New Electro-Thermal Battery Pack Model of an ... - Semantic Scholar

7 downloads 52 Views 5MB Size Report
Jul 20, 2016 - The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent ... density and a long life cycle. Moreover, their .... [5,21] proposed an improved version Shepherd's model [22].
energies Article

New Electro-Thermal Battery Pack Model of an Electric Vehicle Muhammed Alhanouti 1, *, Martin Gießler 1 , Thomas Blank 2 and Frank Gauterin 1 1 2

*

Institute of Vehicle System Technology, Karlsruhe Institute of Technology, Karlsruhe 76131, Germany; [email protected] (M.G.); [email protected] (F.G.) Institute of Data Processing and Electronics, Eggenstein-Leopoldshafen 76344, Germany; [email protected] Correspondence: [email protected]; Tel.: +49-721-608-45328

Academic Editor: Michael Gerard Pecht Received: 30 May 2016; Accepted: 12 July 2016; Published: 20 July 2016

Abstract: Since the evolution of the electric and hybrid vehicle, the analysis of batteries’ characteristics and influence on driving range has become essential. This fact advocates the necessity of accurate simulation modeling for batteries. Different models for the Li-ion battery cell are reviewed in this paper and a group of the highly dynamic models is selected for comparison. A new open circuit voltage (OCV) model is proposed. The new model can simulate the OCV curves of lithium iron magnesium phosphate (LiFeMgPO4 ) battery type at different temperatures. It also considers both charging and discharging cases. The most remarkable features from different models, in addition to the proposed OCV model, are integrated in a single hybrid electrical model. A lumped thermal model is implemented to simulate the temperature development in the battery cell. The synthesized electro-thermal battery cell model is extended to model a battery pack of an actual electric vehicle. Experimental tests on the battery, as well as drive tests on the vehicle are performed. The proposed model demonstrates a higher modeling accuracy, for the battery pack voltage, than the constituent models under extreme maneuver drive tests. Keywords: temperature influence; new OCV model; battery circuit model; synthesized battery model; thermal model; electric vehicle

1. Introduction The global climate change, escalation in fuel cost, and the energy consumption, urged the necessity to replace the fossil fuel with renewable and environment friendly energy sources. Battery electric vehicles (BEV) are one major application, demonstrating the replacement of fossil fuel by renewable energy. Li-ion batteries have become the preferable energy storage for the future electric vehicles [1]. They receive greater attention than other battery types, such as lead-acid and nickel-cadmium batteries, due to their practical physical characteristics. They have a high specific energy, specific power, power density and a long life cycle. Moreover, their self-discharge rate is lower compared to other types of batteries [1–3]. Figure 1 demonstrates a typical discharge characteristic curve of a lithium-ion battery. The battery voltage extends between an upper and lower voltage limits V full and V cut-off , respectively. V cut-off represents the empty state of the battery where the minimum allowable voltage is reached. This restriction is meant to protect the battery from deep depletion. The section formed between V full , V exp and the correspondences capacity rates (C-rate) 0 and Qexp is identified as the exponential region of the discharge characteristic curve, at which the discharged voltage changes exponentially regarding to the battery capacity. The voltage holds an approximately steady value for C-rates beyond Qexp up to the nominal C-rate Qnom , where the nominal V nom voltage is reached. Not only is the battery voltage

Energies 2016, 9, 563; doi:10.3390/en9070563

www.mdpi.com/journal/energies

Energies 2016, 9, 563

2 of 17

Energies 2016, 9, 563 

2 of 18 

influenced by the discharge rate, but the battery capacity is also diminished at high discharge rates. influenced by the discharge rate, but the battery capacity is also diminished at high discharge rates.  This occurs as a sharp voltage drop at the end of the discharge process, as indicated in Figure 1. At that This occurs as a sharp voltage drop at the end of the discharge process, as indicated in Figure 1. At  rate the discharge terminates at V cut-off [4]. that rate the discharge terminates at V cut‐off [4]. 

  Figure 1. Typical discharge characteristic curve of Li‐ion battery [4,5]. 

Figure 1. Typical discharge characteristic curve of Li-ion battery [4,5].

The  vehicle  under  test  (VUT)  is  equipped  with  battery  cells  of  a  cathode  type  LiFeMgPO4.  Lithium iron phosphate cells are characterized by their flat open circuit voltage curve (OCV). Hence,  The vehicle under test (VUT) is equipped with battery cells of a cathode type LiFeMgPO4 . the  cell  stays  almost  constant  over  the  complete  charge  (SOC) voltage range  [2,3,6].  Lithium ironvoltage  phosphate cells are characterized by theirstate  flat of  open circuit curveThe  (OCV). battery pack of the VUT consists of 19 modules. Each module comprises six cell blocks connected in  Hence, the cell voltage stays almost constant over the complete state of charge (SOC) range [2,3,6]. series; a single cell block is constructed out of 50 LiFeMgPO4–graphite cells, connected in parallel. In  The battery pack of the VUT consists of 19 modules. Each module comprises six cell blocks connected total, there are 300 cells within the single battery module. Each cell block has a nominal voltage of 3.2  in series; a single cell block is constructed out of 50 LiFeMgPO4 –graphite cells, connected in parallel. V, amounting to a total voltage of 19.2 V. The battery specifications are given in Table 1. A Controller  In total, there are 300 cells within the single battery module. Each cell block has a nominal voltage of Area Network (CAN) communication environment is used for the control and management of the  3.2 V, battery modules. More technical information about the VUT is available in the Appendix.  amounting to a total voltage of 19.2 V. The battery specifications are given in Table 1. A Controller Area Network (CAN) communication environment is used for the control and management of the Table 1. Technical data of LiFeMgPO  Battery [7].  battery modules. More technical information about the VUT 4is available in the Appendix. Parameter (Unit) Value Table 1. Technical data of LiFeMgPO4 Battery [7]. Nominal Module Voltage (V)  19.2  Nominal Module Capacity (Ah)  69  Parameter (Unit) Value Max Continuous Load Current (A)  120  Nominal Module Voltage (V) 19.2 Peak Current for 30 s (A)  200  Nominal Module Capacity (Ah) 69 Continuous Current (A) modeling  120 methods  to  decide  which  In  this  paper,  we  will Max investigate  the Load different  battery  Peak Current for 30 s (A) 200 approach will be the most appropriate for modeling the battery pack of VUT. Then, we will select a  group  of  the  most  thorough  models  for  Li‐ion  batteries.  These  models  will  contribute  to  the  development of the proposed battery model, which will be considered for modeling actual battery  In this paper, we will investigate the different battery modeling methods to decide which approach pack voltage response when the VUT undergoes severe driving maneuvers.  will be the most appropriate for modeling the battery pack of VUT. Then, we will select a group of the The paper is organized as follows. Section 2 presents the different modeling techniques of Li‐ion  most thorough models for Li-ion batteries. These models will contribute to the development of the batteries. Three models are elected from the reviewed models and are discussed in more details in  proposed battery model, which will be considered for modeling actual battery pack voltage response Section 3. In Section 4 the thermal behavior of the battery is elaborated. The experimental tests are  whendescribed  the VUT in  undergoes driving Section  5. severe The  models  are maneuvers. evaluated  and  a  new,  improved  model  is  developed  and  The paper is organized as follows. Section 2 presents the different modeling techniques of Li-ion proposed in Section 6. Finally, the conclusions are stated at the end of the paper. 

batteries. Three models are elected from the reviewed models and are discussed in more details in Section 3. In Section 4 the thermal behavior of the battery is elaborated. The experimental tests are described in Section 5. The models are evaluated and a new, improved model is developed and proposed in Section 6. Finally, the conclusions are stated at the end of the paper.

