PKC Choice of codes RS exam. Short descr. ... C: a linear code, i.e. a subspace of GF(q)nof length n over GF(q) .... Use near MRD codes and rank metric.
Hard probl. PKC Choice of codes RS exam. Short descr.
New perspectives for code based public key cryptography Thierry P. BERGER XLIM, Universit´ e de Limoges, France
Darmstadt, 25 september 2006
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
1
Hard probl. Coding Theory NP-complete probl. Hard probl. Decoding
2
PKC McEliece Niederreiter Attacks Choice of codes Criteria Permutation Subfield Subcodes RS exam. GRS Goppa Subcodes Punctured Diagonal (U,U+V)
3
4
5
Short descr. Short description Quasi cyclic codes
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Recalls on Coding Theory C : a linear code, i.e. a subspace of GF (q)n of length n over GF (q) is a subspace of GF (q)n . n: length k: dimension G : a generator matrix of C C ⊥ : the dual code H: a parity check matrix
G Ht = 0
d: minimum distance of C t = b(d − 1)/2c, the error correction capacity Singleton bound: k + d ≤ n + 1
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
NP-complete problems in Coding Theory Problem (Coset weight) Input: H a (n − k) × n binary parity check matrix,, s a binary vector of length n − k, w a natural integer. Problem: Is there any binary vector e of length n such that weight(e) ≤ w and eH t = s.
Problem (Weight of a code) Input: H a (n − k) × n binary parity check matrix, w a natural integer. Problem: Is there any vector c of length n such that weight(c) = w and cH t = 0.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Related hard problems I Problem (Decoding) Input: H a (n − k) × n binary parity check matrix, s a binary vector of length n − k, w a natural integer. Output: a binary vector e of length n such that weight(e) ≤ w and eH t = s.
Problem (Given weight codeword) Input: H a (n − k) × n binary parity check matrix, w a natural integer. Output: a vector c of length n, such that weight(c) = w and cH t = 0.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Related hard problems II Problem (Bounded decoding) Input: H a (n − k) × n binary parity check matrix, s a binary vector of length n − k, w such that 2w + 1 ≤ d. Output: a binary vector e of length n such that weight(e) ≤ w and eH t = s, if it exists, if not return ”false”. Problem (Minimal weight codeword) Input: A binary linear code C . Output: a codeword c of minimal weight. Problem (Minimum distance) Input: A binary linear code C . Output: The minimum distance d of C . T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Hierarchy of problems
Bounded Decoding ≤ Decoding Minimum Distance ≤ Minimum weight codeword ≤ Given weight codeword Bounded Decoding ≤ Given weight codeword
References E.R. Berlekamp, R.J. McEliece and H.C. Van Tilborg. On the inherent intractability of certain coding problems IEEE Transactions on Information Theory, 24(3), may 1978.
A. Canteaut and N. Sendrier. Cryptanalysis of the original McEliece cryptosystem. In K. Ohta and D. Pei, editors, Advances in Cryptology ASIACRYPT’98, number 1514 in LNCS, pages 187–199, 1998.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Decoding technique for random codes
General principle: Research of an information set without error. An information set: k coordinates of a codeword corresponding to a non-zero determinant of the generator matrix. n n−t Numb. of Inf. Sets: ≈ without errors: ≈ k k n−t n Probability of success: p= / k k Full cost for a [n, k, d] code:
O(k 3 /p)
In our examples we compute
m × k 3 /p
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Coding Theory NP-complete probl. Hard probl. Decoding
Decoding technique for random codes: the binary case Improvements for binary codes: Heuristic search method to found an Information Set: verification faster. Search of Information Set with at most r errors (typically, r = 2 or 3. Cost of the best method given by A. Canteaut (PhD Thesis): nH2 (k/n)
2 18 +12 binary operations for a [n, k, d] binary code over the Gilbert Varshamov bound. Research problem: What appends for codes over GF (2m )? T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
McEliece Niederreiter Attacks
McEliece based public key cryptosystems Public key: a linear code C of parameters [n, k, d], given by a generator matrix G . An integer t. Private key: an efficient decoding algorithm for C until the error correcting capacity t. Encryption: m plaintext of length k. e: a random error of length n and weight t. Ciphertext c = mG + e Decryption: decode c with the secret algorithm. Recover m. R.J. McEliece. A public-key cryptosystem based on algebraic coding theory. JPL DSN Progress Report, pages 114 - 116, 1978.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
McEliece Niederreiter Attacks
The Niederreiter public key cryptosystem Public key: a linear code C of parameters [n, k, d], given by a parity check matrix H. An integer t. Private key: an efficient decoding algorithm for C until the error correcting capacity t. Encryption: the plaintext is encoded as a vector m = e of length n and weight t. Ciphertext: c = mH. Decryption: c is the syndrome of the error e: compute a word c 0 of length n such that c 0 H = c. Apply the decoding algorithm and recover the error e. H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Problems of Control and Information Theory, 15(2):159 - 166, 1986. T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
McEliece Niederreiter Attacks
Known attacks
There exist 2 kinds of attacks: Decoding techniques for random codes. Research of the secret algorithm, i.e. recover the hidden algebraic structure.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
McEliece Niederreiter Attacks
Practical parameters Public key ration Encryption Decryption Cryptanalysis
Niederreiter n = 2048, t = 40 88440 bytes 60, 5% 55 8029
RSA 1024 bits e = 17 256 bytes 100% 5120 1572000
2102
2100
From A. Canteaut, N. Sendrier, Cryptanalysis of the Original McEliece Cryptosystem, Asiacrypt 98.
