Non-linear F-1 Simulation using Simulink and Matlab - AEM ...

29 downloads 3141 Views 906KB Size Report
The non-linear F16 model has been constructed using Simulink. The functional Simulnk ... Aircraft Control & Simulation, Stevens & Lewis. − NASA Techincal ...
          



             

                                                                  ! "   ## $   !%"                              &             ##               &                '                                                   

 

         

   (             ((            (                )           *(         (   (                 +    (            ( ,     (   *(                  -    .  /     -    .                ( 0          (            













y, v

M, q

C

L, p

x, u

N, r

z, w



  1   '  (  -(   *. 2     2     2    2   









2  

 2 

 

                )     )         %     )         3 #        %           4                +  +       +               (      +          +        %5  6                %3

%

  %1         )       

3

dist

trim

Rudder Saturation

Units: deg.

Aileron Saturation

Units: deg.

Elevator Saturation

Units: deg.

Thrust Saturation

Units: lbs.

University of Minnesota / Honeywell Date : October 25th, 2002

Rudder Trim Setting

−C−

Rudder Disturbance

Out1

Aileron Trim Setting

−C−

Aileron Disturbance

Out1

Elevator Trim Setting

−C−

Elevator Disturbance

Out1

Thrust Trim Setting

−C−

LEF Saturation

Leading Edge Flap

delta_lef (deg) state

fi_flag tells nlplant which Model to use: 0: Low Fidelity 1: High Fidelity

emu

Nonlinear Equations of plant and Aerodynamic Tables : − Aircraft Control & Simulation, Stevens & Lewis − NASA Techincal Paper 1538 Nguyen et al., 1973

Fidelity Flag

−C−

F16 nlsim nlplant

MATLAB Function

1 s

Integrate F16 State Derivatives

0 Clock

rad2deg

surfaces

d_LF

Scope

Time

T

LEF deflection

ps (lb/ft ft)

qbar (lb/ft ft)

mach

nz (g)

ny (g)

nx (g)

r (deg/s)

q (deg/s)

p (deg/s)

emubeta (deg)

alpha( deg)

vel (ft/s)

psi (deg)

theta (deg)

phi (deg)

alt (ft)

epos (ft)

npos (ft)

States

y_sim

Scope1

Control Surface Deflections

Scope2

Scope3

Scope4

Scope5

  31 #      ) ,        5





        4             1      .     .  - .     - .    - .    - .      - .    ) - .      - .    - .   - .   - .  &   +        +-  .     +  +   

         &        +             %5        %        *             -          . ,    - .        - 7.     -  .                    #          )                      )               +                                 +  #     )                                        %3











 



 

            7    







Æ

















9           6   6 6 6 6# 6# 6# 6# 6# 6#

8 8           6   6 6 6 : 6 ¾ 6 ¾

 



9           6   6 6 6 : 6 ¾ 6 ¾

 

 %3              



 

                                            ( 9                  (               +               #       +                  4          +            +   #       +                     +     # 







;





   +                         +   

                     5  (                  %5

  51        +           8 <    8     , ,(    === >===  /       %; %;       % ; % ;   #       3= 3=   $   /    = %;    %5        (       &                     +         )                     +            )                 +              +  +   1

Æ



2

3? % @@AA%;%;  >=; 7 @ 5; 

   B       +     

)    *                  +     4    C  )     *    &         +     ;===        ;== 61



C 2 ==== 3 A == 33 @ 5?3A =55=  =A=A   4      *    &       +            +  1

C 2 ==== 3 A == 3 



= %=A= 

 = 33A ;?3A

  4  )     *    &       +      1

C 2 ==== 3 A == 33 A3%;>  >;            4          +                      ) - C 2 @ 5 ?3A @ . D         +               ) - C 2 = %=A @ . D             Æ       +                    +        )





     

  



#           &        -E.      +                   = ===        

 6==5>;      =          6==5>;      ?=         6==5>;       %=       +     6= 3       %;    +             %5

 



  

 

 

 

              ! "

'          4   4         4   )    ?       ! "  4             Æ   )     3A  5=   ## $   !%"  &      4        &       # (  &            

     <    D  

)                % 5 F     B            &        /     B              Æ           &       Æ             )            +         Æ                      )        +             (          ##          &             (           &             ##                    &          &               &                     B       +                           )       &      =  5;              3=  3=       &       B       +                         )          )       &     %=  >=              3=  3=   

A



       8*  &     * 8   1

                           &                 %       +         

  8 /0'H1'#

   

  8 G4 4#    E   /    8 F4 4#    E   /    8 ' GM 4#        E   /    BBBBBBBBBBBBBBBBBB )       "      ! BBBBBBBBBBBBBBBBBB 

     #  8  041# !  8  0'1#  8  0G1#  BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBB*" BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB   BBBBBBBBBBBBBBBBBB ;   ?  BBBBBBBBBBBBBBBBBB  $ 8   !#        P 8  !# Q 8   !#    / 041 8 $  A

3A

P    A Q   A  #    / 0'1 8 $  A P  A   A Q    #     / 0G1 8 $

P  

Q  #

 BBBBBBBBBBBBBBBBBBB S    BBBBBBBBBBBBBBBBBBB      / 0F1 8 = A O  A > #     / 0@1 8 O 

> #

   / 0M1 8 O  A >  #  BBBBBBBBBBBBBBBBBB 5 !  BBBBBBBBBBBBBBBBBB     88 '  .-&- 5 !  2  A N/EN/ N"ANE=O A N/EO. #

 BBBBBBBBBBBBBBBBBBBBBBB O BBBBBBBBBBBBBBBBBBBBBBB  / 0'41 8   A NE N/=>

N/E== >>

>.N"#

 BBBBBBBBBBBBBBBBBBBBBBB > BBBBBBBBBBBBBBBBBBBBBBB  / 0''1 8 N/;  A N/E+  A N/N/ N"AN/EN/E=O

   

 >%

        D        I )

            

  

         ! "     #  J  >A>

!%"    F  M  E  '   J 

5