Energies 2016, 9, 563

3 of 17

2. Existing Battery Models Different modeling approaches are found in the literature. The most prominent battery modeling techniques are: Electrochemical, analytical, and circuit-based models [8]. Electrochemical models employ non-linear differential equations to model the chemical and electrical behavior of the cell [4,9]. Detailed knowledge of the battery chemistry, material structure and other physical characteristics are essential to achieve high accuracy and cover a large number of different operating points. However, the producers of batteries will rarely reveal the full parameters set of their products. Another shortcoming of electrochemical models is the high computational effort required to solve the non-linear partial differential equations [8]. Electrochemical models are better suited for research in battery’s components fabrication, like electrodes and electrolyte [4,10]. The analytical modeling, on the other hand, reduces the computational complexity for the battery. However, that would be on the expense of capturing the circuit physical features of the battery, such as open circuit voltage, output voltage, internal resistance, and transient response [8]. Lumped electrical circuit models offer low complexity combined with high accuracy and robustness in simulating batteries dynamics [11–13]. Models with single or double resistor-capacitor (RC) networks are the best candidates for simulating the battery module [12–14]. RC parameters employed to model the battery characteristic show a dependency on temperature, charge/discharge rates and the SOC. Several techniques had been discussed in literature [1,15–19] for SOC estimation. Lam and Bauer [20] proposed a circuit model for the Li-ion battery with variable open circuit voltages, resistances and capacitances. The equivalent circuit components were represented as empirical functions of the current direction, the SOC, the battery temperature and the C-rate. Tremblay et al. [5,21] proposed an improved version Shepherd’s model [22]. This model considers the influence of SOC on the OCV by considering the polarization voltage in the discharge-charge model. Different dynamic models for Li-ion, lead-acid, NiMH and NiCd battery typed were presented in Reference [5]. However, neither the temperature effect nor the variation of the internal resistance were considered. Saw et al. [23] investigated the thermal behavior for a LiFePO4 –graphite battery by coupling the empirical equations of the modified Shephard’s battery model with a lumped thermal model for the battery cell. The temperature development of a complete vehicle battery pack under different driving cycles was simulated in [23]. Tan et al. [24] have incorporated the thermal losses to Shephard’s model for Li-ion battery cells by adding temperature dependent correction terms to the model. Wijewardana et al. [1] proposed a generic electro-thermal model for Li-ion batteries. The model considers potential correction terms accounting for electrode film formation and electrolyte electron transfer chemistry. In addition, the constant values in the empirical equations that represent the equivalent circuit components of the battery were adjusted. These equations were employed to model the electrical components in dependence of SOC and temperature. Wijewardana et al. consider the C-rate effect in the estimation of SOC by employing an extended Kalman filter technique. Computational thermal models and temperature distribution estimations were proposed in References [25–28]. Additionally, finite element analysis models to estimate the temperature distribution in the battery were presented in References [25,27–29]. This kind of simulation requires knowledge of thermal properties of the battery cell materials, such as thermal capacity, density, mechanical construction and cooling of the battery. For an accurate parameterization intensive and precise measurements are necessary. 3. Overview of Selected Dynamic Battery Models The equivalent circuit battery model provides a generic, dynamic way of modeling Li-ion batteries with moderate complexity. The moderate model complexity supports the integration of the model in a multiphysical simulation, allowing to analyze dynamic effects of the electric drive train. Three models are selected from the literature as the best candidates for Li-ion battery modeling, since they are the most thorough among the reviewed models. These models are:

Energies 2016, 9, 563

4 of 17

Energies 2016, 9, 563 

‚ ‚ ‚

4 of 18 

Tremblay et al. [5] (battery model 1)

 Tremblay et al. [5] (battery model 1)  Lam and Bauer [20] (battery model 2)  Lam and Bauer [20] (battery model 2)  et al. [1] (battery model 3) Wijewardana Wijewardana et al. [1] (battery model 3) 

3.1. Tremblay Battery Model (Battery Model 1) 3.1. Tremblay Battery Model (Battery Model 1)  Tremblay andand  Dessaint [5] improved their own model in Reference [21]. The new model is is  shown Tremblay  Dessaint  [5]  improved  their  own  model  in  Reference  [21].  The  new  model  shown in Figure 2. Only three points on the steady state manufacturer’s discharge curve are required  in Figure 2. Only three points on the steady state manufacturer’s discharge curve are required to to parametrize the model, which are the full voltage, the end point of exponential voltage region, and  parametrize the model, which are the full voltage, the end point of exponential voltage region, and the the nominal voltage. The variation of the OCV from a reference constant voltage (E ) is related to SOC  nominal voltage. The variation of the OCV from a reference constant voltage0(E 0 ) is related to SOC changes by incorporating a polarization constant (K).  changes by incorporating a polarization constant (K).

  Figure 2. Tremblay and Dessaint battery discharge model.  Figure 2. Tremblay and Dessaint battery discharge model.

In case of discharging the output voltage reads: 

In case of discharging the output voltage reads: ∙







 

(1) 

Q Vbatt “ E0 ´ R ¨ i ´ K ¨ pit ` i˚ q ` Ae´B ¨ it and for charging, the equation becomes:  Q ´ it and for charging, the equation becomes: ∙

0.1









(1)  

(2) 

Q Q the variables and constants in Equations (1) and (2) are defined in Table A1 in the Appendix A.  Vbatt “ E0 ´ R ¨ i ´ K ¨ i˚ ´ K ¨ it ` Ae´B ¨ it (2) Although,  the  charging  and  discharging  characteristics Qare  extensively  modeled,  some  other  it ´ 0.1Q ´ it influential  factors  like  the  variations  in  internal  resistance  (R)  and  temperature  influence  are  not  the variables and constants in Equations (1) and (2) are defined in Table A1 in the Appendix A.1. considered. The capacity fading effect is not taken into account in this model as well.  Although, the charging and discharging characteristics are extensively modeled, some other 3.2. Lam and Bauer Battery Model (Battery Model 2)  influential factors like the variations in internal resistance (R) and temperature influence are not

considered. capacity fading effectequivalent  is not taken into model  accountis inshown  this model as well. The The Lam  and  Bauer  battery  circuit  in  Figure  3.  The  model  demonstrates  the  VOC  as  a  function  of  SOC,  a  variable  ohmic  resistance  Ro,  and  two  variable   

3.2. Lam and Bauer Battery Model (Battery Model 2) RC‐networks: R SCS and RlCl for the short and the long time transient responses, respectively. Lam 

and  also  showed  the  relation  between  to  aging  and model different  stress  The Bauer  Lam and Bauer battery equivalent circuitcapacity  model isfading  showndue  in Figure 3. The demonstrates influences, which are the cell’s temperature, C‐rate, SOC and intensity of discharge. Lam and Bauer  the V OC as a function of SOC, a variable ohmic resistance Ro , and two variable RC-networks: RS CS parametrized their equations through curve fitting of experimental measurements. They employed  and Rl Cl for the short and the long time transient responses, respectively. Lam and Bauer also showed in their tests the LiFePO4 battery cell. The equivalent circuit resistors and capacitors equations for  the relation between capacity fading due to aging and different stress influences, which are the cell’s temperatures from 20 °C and above are detailed in Equations (7)–(28) in Reference [20]. We refer also  temperature, C-rate, SOC and intensity of discharge. Lam and Bauer parametrized their equations to the VOC equation with the corrected constants as proposed in Reference [20]: 

through curve fitting of experimental measurements. They employed in their tests the LiFePO4 battery . (3)  SOC resistors 0.5863 3.414 0.1102 for SOCtemperatures 0.1718   20 ˝ C and cell. The equivalent circuit and capacitors equations from above are detailed in Equations (7)–(28) in Reference [20]. We refer also to the V OC equation with the corrected constants as proposed in Reference [20]: 8ˆ10´3

VOC pSOCq “ ´0.5863 e´21.9 SOC ` 3.414 ` 0.1102 SOC ´ 0.1718 e´ 1´SOC

(3)

Energies 2016, 9, 563

5 of 17

Energies 2016, 9, 563 

5 of 18 

Energies 2016, 9, 563 

5 of 18 

  Figure 3. Lam and Bauer battery circuit model. 

Figure 3. Lam and Bauer battery circuit model.

 

3.3. Wijewardana Battery Model 

3.3. Wijewardana Battery Model

Figure 3. Lam and Bauer battery circuit model. 

A different perception, than the two previous models, is adopted in this model. The electrical  components, R S, CS, RL, Cthan L are functions of SOC and independent of the temperature. Only the series  A3.3. Wijewardana Battery Model  different perception, the two previous models, is adopted in this model. The electrical internal  is  a  function  of  SOC  temperature of(Rthe intS(SOC,T)).  The  temperature  components, RSresistance  , CS , RL , resistor  CL are functions of SOC andand  independent temperature. Only the series A different perception, than the two previous models, is adopted in this model. The electrical  influence is considered by adding potential correction terms, which are voltage due to electrode film  components, R S , C S , R L , C L  are functions of SOC and independent of the temperature. Only the series  internal resistance resistor is a function of SOC and temperature (RintS (SOC,T)). The temperature formation  (ΔE)  and  voltage  due  to  electrolyte  transfer (R formation  (ΔVChe).  The  capacity  internal  resistance  resistor  is  a  function  of  SOC  electrons  and  temperature  intS(SOC,T)).  The  temperature  influence is considered by adding potential correction terms, which are voltage due to electrode film fading effect is modeled as an additional series resistance R cyc. The battery output voltage is computed  influence is considered by adding potential correction terms, which are voltage due to electrode film  formation (∆E) and voltage due to electrolyte electrons transfer formation (∆V Che ). The capacity by subtracting the voltage drop of each circuit element from the V OC value. Figure 4 demonstrates  formation  (ΔE)  and  voltage  due  to  electrolyte  electrons  transfer  formation  (ΔVChe).  The  capacity  fading effect is modeled as an additional series resistance Rcyc . The battery output voltage is computed Wijewardana battery model.  fading effect is modeled as an additional series resistance Rcyc. The battery output voltage is computed 

by subtracting the voltage drop of each circuit element from the V value. Figure 4 demonstrates by subtracting the voltage drop of each circuit element from the V OCOC  value. Figure 4 demonstrates  Wijewardana battery model. Wijewardana battery model. 