Advantages/Disadvantages Efficient encryption and decryption algorithms. Size of the public key. Plaintext expansion.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Criteria to choose a code
The code must be efficiently decodable. The size of the public key must be as small as possible. systematic matrix: m × k × (n − k) It will resist to cryptanalysis: Resistant to generic decoding algorithms The structure must be masked.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Codes with an algebraic decoding algorithm
Reed-Muller codes Reed Solomon family: Generalized Reed Solomon codes Alternant codes Goppa codes BCH codes
Gabidulin codes (Rank metric)
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
How to reduce the size of the public key?
Use near MDS codes over extension fields Use codes with a small description, e.g. quasi-cyclic codes. Use near MRD codes and rank metric.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
How to mask the structure of a code
Concatenation Permutation. . . Subfield subcode technique Subcode
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Concatenation, permutation Concatenation:
Can be easily recovered
N. Sendrier: On the concatenated structure of a linear code. AAECC vol. 9, n.3, 1998, pp.221-242
Permutation:
generally can be easily recovered.
exceptions: dim(C ∩ C ⊥ ) is large The permutation group of the code is large N. Sendrier: Finding the permutation between equivalent codes: the support splitting algorithm IEEE Transaction on Information Theory, vol. 46, n.4, 2000, pp.1193-1203. G. Skersys, Calcul du groupe d’automorphisme des codes. D´etermination de l’´equivalence des codes. Ph D Thesis Limoges, 1999. T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
An example:
Permuted Reed Muller codes were used by Sidel’nikov in a public-key cryptosystem based on codes. Parameters: [1024, 176, 128] t = 200 Size of Public key: 19 KBytes Resistance against decoding attacks: less than 275 .
V.M. Sidel’nikov, A public-key cryptosystem based on Reed-Muller codes. Discrete Mathematics and Application, vol.4 n. 3, 1994, pp.191-207.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Subfield subcodes
C ⊂ GF (p m )n M
←
Duality
→
−→
M0 ←− C = C ∩ GF (p)n ← Duality → C 0⊥ 0
C ⊥ ⊂ GF (p m )n H ↓ H0 = Trace(C ⊥ ) ⊂ GF (p)n
Subfield subcode
Trace code
If x ∈ GF (p)n , x ∈ C0 ⇔ H tx = 0 d0 ≥ d T.P. Berger
and
k 0 ≥ n − m(n − k) = m − (n − k)(m − 1)
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
An example: BCH codes and Reed Solomon codes α: primitive root of GF (p m ). Parity check matrix of RS(d) defined on GF (p m ): H=
α α2 .. .
α2 α4 .. .
... ... .. .
m
αp −1 m α2(p −1) .. .
αd−1 α(d−1)2 . . . α(d−1)(p
m −1)
BCH(d) = RS(d) ∩ GF (p)n : the cyclic code over GF (p) with roots α, α2 ,. . . , αd−1 .
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Subcodes Principle: Let C be a linear code with an efficient decoding algorithm. Choose C 0 ( C a subcode of C . C 0 is decodable with the decoding algorithm of C . It seems difficult to recover C from C 0 Advantages: C 0 is defined over the same field than C . d 0 ≥ d, k 0 = k − r , with r ≤ 10: the parameters remain good.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Criteria Permutation Subfield Subcodes
Subcodes Practically: Choose a decodable code C of parameters [n, k, d]. Let HC be the (n − k) × n systematic parity check matrix of C . Construct a r × n matrix A of the form 0 B B B B B B B B B B B @
A=
0 . . . 0 1 0 . . . 0 a1,n−k+r .. .. .. . .. . . . . . . 0 . . . . .. .. .. .. .. . . . . .. . . 0 . . . . . 0 . . . 0 0 . . . 0 1 ar ,n−k+r
. . . a1,n .. .. . . .. .. . . . . . ar ,n
1 C C C C C C C C C C C A
Chose a (n − k) × (n − k) invertible matrix S. HC is a parity check matrix of a The matrix HC 0 = S A subcode of C of dimension k − r . T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
GRS codes
Field: GF (2m ). α: a primitive root. n = p m − 1. Parity check matrix of Reed-Solomon code RS(d) 0 B B B B B B @
α α2 .. .
