IIT-JEE. Objective Mathematics. Er.L.K.Sharma. [45]. Mathematics for IIT-JEE (
Hints/Solutions). 1. (. ) ( ). P A B C. A B. P. C. P C. ⋂ ⋂. ⎛. ⎞. ⋂. ⇒. = │. │. │. │.
⎝.
Chapter No -6 ( Probability )
4. For real roots of x2 px 2 0 , D 0
1.
p2 8 0 p 2 2 farourable values of p 3 , 4 , 5 , 6 required probability
A B P A B C P P (C ) C
P A P ( B ) or P B P A
2. n( S ) total no. of ways of distribution of three identical dice among six different persons. = number of non-negative integral solutions of x1 x2 x3 x4 x5 x6 3
n( S ) 3 61C61 8C5 56
P( E )
6 3 56 28
3.
1 n 5. P(r 1) 1 P(0) 1 C0 2
n
n
1 1 0.95 n
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
P (C ) P ( A C ) P ( B C ) 1 P ( A) P ( B ) P (C )
4 2 6 3
(2) n 20
min. value of n 5
6. P( A B) P( A) P( B)
A and B are not independent.
P( A B) P( A) P( B) P( A B)
0.70 0.60 0.50 0.80
P( A B) B P ( A B) B Now , P A( A B ) P( A B) A B
P ( A B) P( A B ) P( A)
P( A) P( A B) P( A B )
0.70 0.50 0.80
0.2 0.25 0.80
7. Probability that minimum no. is 3 1
C1 7 C2 10
C3
7 40
Probability that maximum no. is 7 from venn diagram , x
1 1 1 1 12 12 6 2
1 x 6
1
10
1 P AC B 6
C3
1 8
Probability that minimum is 3 and maximum is 7 1
C1 6 C2
Mathematics for IIT-JEE (Hints/Solutions)
C1 1C1 3C1 10
C3
1 40
[45]
Required probability
7 1 1 40 8 40 11 40
3 2 1 14. 6 6 6
8. ax by 2 ; cx dy 4 for unique solution , 0
a b c d
n(S ) 16
Indian men seated with wife 15. P and American men seated adjacent to his wife
Now , favorable cases exist if ad bc
n( E ) 6
P( E )
6 3 16 8
1 1 1 1 1 1 1 1 1 2 2 2 2 2 4 2 4 2
3
4
4!(32) 5!(16)
2 5
1 1 and P A B 12 2
Let P ( A) x and P( B) y xy
1 1 and (1 x )(1 y ) 12 2
1 ( x y)
1 1 8 2 P( E )
(6 1)! (2!)
16. P ( A B)
1 1 1 1 8 16 16 4 Case (ii) (Student passing in three exams)
(5 1)! (2!)5
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
9. Case (i) (Student passing in two exams)
1 36
0 ( ad bc ) 0
Sample space is having (2) 4 cases
1 3
1 x
1 1 3 4 8 8
1 1 12 2
1 5 12 x 2 7 x 1 0 12 x 12
1 1 1 1 or y or . 4 3 3 4
x
10. P6 can never reach to final round Required probability = 0.
1 1 7 Now , 3 x 4 y 3 4 4 3 12
11. 0.80 p c m 0.35 3(0.20) 0.20
or
1 1 3 4 0 3 4
p c m 0.80 0.95 0.20 1.55 or
12.
100
17.