  Figure 4. Wijewardana battery circuit model. 

 

The battery output voltage of this model reads [1]:  Figure 4. Wijewardana battery circuit model.  Figure 4. Wijewardana battery circuit model. ∆ ∆ The battery output voltage of this model reads [1]:  The battery output voltage of this ∆ model1reads ∆[1]: ∆   ∆ ∆

 

(4)  (5)  (4) 

 

Vbatt “ VOC ´ i RintS⁄` Rcyc ´ V1 ´ V2 ´ ∆E pTq ´ ∆VChe pTq `



β ∆

˘

∆1



∆  



1

β ∆  

(5)  (6) 

(4)

ˇ dVr ˇˇ ∆E pTq “ ∆T ∆ 1 β ∆   (5) The values of the model parameters are listed in the Appendix A.  ⁄ p1 ` CE1 ∆Tq ∆ β ∆ (6)  dT ˇT“Tcell ˇ 3.4. Assessment of Battery Models Qualities  dV The values of the model parameters are listed in the Appendix A.  Che ˇˇ pC ∆VChe pTq “ βw expp´1{tq ∆T ` ` CChe1 ∆Tq p1 ` βq ∆T (6) Three different highly dynamic to model Li‐ion batteries have been proposed. Each model has  dT ˇT“Tcell Che 3.4. Assessment of Battery Models Qualities  its dominant features. Table 2 summaries the qualities of each model. The (+) sign implies that the 

The values of the model parameters are listed inmodel.  the Appendix. corresponded  feature  is  considered  in  the  Whereas,  a  (++)  sign  denotes  an  extensive 

Three different highly dynamic to model Li‐ion batteries have been proposed. Each model has  consideration  to  the  related  feature.  In  contrast,  the  (‐)  sign  means  that  the  related  feature  was  its dominant features. Table 2 summaries the qualities of each model. The (+) sign implies that the  3.4. Assessment Models assigned of as Battery a feature  constant  it Qualities is  not  considered  at all  in  the  model. Battery  2  considers more  corresponded  is or  considered  in  the  model.  Whereas,  a  (++)  sign model  denotes  an  extensive  factors than the other models. However, each model must be evaluated with experimental data to  Three differentto highly dynamic to model Li-ion have been proposed. Each model consideration  the  related  feature.  In  contrast,  the batteries (‐)  sign  means  that  the  related  feature  was  has investigate its accuracy.  assigned  as  a  constant  or  it 2is  not  considered  in  the of model. Battery  considers more  its dominant features. Table summaries theat all  qualities each model.model  The 2  (+) sign implies that factors than the other models. However, each model must be evaluated with experimental data to  the corresponded feature is considered in the model. Whereas, a (++) sign denotes an extensive investigate its accuracy. 

consideration to the related feature. In contrast, the (-) sign means that the related feature was assigned as a constant or it is not considered at all in the model. Battery model 2 considers more factors than the other models. However, each model must be evaluated with experimental data to investigate its accuracy.

Energies 2016, 9, 563

6 of 17

Table 2. Comparison between the battery models. Feature Charge-Discharge hysteresis Open circuit voltage Internal resistance (R) Temperature influence Capacity fading

Battery Model 1

Battery Model 2

-

Considered in the output voltage Constant value for E0 Constant value

+ ++

-

Not considered

+

-

Not considered

+

++

Total Assessment

2

+

Battery Model 3

Considered in the internal resistance (R) equations V OC (SOC) R(SOC,T,C-rate) Considered in the internal resistance model

-

Charge-discharge

+ +

Considered in the battery’s used capacity estimation

+

V OC (SOC) R(SOC,T) Considered as potential correction terms Considered in the battery’s internal resistance (R) estimation 4

+

6

4. Battery Thermal Model A general energy balance is applied to estimate the battery cell temperature. It is assumed that the thermal distribution inside the cell is uniform and that the conduction resistance inside the battery cell is negligible compared with the convection and radiation heat transfer [1,23,27,28]. The change in temperature depends significantly on the battery thermal capacity (Cp ) and the difference between the generated heat and the dissipated heat. The dissipation of the heat to the battery surrounding is performed by convection and radiation. Generated heat comprises two sources, irreversible heat generation by means of the effective ohmic resistance of the cell’s material, and reversible generated heat due to the entropy change in both cathode and anode. The total entropy changes in the battery cell can be considered as zero according to References [1,29,30]. The temperature development inside the battery cell is described as: mC p

´ ¯ dTcell 4 4 “ i pVOC ´ Vbatt q ´ hAcell ∆T ´ σAcell Tcell ´ Tamp dt

(7a)

where ∆T is the difference between the battery cell and the ambient temperatures (Tcell ´ Tamp ), h is the natural convection coefficient, m is the cell mass, i is the cell current, Acell is the surface area of the single battery cell, σ is Stefan-Boltzmann constant, and ε is the emissivity of heat. Assuming that the temperature differences between the cells in the single battery module are small, Equation (7a) can be generalized for the whole battery module as: MC p

´ ¯ dTcell 4 4 “ I pVOC ´ Vbatt q ´ hA∆T ´ σA Tcell ´ Tamp dt

(7b)

where M is the total cells mass, I is the battery current, A is the surface area of the cells blocks in the single battery module. Saw et al. [23] has pointed out to the contribution of the contact resistance in heat generation. The contact resistance can be neglected in the investigated batteries, since the cells are realizing low ohmic over wide cell connectors by means of welded connections. Fifty individual cells are connected in parallel and we have a nominal current about 1.4 A per cell. The resistance of the single contact is 0.2 mΩ. With four welding points per cell connectors, the contact resistance for the single battery cell became 50 µΩ. The power loss in the single cell due to contact resistance is determined as: Ploss = Icell 2 Rcontact = 0.098 mW/cell, which is a negligible amount, thermally, as well as electrically. 5. Experimental Characterization of the Battery and the Vehicle under the Test 5.1. Battery Measurements In order to characterize the LiFeMgPO4 -battery, several experimental tests were implemented on the battery at different conditions. OCV vs. SOC measurements were performed at 10, 20 and 40 ˝ C. The battery was discharged until the cut-off voltage of 2 V was reached and then recharged up to the nominal capacity. A Low C-rate of C/10 was used to minimize the dynamic effects and to achieve a good approximation to an open circuit. Figure 5 demonstrates the charge and discharge OCV curves

Energies 2016, 9, 563

7 of 17

over the SOC for various temperatures. It is noticeable that the lower the operating temperatures, the higher the difference between charging and discharging. Energies 2016, 9, 563  7 of 18 

7 of 18 

OCV[V]

OCV[V]

Energies 2016, 9, 563 

  Figure 5. Charge and discharge OCV curves over SOC. 

Figure 5. Charge and discharge OCV curves over SOC. 5.2. Driving Tests on the Real Vehicle 

5.2. DrivingThe  Testsobjective  on the Real Vehicle   of  a  real  test  is  to  find a  real  driving maneuver  reference  signal  to  validate  the 

Battery pack voltage [V] pack voltage [V] Battery

100 50 250 200 0

150 -50

100 -100 0 50

50

100

150

200 Time[s]

250

300

350

(a) 

0 -50 250

Battery current [A] Battery current [A]

-100 0 200

50

100

150

150

200 Time[s]

250

300

(a) 

100

150

200 Time[s]

250

300

350

(b)

330 380 50

100

150

200 Time[s]

250

300

350

(b)

360

380 350 370 340 360

50 200 150 0

0

50

340

320 0 370

350

100 250

100 -50 0 50

350 380 340 370 330 360 320 350 0

Battery voltage Battery [V] voltage [V]