α2 α4 .. .
... ... .. .
m
αp −1 m α2(p −1) .. .
αd−1 α(d−1)2 . . . α(d−1)(p
m −1)
1 0 C B C B C B C×B C B C B A B @
λ1 0 .. . 0
0
... 0 . . λ2 . . .. .. .. . . 0 . . . 0 λn
1 C C C C C×P C C A
Generalized Reed-Solomon code GRS(d)
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
It is necessary to mask the structure of GRS codes
It is possible to recover the structure of a GRS code from its generator matrix in O(n3 ) operations. Sidel’nikov et Shestakov, On cryptosystem based on Generalized Reed-Solomon codes Discrete Mathematics, vol.4, N.3, (1992), pp. 57-63
How to mask GRS codes? Subfield subcodes Subcodes Other methods?
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
The Goppa codes: a good family of GRS subfield subcodes Goppa codes are particular subfield subcodes of Generalized Reed Solomon codes. Parity check matrix: 0 B B B B B B @
α .. . αd−1
... αn .. .. . . (d−1)(n) ... α
1 0 C B C B C B C×B C B C B A @
g (α)−1 . . . 0 .. .. .. . . . 0 . . . g (αn )−1
1 C C C C× C C A
P
There exists a bound on the minimum distance, and then on the error correcting capacity t. Decodable using the classical decoders of Reed Solomon codes. A very large class: for example, there are more than 2498 Goppa codes of parameters [1024, k 0 , 101], k 0 ≥ 524. They look like random codes. T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Goppa codes over intermediate subfield The major problem is the size of the public key to be resistant to decoding attacks. Field Parameters GF (2) [2048, 1608, 81 ]
Security 2102
Size 88.5 KB
Another solution: Intermediate subfield subcode GRS(d): GRS code over GF (22m ) C : subfield subcode over GF (2m ) Field Parameters GF (32) [1024 , 956 , 34 ] GF (32) [1024 , 860 , 82 ]
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Security 2100 2140
Code based PKC
41 88
Size KB KB
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Subcodes of Generalized Reed Solomon codes I Subcodes of GRS codes: proposed by T.P. Berger and P. Loidreau. How to mask the structure of codes for a cryptographic use.
Designs, Codes and Cryptography, 35, 63-79, April 2005.
r = 3, C is a [255, 129 = 132 − 3, 123] code. Size of the public key: 16254 bytes. Field Parameters GF (255) [255, 129, 123]
Security 2100 ?
Size 16, 2 KB
Recent attack on subfields of GRS codes: C. Wieschebrink, An attack on a Modified Niederreiter Encryption Scheme, PKC 06. 2 2r +1 0 3 0
Cost: O(r n + n k r ) where k = k − r With proposed parameters r 2 n + n2r +1 k 0 r 3 ≈ 287 . Broken?
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Subcodes of Generalized Reed Solomon codes II For n = 256, k = 150 and r = 8, Field Parameters GF (255) [255, 142, 107]
r 2 n + n2r +1 k 0 r 3 ≈ 2152 . Security 298
Size 16 KB
Is it Secure? Problem research: More investigations on the effectiveness of this attack and the security parameter r . Remark: This attack is only available on Generalized Reed Solomon codes, the technique of subcode remains promising.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Construction based on Punctured Code Problem NP-complete problem: Problem (Punctured Code) Given two codes C and D of length n and n + r . Is it possible to obtain C by puncturing r positions of D? C. Wieschebrink, Two NP-Complete Problems in Coding Theory with an Application in Code Based Cryptography, ISIT 06.