31 20
50
C5 p (1 p ) 50 100 C51 ( p )51 (1 p ) 49
1 p p
100
C51
100
C50
50 51
51 51 p 50 p p
51 101
13. Only two tests will be needed if both defective or both non-defeetive bulls are identified in first two tasts
2C 1 2C 1 P( E ) 4 1 4 1 C 3 C 3 1 1
Mathematics for IIT-JEE (Hints/Solutions)
I
II
W
B
B (2 / 4)(2 / 3)(3/ 4) 1/ 4
B
W
B (2 / 4)(2 / 5)(3 / 4) 3/ 20
W
W
B (2 / 4)(1/ 3)(2 / 2) 1/ 6
B
B
B (2 / 4)(3 / 5)(4 / 6) 1/ 5
P( E )
III
1 3 1 1 4 20 6 5
23 20
18. P ( A B ) P( A) P ( B ) P ( A B )
[46]
4
5 5 5 1 5 1 19. P(k 3) .... 6 6 6 6 6 6
22. x2 9 x 18 0 ( x 3)( x 6) 0 x (3 , 6)
3 2 5 1 5 5 1 .... 6 6 6 6
Let x1 , x2 , x3 be number on dice
3 3 5 1 1 5 6 6 1 5 6 6 5
x1 x2 x3 4 or 5
Coeff of x 4 in ( x x 2 .... x6 )3 coeff of x 5
in x x 2 .... x 6
3
6
4 3 6 Coeff of x in x 1 x
5 1 5 1 P(k 6) .... 6 6 6 6
Coeff of x 5 in
5 5 5 1 1 5 6 6 1 5 6 6
k 4 , 5
P( E )
63 (6)
3
3
1 x
3
3
x (1 x ) (1 x) 6 3
6 3
3
1 24
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
Required probability =
(5 / 6)5 (5 / 6)
3
25 36
23. P ( I ) Probability that matrix have exactly 5 entries as 1 P (S ) Probability that matrix is symmetric
H 1 H 2 20. P and P F 2 B 3
S P( S I ) Now , P P( I ) I
8 1 1 9 15 2 2 F P 8 1 1 7 2 1 16 HT 15 2 2 15 3 3
9! 5! 4! 126 P( I ) 9 9 2 2 Number of symmetric matrix with exactly 5 entries as one = 3 + 9 = 12
21. Let C , S , B , T be the events of the person going by car , seooter , bus or train respectively. Given that P (C ) P (T )
1 3 , P(S ) , P(B) 2 , 7 7 7
2 S 12 P I 126 21
24.
1 7
Let L be the event of the person reaching the office in tiem. L 7 L 8 L 5 L 8 P , P , P , P C 9 S 9 B 9 T 9 L P .P (C ) C C P L P L
1 7 1 7 9 1 7 3 8 2 5 8 1 7 7 9 7 9 7 9 9 7
Mathematics for IIT-JEE (Hints/Solutions)
1 1 2 4 4 8 P( E ) 1 1 16 1 4 4 P( E )
8 16
[47]
225 25. N 30 N N 15 is only applicable because it is given that
28. P B0 P( B1 ) .... P( B15 ) 1
225 N 30 N
P( E )
3 1 1 11 4 4 24 24
Let P Bn kn2
1 0.01 100
k 4k 9k ....225k 1
k
A 1 B 1 26. P ( A) P and P B 4 A 2
P( B A) 1 1 P ( B A) P ( A) 2 8
1 1 A P( A B) Now , P B P ( B ) 8 P ( B ) 4
1 2 A and B are independent events
6 1 k (15)(16)(31) 1240
15
(a)
PB 1 n
n
15
(b) P ( E )
n
n 0
15
E n
P(B )P B
n2 n
( P ( A B ) P ( A) P ( B ))
1
n 0
15(16) 2
1240 15 (1240)(15)
s c i t a m e h t a a m r M a E e h -JE S v . i IIT ct .L.K je Er b O
P( B)
2
14400 24 (1240)(15) 31
P A B P A P B P A B
3 1 3 1 7 4 2 4 2 8
A P A B 3 P P A B P ( B ) 4
B 1 P P B 2 A
27. P ( A)
1 1 1 ; P (b ) , P (c ) 3 2 4
(a) P( A B) P( B C ) P(C A) 3P( A B C )
1 1 1 1 1 1 1 1 1 3 3 2 2 4 4 3 3 2 4
E P Bs P B Bs (c) P s 15 E E P Bn P Bn n 0 25 5 25 31 1240 15 24 (24)(1240)(3) 31
29. For mutually exclusive and exhaustive events , P ( A B ) 0 , P ( A B ) P( A) P( B) 1
(d) P A B C P( A B) P( B C )
E E P ( B3 ) P 1 P ( B4 ) P 1 B4 B3
2 1 3 1 4 1 1 (1) 10 2 10 3 10 4 10
P (C A) 2 P ( A B C )
Mathematics for IIT-JEE (Hints/Solutions)
E E 30. (a) P ( E1 ) P( B1 ) P 1 P ( B2 ) P 1 B1 B2
2 1 3 3 1 3 2 4 4 1 1 1 1 (c) P ( A B C ) 3 2 4 24
P A B 0 or P A B 0
1 . 4
(b) P ( A B C ) 1 P A P B P C
5 576
4 2 10 5
[48]
E P ( B3 ) P 2 B3 B3 (b) P 4 E E2 P( Bi ) P 2 Bi i 1
Now
3 1 1 10 3 10 1 2 1 3 1 4 1 3 (0) 10 10 2 10 2 10 4 10
B 1 P 3 E2 3
1 p p
2
1 p2 p 1 0
5 1 p 1 2
Least value of p
2sin 10 Statuments (1) and (2) are true and the reasoning is appropriate. o
E P B2 E3 (c) P 3 P B2 B2
(d) P E3 0 0 P E3
1 5
n
1 3 n 33. 1 C0 0.90 4 4
2 (0) 10 0 2 10
n
3 0.10 4
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
3 1 4 1 10 3 10 4
n
4 10 n log 4 /310 3
2log 4 12 log 4 144 log 4 10 3
31. (0)4 k 2 (0) (1)4 k 2 (1) (2)4 k 2 (4) (3)4 k 2 (9) (4)4 k 2 (6) (5)
4k 2
(5)
4 2 10 5 Statement (1) is false and statement (2) is true.