Battery pack current [A] Battery pack current [A]

battery model performance. Nevertheless, the battery model should be able to simulate the actual  Figure 5.   The objective of a real test is to Charge and discharge OCV curves over SOC. find a real driving maneuver reference signal to validate the system in real operating conditions, not merely charging‐discharging cycles. Two driving tests were  battery performed  model performance. Nevertheless, the battery model should be able to simulate the actual 5.2. Driving Tests on the Real Vehicle  with  the  test  vehicle  for  the  purpose  of  investigation  the  system  and  collecting  the  system experimental data. The tests were executed on the testing ground at Karlsruhe Institute of Technology  in real operating conditions, not merely charging-discharging cycles. Two driving tests The  objective  of  a  real  test  is  to  find a  real  driving maneuver  reference  signal  to  validate  the  were performed with the test vehicle for the purpose of investigation the system and collecting the (KIT). The experimental data attained from the CAN bus are displayed in Figures B1 and B2 in the  battery model performance. Nevertheless, the battery model should be able to simulate the actual  Appendix B. Then, the data were processed in MATLAB. In the first test, the vehicle was driven in a  experimental data. The tests were executed on the testing ground at Karlsruhe Institute of Technology system in real operating conditions, not merely charging‐discharging cycles. Two driving tests were  counterclockwise circular direction for about 230 s. Then the direction for driving was reversed and  performed  with  test attained vehicle  for  the  purpose  of  bus investigation  the  system  and  collecting  the A2 in the (KIT). The experimentalthe  data from the CAN are displayed in Figures A1 and the test was resumed. A variable pedal input was implemented in order to cover a broader range of  experimental data. The tests were executed on the testing ground at Karlsruhe Institute of Technology  Appendix A.2. Then, the data were processed in MATLAB. In the first test, the vehicle was driven data. This test represents an aggressive driving scenario, leading to discharge rate of up to 3.4 C. The  (KIT). The experimental data attained from the CAN bus are displayed in Figures B1 and B2 in the  in a counterclockwise circular direction for about 230 s. Then the direction for driving was reversed second test was implemented by subjecting the vehicle to a sequence of sudden accelerations and  Appendix B. Then, the data were processed in MATLAB. In the first test, the vehicle was driven in a  and thedecelerations. These tests were performed this way to create highly fluctuating signals in the battery  test was resumed. A variable pedal input was implemented in order to cover a broader range counterclockwise circular direction for about 230 s. Then the direction for driving was reversed and  the test was resumed. A variable pedal input was implemented in order to cover a broader range of  which  are  shown  Figure  6.  The  dynamic  responses  of  battery  voltage  can  be  used  of data.system,  This test represents anin  aggressive driving scenario, leading to discharge rate of upto to 3.4 C. data. This test represents an aggressive driving scenario, leading to discharge rate of up to 3.4 C. The  evaluate the battery models, discussed above.  The second test was implemented by subjecting the vehicle to a sequence of sudden accelerations second test was implemented by subjecting the vehicle to a sequence of sudden accelerations and  and decelerations. These tests were performed this way to create highly fluctuating signals in the decelerations. These tests were performed this way to create highly fluctuating signals in the battery  250 380 battery system, which areshown  shownin in Figure 6. The dynamic responses of battery canto  be used to 200 system,  which  are  Figure  6.  The  dynamic  responses  of  battery  voltage  voltage can  be  used  370 evaluate evaluate the battery models, discussed above.  the150battery models, discussed above. 360

50

100 Time[s]

(c) 

150

200

 

330 0 350 340

50

100 Time[s]

150

200

 

(d)

Figure 6.   CAN bus measurements: (a) Battery pack current for the circular driving test; (b) Battery  -50 330 0 50 100 150 200 0 50 100 150 200 Time[s]   pack  voltage  for  the  circular  driving  test;  (c)  Battery  pack  current  for  the Time[s] rapid  acceleration  and   (d) deceleration  driving  (c)  test;  (d)  Battery  pack  voltage  for  the  rapid  acceleration  and  deceleration    driving test.  Figure 6.  CAN bus measurements: (a) Battery pack current for the circular driving test; (b) Battery 

Figure 6.pack  CANvoltage  bus measurements: (a) Battery pack current the circular driving test; (b) and  Battery pack for  the  circular  driving  test;  (c)  Battery  pack for current  for  the  rapid  acceleration  voltage for the circular driving (c) Battery current forrapid  the rapid acceleration and deceleration deceleration  driving  test; test; (d)  Battery  pack pack voltage  for  the  acceleration  and  deceleration    driving test.  driving test; (d) Battery pack voltage for the rapid acceleration and deceleration driving test.

Energies 2016, 9, 563

8 of 17

6. Battery Models Validation 6.1. Evaluating the Open Circuit Voltage Models (VOC ) Wijewardana et al. [1] have employed a common model for VOC that is widely used and found in literature. Lam and Bauer [20] have redefined the model equation to suit the LiFeMgPO4 cathode type batteries. They concluded that the OCV is temperature independent. They justified this conclusion based on small changes of the OCV measurements due to temperature variations, which were in the range 2–8 mV [20]. An absolute error of 30 mV for LiFeMgPO4 battery cell will lead to an uncertainty of 13% in the SOC estimation at 1 C discharge and 25 ˝ C, according to Blank et al. [31]. The battery of our vehicle is LiFeMgPO4 -cathode type. Its OCV curves are presented earlier in Figure 6. According to our measurements, the OCV temperature alteration is from 15 to 90 mV, which is about 10 times higher than the result presented in Reference [20]. In our study, we use a battery module that contains 6 cellblocks in series, with 50 cells in parallel for each. Moreover, the vehicle’s battery pack has 19 modules. With this combination of battery cells, the range of voltage alteration becomes 1.71–10.26 V, which is a considerable change in the battery pack output voltage. We validated both V OC models in References [1,20] by comparing the simulation results with our own measurements, as shown in Figure 7. We selected the charge-discharge curves at T = 20 ˝ C to be the references for validation. The V OC model utilized in battery model 3 does not fit our measurements. The V OC of battery model 2 better fits the experimental data. The deviation in an SOC range spanning from 10% to 90% is about 0.03 V. This deviation increases at low temperature. The influence of the temperature variation on the OCV curves is defined as dVOC {dT. From the measurements shown in Figure 6, the value of this term was found to be 1.25 mV in case of discharge and 0.69 mV for charging. The V OC model 2 model is modified for better fitting of the OCV curve along the SOC range and the temperature influence is considered. The new V OC is modeled by Equations (8) and (9) and the constants values of the new V OC are presented in Table 3. The validation results are shown in Figure 8 and in Table 4. a6 VOC,discharge pSOC, Tq “ a1 e´a2 SOC ` a3 ` a4 SOC ` a5 e´ 1´SOC ` T dVOC,d {dT

(8)

b6 VOC,charge pSOC, Tq “ b1 e´b2 SOC ` b3 ` b4 SOC ` b5 e´ 1´SOC ` T dVOC,c {dT

(9)

Table 3. V OC parameter values. Constant

Value

Constant

Value

a1 a2 a3 a4 a5 a6

´1.166 ´35 3.344 0.1102 ´0.1718 ´2 ˆ 10´3 0.00125

b1 b2 b3 b4 b5 b6

´0.9135 ´35 3.484 0.1102 ´0.1718 ´8 ˆ 10´3 0.00069

dV OC,d /dT

dV OC,c /dT

6.2. Evaluating the Battery Models Output Voltage The accuracy of each model is yet to be proved. For objective comparison, the thermal model elaborated in Section 4 is employed for all models. The battery currents in Figure 6a,c are designated as the inputs for all models and the output voltage of each model is investigated against the voltage response signal, shown in Figure 6b,d. The V OC of model 3 [1] showed a large deviation from the actual curve, as shown in Figure 7. Therefore, the V OC derived from model 2 [20] will be also utilized in model 3. Figures 9 and 10 demonstrate the responses of the three models for both driving test. The simulation results gained from model 1 reveal the highest accuracy for the first test. The mean

Energies 2016, 9, 563

9 of 17

squared error between the measured voltage and the simulated voltage by model 1 is less than 1%. However, it performed the worst in the second test. The good performance of model 1 in the first test Energies 2016, 9, 563  9 of 18  ascribed to the fact that the test conditions were nearly matching the standard condition for defining Energies 2016, 9, 563  9 of 18  ˝ the constant voltage (E0 ). E0 is equal to the nominal voltage at 20 C, which is equal to 3.21 V and the ascribed to the fact that the test conditions were nearly matching the standard condition for defining  ascribed to the fact that the test conditions were nearly matching the standard condition for defining  initial voltage of the single0). E battery cell is estimated as 3.25 V. When the test second driving test was the constant voltage (E 0 is equal to the nominal voltage at 20 °C, which is equal to 3.21 V and the  the constant voltage (E 0). E0 is equal to the nominal voltage at 20 °C, which is equal to 3.21 V and the  performed at different circumstances, the outcome was not as good as it in the first case. Figure 10a initial voltage of the single battery cell is estimated as 3.25 V. When the test second driving test was  initial voltage of the single battery cell is estimated as 3.25 V. When the test second driving test was  reveals a relatively large offset error in the response of battery model 1 with a mean square error (MSE) performed at different circumstances, the outcome was not as good as it in the first case. Figure 10a  performed at different circumstances, the outcome was not as good as it in the first case. Figure 10a  reveals a relatively large offset error in the response of battery model 1 with a mean square error  of about 2.24%. Model 2 performed moderately with percentage errors between 1% and 2%. The offset reveals a relatively large offset error in the response of battery model 1 with a mean square error  errors(MSE) of about 2.24%. Model 2 performed moderately with percentage errors between 1% and 2%.  between the reference signal and initial voltage value of both battery models 2 and 3 were minor, (MSE) of about 2.24%. Model 2 performed moderately with percentage errors between 1% and 2%.  The Equation offset  errors  between  the  reference  signal  and  voltage  value  models  2    of whereas (3) is employed in both models for initial  the estimation of Vof of both  . both  Thebattery  simulation results The  offset  errors  between  the  reference  signal  and  initial  voltage  value OC battery  models  2    and 3 were minor, whereas Equation (3) is employed in both models for the estimation of V OC. The  model 3 indicate less dynamic response than the other two models. It could not conduct the drastic and 3 were minor, whereas Equation (3) is employed in both models for the estimation of V OC. The  simulation results of model 3 indicate less dynamic response than the other two models. It could not  changes in the battery current input signal. simulation results of model 3 indicate less dynamic response than the other two models. It could not  conduct the drastic changes in the battery current input signal.  conduct the drastic changes in the battery current input signal.  4.5

4.5 4

OCV[V] OCV[V]

4 3.5

3.5 3

3 2.5

2.5 2 0

20

2 0

20

Discharge measured at T=20°C Charge measured at T=20°C Voc of battery model 2 at T=20°C Discharge measured Voc of battery modelat3T=20°C Charge measured Voc 2 40 60 of battery model 80 100 SOC[%] Voc of battery model 3

40

60

80

 

100

SOC[%] Figure 7. Comparing the Voc model with measured experimental results.   