Application: add r random columns in random positions to a GRS code. Proposed parameters: GRS code over GF (256): [256, 169, 88], r = 39. Decoding attack: 284 Size of Public Key: 20.8 KBytes.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Equivalence of Subcode of Code Problem The Punctured Code Problem can be easily reduced to Problem (Equivalent Subcode of Code) Given two codes C and C 0 of length n and dimension resp. k and k − r . Is the code C 0 be equivalent by permutation to a subcode of C? Proof: Reformulation of PC problem in term of ESC problem Is D equivalent by permutation to a subcode of C 0 generated by MC | 0 GC 0 = 0 | Ir ×r
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
A diagonal construction
Field: GF (2m ), n = p m − 1 or n = p m GRS1 (d), GRS2 (d): generator matrices of GRS codes Parameters: [n, k = n + 1 − d, d] A: random k × n matrix over GF (2m ) GRS1 (d) | A −−− ×P G =S × −−− 0k2 ,n | GRS2 (d) G : generator matrix of a [2n, 2k, d] code over GF (2m ).
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Practical values
Field Parameters GF (256) [512 , 348 , 83 ] GF (256) [512 , 372 , 71 ]
Security
GF (512) [1024, 956 , 35 ] GF (512) [1024, 542 , 242]
2100
GF (2)
2102
[2048, 1608, 81 ]
2100 2100
2171
57 52
Size KB KB
51 242
KB KB
88, 5 KB
What about the security of this construction? Is it necessary to take a subcode?
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
A kind of (U,U+V) construction Field: GF (2m ), n = p m − 1 or n = p m RS(d): generator matrix of RS code [n, k1 = n + 1 − d, d] RS(2d): generator matrix of RS code [n, k2 = n + 1 − 2d, 2d] Scal1 , Scal2 , Scal3 : diagonal invertible n × n matrices (GRS codes) P, P3 : permutation n × n matrix
RS(d) × Scal1 | RS(d) × Scal2 −−−−−−−−− ×P G = S × − − − − −− 0k2 ,n | RS(2d) × Scal3 × P3 G : generator matrix of a [2n, k1 + k2 , 2d] code over GF (2m ). T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Practical values
Field Parameters GF (256) [512 , 439 , 50 ] GF (256) [512 , 262 , 168] GF (256) [512 , 160 , 236]
Security
GF (512) [1024, 978 , 32 ] GF (512) [1024, 903 , 82 ] GF (512) [374 , 253 , 82 ]
2100
GF (2)
2102
[2048, 1608, 81 ]
2100 2122 2100
2161 2100
Size 32 KB 65, 5 KB 56 KB 51 123 31
KB KB KB
88, 5 KB
What about the security of this construction? Is it necessary to take a subcode?
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
GRS Goppa Subcodes Punctured Diagonal (U,U+V)
Synthesis
Construction Subcode of GRS code Punctured code (U,U+V) Interm. subfield subcode Diagonal construction Goppa code
T.P. Berger
Field GF (256) GF (256) GF (256) GF (32) GF (256) GF (2)
XLIM, UMR CNRS 6172, Limoges
Parameters [256 , 142 , 107] [295 , 169 , 88 ] [512 , 439 , 50 ] [1024, 956 , 34 ] [512 , 372 , 71 ] [2048, 1608, 81 ]
Code based PKC
Security 298 284 2102 297 299 2102
Size 16 KB 20.8 KB 32 KB 41 KB 52 KB 88.5 KB
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Short description Quasi cyclic codes
Codes with short description
A solution to decrease the size of the public key is to use some codes with a short description
Well structured codes have generally a short description: Goppa codes: Goppa polynomial Cyclic code: generator polynomial BCH codes: designed distance d. . . Unfortunately, generally the description gives the structure. . .
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Short description Quasi cyclic codes
Quasi-cyclic codes I
Recently, P. Gaborit presented a cryptosystem using quasi-cyclic codes: P. Gaborit. Shorter keys for code based cryptography. Proceedings of WCC 2005, Bergen (Norway) p. 81-91, March 2005.
Principle: A quasi-cyclic code of order s is a code invariant under a shift of s positions. Such a code has a short description: indeed, from one row of the generator matrix, it is possible to deduce n/s other rows.
T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006
Hard probl. PKC Choice of codes RS exam. Short descr.
Short description Quasi cyclic codes
Quasi-cyclic codes II Proposed parameters Quasi-cyclic subcodes of BCH codes. Size of code: [4095, 3692, 53] Order s = 5 Size of public key: 2.5 KBytes Transmission rate: 0.9 Decoding attack: 2100 Structural attack: 291 Work to do: A more extensive study of the security of quasi-cyclic based cryptography: Is there exist more efficient decoding algorithms devoted to quasi-cyclic codes? How to construct efficiently large and secure quasi-cyclic codes families with an efficient secret decoding algorithm? T.P. Berger
XLIM, UMR CNRS 6172, Limoges
Code based PKC
Darmstadt, 25 september 2006