. News. 5, 55–56. Young C C and Chou T C 1985 Autointoxication in residues of Asparagus officinalis L. Plant Soil 85, 385–393. Section editor: D.E. Crowley

Suggest Documents