Figure 7. Comparing the Voc model with measured experimental results. Figure 7. Comparing the Voc model with measured experimental results.  Table 4. Accuracy of the proposed VOC model. 

Table 4. Accuracy of the proposed V OC model.

Temperature °C  Table 4. Accuracy of the proposed V MSE in Discharge Model % MSE in Charge Model %  OC model.  10  0.5232  0.8914  ˝ Temperature C MSE in Discharge Model % MSE in Charge Model % Temperature °C  MSE in Discharge Model % MSE in Charge Model %  20  0.5320  0.5719  10  0.5232  0.8914  10 0.5232 0.8914 40  0.5751  0.4522  20  0.5320  0.5719  20 0.5320 0.5719 40  0.5751  0.4522  40 0.5751 0.4522

 

 

(a) 

(b)

 

 

(a) 

(b)

  (c)  Figure 8. The new Voc model and measured experimental data: (a) T = 10 °C; (b) T = 20 °C; (c) T = 40 °C. 

 

(c)  Figure 8. The new Voc model and measured experimental data: (a) T = 10 °C; (b) T = 20 °C; (c) T = 40 °C. 

Figure 8. The new Voc model and measured experimental data: (a) T = 10 ˝ C; (b) T = 20 ˝ C; (c) T = 40 ˝ C.

Energies 2016, 9, 563 

10 of 18 

Energies 2016, 9, 563

10 of 17 10 of 18 

10

MSE = 0.9453%

105 Error [%] Error [%]

Battery pack voltage [V]

Battery pack voltage [V]

Energies 2016, 9, 563 

MSE = 0.9453%

50 0

-5

-5

-10 0

50

-10 0

(a)  (a) 

50

100 100

150 150

200 Time[s]

200 Time[s]

250

250

(b) 

(b) 

10

350

350

MSE = 1.75%

10

MSE = 1.75%

5 Error [%][%] Error

300

300

5

0 0

-5 -5

-10

-10 0 0

50

50

100

100

150

150

250

300

300

350

350

(d)  (d)  10 10

Battery pack voltage [V]

= 1.7841% MSEMSE = 1.7841%

55 Error [%] Error [%]

Battery pack voltage [V]

(c)(c)   

200

200 Time[s]250 Time[s]

00 -5-5

-10 -10 0

50

0

50

100

100

150

200

250

150 Time[s]200 Time[s]

300

250

350

300

350

(f) 

(e) 

(f) 

(e) 

Figure 9. Battery simulation models and reference voltage signal for circular driving test: (a) Battery 

Figure 9. Battery simulation models and reference voltage signal for circular driving test: (a) Battery Figure 9. Battery simulation models and reference voltage signal for circular driving test: (a) Battery  model 1 response; (b) Mean square error of battery model 1; (c) Battery model 2 response; (d) Mean  model 1 response; (b) Mean square error of battery model 1; (c) Battery model 2 response; (d) Mean model 1 response; (b) Mean square error of battery model 1; (c) Battery model 2 response; (d) Mean  square error of battery model 2; (e) Battery model 3 response (f) Mean square error in battery model 3.  square error of battery model 2; (e) Battery model 3 response (f) Mean square error in battery model 3. square error of battery model 2; (e) Battery model 3 response (f) Mean square error in battery model 3.  10

MSE = 2.2373%

Error [%]

Error [%]

5 0

0 -5

-5

-10 0

-10 0

(a) 

50

100 Time[s]

50

10

(a)  Error [%]

200

150

Time[s]

(b) 

  200

 

MSE = 1.0347%

MSE = 1.0347%

Error [%]

05 -5 0

-10 -5 0

(c) 

150

(b)  100

10 5

Battery voltage [V]

Battery voltage [V]

MSE = 2.2373%

5

Battery voltage [V]

Battery voltage [V]

10

-10 0

(c) 

50

100 Time[s]

200

 

(d)  50

100 Time[s]

(d)  Figure 10. Cont.

150

150

200

 

Energies 2016, 9, 563 Energies 2016, 9, 563 

11 of 17 11 of 18  10

MSE = 1.5176%

Energies 2016, 9, 563 

11 of 18  5 Error [%]

10 5

Error [%]

  (e) 

MSE = 1.5176%

0 -5 0

-10 0

-5

-10 0

50

100 Time[s]

150

200

 

(f)  50

100

150

200

Time[s]     Figure  10.  Battery  simulation  models  and  reference  voltage  signal  for  rapid  acceleration  and  Figure 10. Battery simulation models and reference voltage signal for(f)  rapid acceleration and (e)  deceleration  driving  test:  (a)  Battery  model  1  response;  (b)  Mean  square  error  of  battery  model  1;    deceleration driving test: (a) Battery model 1 response; (b) Mean square error of battery model 1; Figure  10.  Battery  simulation  models  and  reference  voltage  signal  for  rapid  acceleration  and  (c) Battery model 2 response; (d) Mean square error of battery model 2; (e) Battery model 3 response  (c) Battery model 2 response; (d) Mean square error of battery model 2; (e) Battery model 3 response deceleration  driving  test:  (a)  Battery  model  1  response;  (b)  Mean  square  error  of  battery  model  1;      (f) Mean square error in battery model 3. (f) Mean square error in battery model 3.

(c) Battery model 2 response; (d) Mean square error of battery model 2; (e) Battery model 3 response 

(f) Mean square error in battery model 3.  6.3. The Proposed Synthesized Battery Model  6.3. The Proposed Synthesized Battery Model It is explicable that each model has some flaws, as determined in Table 2. The simulation results  6.3. The Proposed Synthesized Battery Model  It is explicable that each model has some flaws, as determined in Table 2. The simulation in  Figures  9  and  10  prove  that  even  the  best  performing  models  need  to  be  further  improved.  It is explicable that each model has some flaws, as determined in Table 2. The simulation results  results in Figures 9 and 10 prove that even the best performing models need to be further improved. Accordingly, a synthesized model that holds the best qualities of each model has been developed.  in  Figures  9  and  10  prove  that that even holds the  best  models  need model to  be  further  improved.  Accordingly, a synthesized model theperforming  best qualities of each has been developed. First, the charge‐discharge characteristics of model 1 are considered. Additionally, the discharging  Accordingly, a synthesized model that holds the best qualities of each model has been developed.  First, the charge-discharge characteristics of model 1 are considered. Additionally, the discharging part part our proposed V OC(SOC,T) is employed instead of constant (E0) value. Then, the highly detailed  First, the charge‐discharge characteristics of model 1 are considered. Additionally, the discharging  our proposed V (SOC,T) is employed instead of constant (E ) value. Then, the highly detailed internal OC internal  resistance  model  of  battery  model  2  in  case  of 0discharging,  which  is  represented  by    part our proposed V OC(SOC,T) is employed instead of constant (E 0) value. Then, the highly detailed  resistance model of battery model 2 in case of discharging, which is represented by Equations (7)–(11), Equations (7)–(11), (17)–(19), (21), (27) in Referance [20], is taking the place of the constant internal  internal  resistance  model  of  battery  model  2  in  case  of  discharging,  which  is  represented  by    (17)–(19), (21), (27) in Referance [20], is taking the place of the constant internal resistance (R). resistance (R). The capacity fading effect is considered by adding R cyc from battery model 3 to the internal  Equations (7)–(11), (17)–(19), (21), (27) in Referance [20], is taking the place of the constant internal  The capacity fading effect is considered by adding R from battery model 3 to the internal resistance. cyc resistance (R). The capacity fading effect is considered by adding R cyc from battery model 3 to the internal  resistance.  The  empirical equations  in case  of  discharging are  implemented  because  the  charging‐ The empirical in case of discharging implemented because the charging-discharging resistance. equations The  empirical equations  in case  of are discharging are  implemented  because  the  charging‐ discharging hysteresis is properly modeled by model 1. The synthesized model is shown in Figure 11.  discharging hysteresis is properly modeled by model 1. The synthesized model is shown in Figure 11.  hysteresis is properly modeled by model 1. The synthesized model is shown in Figure 11.

    Figure 11. The proposed synthesized battery model.  Figure 11. The proposed synthesized battery model.  Figure 11. The proposed synthesized battery model.

In case of discharging, the output voltage reads:  In case of discharging, the output voltage reads:  In case of discharging, the output voltage reads: ∗



∙ ∙ ∗ ∙    (10)  (10)  ˘∙ Q ∙ ˚ ´ B ¨ it Vbatt “ VOC,discharge pSOC, Tq ´ RO ` Rcyc ` VS ` VL ¨ i ´ K ¨ pit ` i q ` Ae (10) Q ´ it and for charging, the equation expressed as:  and for charging, the equation expressed as:  ∙ and for charging, the equation expressed as: ∙ ∙ ∗ ∙   (11)  OC,discharge SOC, ∙ 0.1 ∙ ∗ ∙ ∙   (11)  OC,discharge SOC, 0.1Q ` ˘ Q ˚ ´ B ¨ it Vwhere  (11) batt “ VOC,discharge pSOC, Tq ´ RO ` Rcyc ` VS ` VL ¨ i ´ K it´0.1Q ¨ i ´ K Q´it ¨ it ` Ae where  where   (12)  dVS i VS  (12)  “ ´ (12) dt CS RS CS SOC, OC,discharge SOC,

OC,discharge

`

 

dVL i VL  “ ´ dt CL R L CL

(13) 

(13)  (13)

Energies 2016, 9, 563

12 of 17

The resistances and capacitors values are determined through Equations (14)–(18): ´ ¯ Rs pSOC, ϑq “ c1 epc2 SOCq ` c3 ` c4 SOC ` c5 ∆ϑ ` c6 SOC∆ϑ

(14)

´ ¯ Cs pSOC, ϑq “ c7 SOC3 ` c8 SOC2 ` c9 SOC ` c10 ` c11 SOC∆ϑ ` c12 ∆ϑ

(15)

´ ¯ ` ˘ 12 of 18  IC´rate q “ pc13 epc14 SOCq ` c15 ` c16 SOCq ` c17 ∆ϑepc18 SOCq ` c19 ∆ϑ ˆ c20 pIC´rate qc21 ` c22 Rl pSOC, ϑ,Energies 2016, 9, 563 

(16)

´ ¯ The resistances and capacitors values are determined through Equations (14)–(18):  Cl pSOC, ϑq “ c23 SOC6 ` c24 SOC5 ` c25 SOC4 ` c26 SOC3 ` c27 SOC2 ` c28 SOC ` c29 ` c30 ec31 {ϑ

(17)

SOC,

SOC



SOC ∆  

(14) 

´ ¯ 3 c38 {pϑ´c39 q (15)  SOC SOC` ∆ c36 c∆ Ro pSOC, ϑq “SOC,c32 SOC4SOC ` c33 SOC ` c34SOC SOC2 ` c35 SOC 37 e  SOC, ,

SOC





(18)



where ϑ is the battery cell temperature in Kelvin (˝ K) and c1 –c39 are constants, which (16)  their values are   listed in Table 5. SOC,

SOC

SOC

SOC

SOC

SOC

SOC

(17) 

/

  Table 5. Constants values of Equations (14)–(18).

/ (18)  SOC, SOC SOC SOC SOC   Constant Value Constant Value Constant Value Constant Value where ϑ is the battery cell temperature in Kelvin (°K) and c1–c39 are constants, which their values are  c31 c1 c11 ´6.580 c21 1.080 ˆ 10´2 ´6.919 ˆ 10´1 ´2.398 ˆ 103 listed in Table 5.  c2 ´11.03 c12 12.11 c22 c32 2.902 ˆ 10´1 1.298 ˆ 10´1 c3 c13 c23 c33 1.827 ˆ 10´2 2.950 ˆ 10´1 2.130 ˆ 106 ´2.892 ˆ 10´1 Table 5. Constants values of Equations (14)–(18).  c14 ´20.00 c24 c34 c4 ´6.462 ˆ 10´3 ´6.007 ˆ 106 2.273 ˆ 10´1 ´4 Constant  Constant  Value  Value  c5 c15Constant 4.722 ˆValue  c25 c35 ´3.697 ˆ 10Value  10´2 6.271 ˆ 106 Constant  ´7.216 ˆ 10´2 −2 ´4 c2.225 1  1.080 × 10   c16 c11  ´2.420 ˆ −6.580  c21  −6.919 × 10   6 c31  c36 −2.398 × 10 c6 c26 ˆ 10 10´2 ´2.958 ˆ−110 8.9803  ˆ 10´2 −1 −1 2 ´3 5 c 2  −11.03  c 12  12.11  c 22  2.902 × 10   c 32  1.298 × 10 c7 c17 c27 c37 1.697 ˆ 10 6.718 ˆ 10 5.998 ˆ 10 7.613  ˆ 10´1 −2   c13  2.950 × 10−1  c23  2.130 × 106  4 c33  −2.892 × 10−1  c3  c8 c ´20.00 c c 10.14 ´1.007 ˆ1.827 × 10 103 ´3.102 ˆ 10 18 28 38 −6.462 × 10−3  c14  −20.00  c24  −6.007 × 106  3 c34  2.273 × 10−1  c4  c9 c19 c29 c39 1.408 ˆ 103 ´5.967 ˆ 10´4−2 2.232 ˆ 610 2.608 ˆ 102 −4 −2 c5  −3.697 × 10   c15  4.722 × 10   c25  6.271 × 10   3 c35  −7.216 × 10   2 ´1 c10 c c 3.897 ˆ 10 6.993 ˆ 10 3.128 ˆ 10 −4 −2 6 −2 20 30 2.225 × 10   c16  −2.420 × 10   c26  −2.958 × 10   c36  8.980 × 10   c6 

1.697 × 102  c17  6.718 × 10−3  c27  5.998 × 105  c37  c7  −1.007 × 103  c18  −20.00  c28  −3.102 × 104  c38  c8  The new model shows a 3significant improvement inc29the simulation 1.408 × 10   c19  −5.967 × 10−4    2.232 × 103  response, c39  c9  3.897 × 102  c20  6.993 × 10−1  c30  3.128 × 103    c10 

7.613 × 10−1  10.14  2 in Figure 12. as2.608 × 10 shown    

The mean square error was reduced to only 0.256%. The new model shows also the best result when it The  new  model  significant  improvement  in  the  simulation  response,  shown  it in had   employed for simulating theshows  rapida acceleration and deceleration driving test, as  though a small Figure 12. The mean square error was reduced to only 0.256%. The new model shows also the best  offset error at the beginning of 3.2 V. This error yielded from an absolute voltage error of 0.028 V in result when it employed for simulating the rapid acceleration and deceleration driving test, though  proposed VOC model, represented by Equation (8), at the specified SOC and temperature values. it had a small offset error at the beginning of 3.2 V. This error yielded from an absolute voltage error  of  0.028  V  in simulated proposed  VOC  model,  represented  by  Equation  (8),  at  the  specified  SOC  and  The battery models are in MATLAB/Simulink environment. Figure 13 shows the Simulink temperature values. The battery models are simulated in MATLAB/Simulink environment. Figure 13  model for the proposed battery model. shows the Simulink model for the proposed battery model.  10

MSE = 0.2559%

Error [%]

5 0 -5 -10 0

50

100

150

200 Time[s]

250

300

350

 

(b)

(a)   

10

MSE = 0.7862%

Error [%]

5 0 -5

(c) 

 

-10 0

50

100 Time[s]

150

200

(d) 

Figure 12. The proposed synthesized battery model and reference voltage signal: (a) Proposed model response for the circular driving test; (b) Error of proposed model voltage for the circular driving test; (c) Proposed model response for the rapid acceleration and deceleration driving test; (d) Error of proposed model voltage for the rapid acceleration and deceleration driving test.

Energies 2016, 9, 563 

13 of 18 

Figure 12. The proposed synthesized battery model and reference voltage signal: (a) Proposed model  response for the circular driving test; (b) Error of proposed model voltage for the circular driving test;  Energies(c)  2016, 9, 563 model  response  for  the  rapid  acceleration  and  deceleration  driving  test;  (d)  Error  of 13 of 17 Proposed  proposed model voltage for the rapid acceleration and deceleration driving test.  SOC0 3 -KGain4

K Ts z

f(u)

z-1 Discrete-Time Integrator2

OCV(SOC,T)_dis2

SOC T[°C]

|u| Abs

E0-R*i

U_R

-K-

I_cell

C-Rate Calculation

R

1/s

Lam, Bauer RC Model

Saturation

exp e% Sim

Subsystem

PE

Integrator it

6

E_batt

Cell Blocks Lowpass

1 Measured battery pack current

2 Actual battery pack voltage

Q(Capacitance)

I_Crate

Cells current

i*

19

i

number of Modules

Lowpass Filter

1/50

U

Discharge-Charge dynamics

V_cell VOC |u|

4 T_ambient 5 T_Cell

i_cell

Battery Temperature

Ambient Temp Tbatt0

Battery Temperature Model

  Figure 13. The proposed synthesized battery simulation model. Figure 13. The proposed synthesized battery simulation model. 

7.7. Conclusions  Conclusions   AA battery is a sophisticated system, which necessitates a detailed model for accurate simulation.  battery is a sophisticated system, which necessitates a detailed model for accurate Many  factors  must  be  considered  in  the  battery  model  for  accurate  simulation  Charging‐ simulation. Many factors must be considered in the battery model for accurate results.  simulation results. discharging dynamics, battery internal resistance, and open circuit voltage are the most significant  Charging-discharging dynamics, battery internal resistance, and open circuit voltage are the most aspects  for  battery  Temperature  is  an  influential  factor  for  all  of  The  significant aspects formodeling.  battery modeling. Temperature is an influential factor forthese  all of aspects.  these aspects. difference between the charging and discharging in the OCV curves increases at low temperatures.  The difference between the charging and discharging in the OCV curves increases at low temperatures. This phenomenon occurs due to the decrement in battery capacity, which in turn appears as a result  This phenomenon occurs due to the decrement in battery capacity, which in turn appears as a result rise ofof the the internal internal resistance. resistance.  Neglecting Neglecting  the  ofof aa rise the effect  effect of  of temperature  temperature will  will lead  leadto  toinaccuracy  inaccuracyin  in simulation. Even the slightest errors in the simulation results of the battery cell model, would grow  simulation. Even the slightest errors in the simulation results of the battery cell model, would grow significantly when the model is extended to the complete battery pack. Battery model 1 has two flaws.  significantly when the model is extended to the complete battery pack. Battery model 1 has two flaws. Firstly, it assumes the initial voltage value to be the nominal battery cell voltage. This assumption led  Firstly, it assumes the initial voltage value to be the nominal battery cell voltage. This assumption led toto large offset from the actual value, when the vehicle was tested at about 30 °C. Secondly, it considers  large offset from the actual value, when the vehicle was tested at about 30 ˝ C. Secondly, it considers a constant internal resistance of the battery, which is in fact a very fluctuating quantity that affects  a constant internal resistance of the battery, which is in fact a very fluctuating quantity that affects the the  battery  cell  current  the response voltage asresponse  well.  The  proposed  model  has  battery cell current and the and  voltage well. Theas  proposed battery model battery  has compensated for compensated for these shortages and it has accurately simulated the battery pack voltage response  these shortages and it has accurately simulated the battery pack voltage response on the real vehicle. on the real vehicle.  Author Contributions: Muhammed Alhanouti made the literature review on theon  current battery models, Author  Contributions:  Muhammed  Alhanouti  made  the  literature  review  the  current  battery  proposed models,  the synthesized battery model, developing the simulation models, and wrote the paper. Martin Gießler and proposed the synthesized battery model, developing the simulation models, and wrote the paper. Martin Gießler  Thomas Blank designed and performed the battery measurements, and they helped in editing the paper content. and Thomas Blank designed and performed the battery measurements, and they helped in editing the paper  Frank Gauterin supervised the work of this paper and approved the results content. Frank Gauterin supervised the work of this paper and approved the results  Conflicts of Interest: The authors declare no conflict of interest. Conflicts of Interest: The authors declare no conflict of interest. 

Appendix

 

Appendix A.1. Nomenclature Table A1. Battery models parameters. Parameter (Unit)

Symbol

Value

Constant voltage (V) Constant internal resistance (Ω) Polarization constant (V/(Ah)) or polarization resistance (Ω) Battery capacity (Ah)

E0 R K Q

3.21 [23] 0.0833 0.0119 [23] Variable

Energies 2016, 9, 563

14 of 17

Table A1. Cont. Parameter (Unit)

Symbol

Value

Actual battery charge (Ah) Exponential zone amplitude (V) Exponential zone time constant inverse (Ah)´1 Battery current (A) Filtered current (A) Voltage change due to electrolyte electrons transfer formation the effective voltage gradient Constant property of electrolyte Constant property of electrolyte Constant property of electrolyte Constant property of electrolyte Voltage change due to electrode film formation voltage gradient Constant property Battery module surface area (m2 ) Battery cell mass (kg) Battery module mass (kg) Specific heat capacity (J¨ kg´1 ¨ K´1 ) Stefane-Boltzmann constant (W¨ m´2 ¨ K4 ) Emissivity of heat Natural heat convection constant (W¨ m´2 ¨ K´1 )

it A B i i*

Variable 0.2711 [23] 152.130 [23] Variable Variable

∆V Che

Variable

dV Che /dT CChe CChe1 b w ∆E dVr /dT CE1 A m M Cp σ ε h

0.0016 [1] 0.07 [1] 0.001 [1] 0.0012 [1] 0.012 [1] Variable 0.00003 [1] 0.00011 [1] 0.283954 0.04 [23] 12 1360 [27] 5.67 ˆ 10´8 0.95 4

Energies 2016, 9, 563  Appendix A.2. Driving Tests

15 of 18 

Battery temperature [°C]

SOC [%]

Battery voltage [V]

Battery current [A]

Car Speed [km/h]

Appendix B. Driving Tests 

  Figure B1. The measured data of the circular drive test. 

Figure A1. The measured data of the circular drive test.

Car Speed [k Battery current [A]

Energies 2016, 9, 563

15 of 17 16 of 18 

Battery current [A] SOC [%]

Battery voltage [V] Battery temperature [°C]

Battery temperature [°C]

SOC [%]

Battery voltage [V]

Car Speed [km/h]

Energies 2016, 9, 563 

  Figure B2. The measured data of the rapid acceleration and deceleration drive test. 

 

Figure A2. The measured data of the rapid acceleration and deceleration drive test. Figure B2. The measured data of the rapid acceleration and deceleration drive test.  Appendix C. The Vehicle under the Test 

An electric hydrogen front wheel passenger car (Figure C1) was modified by the institute for 

Appendix A.3. The Vehicle under the Test Appendix C. The Vehicle under the Test  “FAhrzeug‐SystemTechnik”  (FAST)  of  the  Karlsruhe  Institute  of  Technology  to  a  battery  electric  vehicle (BEV), [30]. A battery pack was installed in the vehicle. This vehicle is used for research in 

An electricdifferent automotive engineering and e‐mobility related projects. The propulsion systems comprises  hydrogen front wheel passenger car (Figure A3) was modified by the institute for An electric hydrogen front wheel passenger car (Figure C1) was modified by the institute for  an induction motor with a single gear transmission. The motor specifications are listed in Table C1.  “FAhrzeug-SystemTechnik” “FAhrzeug‐SystemTechnik” (FAST) (FAST) of of the the Karlsruhe Karlsruhe  Institute Institute  of of  Technology Technology  to to  aa  battery battery  electric electric  vehicle (BEV), [30]. A battery pack was installed in the vehicle. This vehicle is used for research in vehicle (BEV), [30]. A battery pack was installed in the vehicle. This vehicle is used for research in  different automotive engineering and e-mobility related projects. The propulsion systems comprises different automotive engineering and e‐mobility related projects. The propulsion systems comprises  an induction motor with a single gear transmission. The motor specifications are listed in Table A2. an induction motor with a single gear transmission. The motor specifications are listed in Table C1. 

  Figure C1. Vehicle under test. 

  Figure C1. Vehicle under test.  Figure A3. Vehicle under test. Table A2. Technical data of electric motor. Parameter

Value

Rated Power, PN Peak Power, Pmax Peak Torque, Tmax Rated Speed, nN

45 kW 68 kW 210 N¨ m 3000 rpm

Energies 2016, 9, 563

Parameter Rated Power, PN  Peak Power, Pmax  Peak Torque, Tmax  Rated Speed, nN 

Value 45 kW  68 kW  210 N∙m  3000 rpm 

16 of 17

The  The motor  motor shown  shown in  in Figure  Figure C2  A4 is  is powered  powered by  by the  the AC  AC current,  current, delivered  delivered from  from the  the power  power electronics that converts the DC current supplied by the battery. As the driver presses the accelerator  electronics that converts the DC current supplied by the battery. As the driver presses the accelerator pedal, a corresponding “torque demand” signal is converted by the vehicle control unit (VCU) to an  pedal, a corresponding “torque demand” signal is converted by the vehicle control unit (VCU) to appropriate signal for the motor control unit (power electronics), which in turn transforms it into a  an appropriate signal for the motor control unit (power electronics), which in turn transforms it into current  frequency  signal.  a current frequency signal.The  Themotor  motorcontrol  controlunit  unit(MCU)  (MCU)is  isincorporated  incorporatedwith  with a  a thermal  thermal derating  derating system in order to limit the torque demand received by the power electronics and to prevent any  system in order to limit the torque demand received by the power electronics and to prevent any critical operating conditions for the motor. The assigned powertrain can accelerate the vehicle to a  critical operating conditions for the motor. The assigned powertrain can accelerate the vehicle to maximum speed of 120 km/h.  a maximum speed of 120 km/h.

  Figure C2. The basic drive train topology of the Mercedes A‐Class research vehicle [30].  Figure A4. The basic drive train topology of the Mercedes A-Class research vehicle [30].

References  References 1. 1.

Wijewardana, S.; Vepa, R.; Shaheed, M.H. Dynamic battery cell model and state of charge estimation. J.  Wijewardana, S.; Vepa, R.; Shaheed, M.H. Dynamic battery cell model and state of charge estimation. Power Sources 2016, 308, 109–120.  J. Power Sources 2016, 308, 109–120. [CrossRef] 2. Doppebattery  Model  2auer,  M.  Hybrid  and  Electric  Vehicles—Lecture  Notes;  ETI‐HEV,  Karlsruhe  Institute  of  2. Doppebattery Model 2auer, M. Hybrid and Electric Vehicles—Lecture Notes; ETI-HEV, Karlsruhe Institute of Technology: Karlsruhe, Germany, 2014.  Technology: Karlsruhe, Germany, 2014. 3. Ivers‐Tiffee, E. Batteries and Fuel Cells—Lecture Notes; IWE, Karlsruhe Institute of Technology: Karlsruhe,  3. Ivers-Tiffee, E. Batteries and Fuel Cells—Lecture Notes; IWE, Karlsruhe Institute of Technology: Karlsruhe, Germany, 2012.  Germany, 2012. 4. Illig,  J.  Physically  Based  Impedance  Modelling  of  Lithium‐Ion  Cells.  Ph.D  Thesis,  Karlsruhe  Institute  of  4. Illig, J. Physically Based Impedance Modelling of Lithium-Ion Cells. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2014.  Technology, Karlsruhe, Germany, 2014. 5. Tremblay,  O.;  Dessaint,  L.‐A.  Experimental  validation  of  a  battery  dynamic  model  for  EV  applications.  Tremblay, O.; Dessaint, L.-A. Experimental validation of a battery dynamic model for EV applications. 5. World Electr. Veh. J. 2009, 3, 1–10.  World Electr. Veh. J. 2009, 3, 1–10. 6. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.D. Phospho‐olivines as positive‐electrode materials  6. Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B.D. Phospho-olivines as positive-electrode materials for for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.  rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [CrossRef] 7. Valence Technology. U‐Charge® XP Rev 2 User Manual; Valence Technology, Inc.: Austin, TX, USA, 2011.  7. Valence Technology. U-Charge®XP Rev 2 User Manual; Valence Technology, Inc.: Austin, TX, USA, 2011. 8. Lin, N.; Ci, S.; Li, H. An enhanced circuit‐based battery model with considerations of temperature effect.  8. Lin, N.; Ci, S.; Li, H. An enhanced circuit-based battery model with considerations of temperature effect. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA,  In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3985–3989.  14–18 September 2014; pp. 3985–3989. 9. Doyle,  M.,  Fuller,  T.F.;  Newman,  J.  Modeling  of  galvanostatic  charge  and  discharge  of  the  9. Doyle, M.; Fuller, T.F.; Newman, J. Modeling of galvanostatic charge and discharge of the lithium/polymer/ lithium/polymer/insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533.  insertion cell. J. Electrochem. Soc. 1993, 140, 1526–1533. [CrossRef] 10. Dees, D.W.; Battaglia, V.S.; Bélanger, A. Electrochemical modeling of lithium polymer batteries. J. Power Sources 2002, 110, 310–320. [CrossRef] 11. He, H.; Xiong, R.; Guo, H.; Li, S. Comparison study on the battery models used for the energy management of batteries in electric vehicles. Energy Convers. Manag. 2012, 64, 113–121. [CrossRef]

Energies 2016, 9, 563

12. 13. 14. 15.

16.

17. 18. 19. 20.

21.

22. 23. 24.

25. 26.

27. 28. 29. 30.

31.

17 of 17

Hu, X.; Li, S.; Peng, H. A comparative study of equivalent circuit models for Li-ion batteries. J. Power Sources 2012, 198, 359–367. [CrossRef] He, H.; Xiong, R.; Fan, J. Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies 2011, 4, 582–598. [CrossRef] Hussein, A.A.; Batarseh, I. An overview of generic battery models. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 24–29 July 2011; pp. 1–6. Kroeze, R.C.; Krein, P.T. Electrical battery model for use in dynamic electric vehicle simulations. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 1336–1342. Liu, X.; Ma, Y.; Ying, Z. Research of SOC estimation for lithium-ion battery of electric vehicle based on AMEsim-simulink co-simulation. In Proceedings of the 32nd Chinese Control Conference (CCC), Xi’an, China, 26–28 July 2013; pp. 7680–7685. Szumanowski, A.; Chang, Y. Battery management system based on battery nonlinear dynamics modeling. IEEE Trans. Veh. Technol. 2008, 57, 1425–1432. [CrossRef] Zhang, C.; Jiang, J.; Zhang, W.; Sharkh, S.M. Estimation of state of charge of lithium-ion batteries used in HEV using robust extended Kalman filtering. Energies 2012, 5, 1098–1115. [CrossRef] Watrin, N.; Roche, R.; Ostermann, H.; Blunier, B.; Miraoui, A. Multiphysical lithium-based battery model for use in state-of-charge determination. IEEE Trans. Veh. Technol. 2012, 61, 3420–3429. [CrossRef] Lam, L.; Bauer, P.; Kelder, E. A practical circuit-based model for Li-ion battery cells in electric vehicle applications. In Proceedings of the 2011 IEEE 33rd International Telecommunications Energy Conference (INTELEC), Amsterdam, The Netherlands, 9–13 October 2011; pp. 1–9. Tremblay, O.; Dessaint, L.A.; Dekkiche, A.I. A generic battery model for the dynamic simulation of hybrid electric vehicles. In Proceedings of the 2007 IEEE Vehicle Power and Propulsion Conference, Arlington, TX, USA, 9–12 September 2007; pp. 284–289. Shepherd, C.M. Design of primary and secondary cells II. An equation describing battery discharge. J. Electrochem. Soc. 1965, 112, 657–664. [CrossRef] Saw, L.H.; Somasundaram, K.; Ye, Y.; Tay, A.A.O. Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles. J. Power Sources 2014, 249, 231–238. [CrossRef] Tan, Y.K.; Mao, J.C.; Tseng, K.G. Modelling of battery temperature effect on electrical characteristics of Li-ion battery in hybrid electric vehicle. In Proceedings of the 2011 IEEE Ninth International Conference on Power Electronics and Drive Systems (PEDS), Singapore, Singapore, 5–8 December 2011. Pesaran, A.A. Battery thermal models for hybrid vehicle simulations. J. Power Sources 2002, 110, 377–382. [CrossRef] Kim, Y.; Siegel, J.B.; Stefanopoulou, A.G. A computationally efficient thermal model of cylindrical battery cells for the estimation of radially distributed temperatures. In Proceedings of the 2013 American Control Conference (ACC), Washington, DC, USA, 17–19 June 2013; pp. 698–703. Rad, M.S.; Danilov, D.L.; Baghalha, M.; Kazemeini, M.; Notten, P.H. Thermal modeling of cylindrical LiFeMgPO4 Batteries. J. Mod. Phys. 2013, 4, 1–7. [CrossRef] Fan, L.; Khodadadi, J.M.; Pesaran, A.A. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J. Power Sources 2013, 238, 301–312. [CrossRef] Sun, Y. Construction and Validation of a Thermal FEM-Model of an Automobile Battery. Master’s Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2011. Gießler, M.; Fritz, A.; Paul, J.; Sander, O.; Gauterin, F.; Müller-Glaser, K.D. Converted vehicle for battery electric drive: Aspects on the design of the software-driven vehicle control unit. In Proceedings of the 2nd International Energy Efficient Vehicle Conference (EEVC), Dresden, Germany, 18–19 June 2012. Blank, T.; Lipps, C.; Ott, W.; Hoffmann, P.; Weber, M. Influence of environmental conditions on the sensing accuracy of Li-Ion battery management systems with passive charge balancing. In Proceedings of the 17th European Conference on Power Electronics and Applications, Geneva, Switzerland, 8–10 September 2015; pp. 1–9. © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).