P AB A P A B 32. P B P B P B
Let P ( A B ) p A p ( p) B 2
1 3
P ( A B ) 1
( Statement (2) is true)
2 1 P ( A B ) lies in , 15 3 Statement (1) and (2) are true and the reasoning is also appropriate.
P( E )
1 p
2 15
Now , P ( A B )
(9)4 k 2 (1)
4 1 P( A B) 5 3
P( A B )
(8)4 k 2 (4)
3
34. P ( A B ) P( A) P ( B ) P ( A B )
(7) 4 k 2 (9)
3
Statements (1) and (2) are true and the reasoning is appropriate.
(6)4 k 2 (6)
5 1 2
p
2
p B
Mathematics for IIT-JEE (Hints/Solutions)
35. For ellipse , 2a = 2(radius of cricle)
16 a r b r 2 1 25
ar ;b
3r 5
3r r 2 (r ) 5 1 3 2 Now , P ( E ) 2 5 5 (r )
Statement (1) and (2) are true but the reasoning is not appropriate.
[49]
1. P ( H )
There are 10 equiprobable events E1 to E10.
2 1 and P(T ) 3 3
If n 2 then the last two throws must be heads and the previous all throws must be heads and tail or tail and head alternatively.
In fact P ( Ei )
( HT )(TH )( HT )( HT )....(TH )( HH )
Probability of HT or TH
4 9
4 4 9 4 5 1 9
2 number of throws 3
1 3 4 C1 6 3C1 2 C1 2 C1 2 C1 2 C1 7 6 10 C3 25
E that one of each color was picked P 1 A 4
2
A P P ( E1 ) E 1 P ( A)
C1
1 10
6
C3 P ( A)
1 14
6. The bag contains equal number of white and green
4 5 Required probability 9 4 9 5
balls in events E1 and E6
3. For An , the game ends with either two heads on two tails
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10
i
i
i 1
Probability that the bag contained 4 white balls , given
If n 2 , probability that experiment ends in minimum
4.
A
P E P(E )
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
4 (from solution of part (1)) 5
1 for i 1 to 10 10
10
Then P ( A)
2. Probability that experment ends with a head
1 10
5. Let A be the event of picking up three balls one of each color.
2 2 4 4 2 P ( E ) 1 .... 9 9 3
Probability of E1
2 C1 2 C1 2 C1 1 A P P ( E6 ) 6 E6 C3 E6 10 P 7 P( A) A 25 E E Required probability is P 1 P 6 A A
E P 1 An White
Green
Red
1 1 1 1 2 2 2 3 3 4
1 2 3 4 1 2 3 1 2 1
4 3 2 1 3 2 1 2 1 1
Mathematics for IIT-JEE (Hints/Solutions)
1 1 3 14 7 14
7. X 3
5 5 1 25 P( E ) 6 6 6 216 8. X 3 2
3
5 1 5 1 P ( E ) ..... 6 6 6 6
[50]
3
2 2 5 1 5 5 1 ..... 6 6 6 6
2
5 1 1 25 6 6 1 5 / 6 36
3
4
5
6
5 1 5 1 9. x 3 ; P E1 .... 6 6 6 6 5 1 5 1 x 6 ; P E2 .... 6 6 6 6
2
2
1 (6)
3
12 (6)
3
13 216
432 p 2 13
13. Let break points B1 and B2 lies at a distance of x and y meters respectively from live initial position 0
( x y)2 (3)2 R 2
( x y)2 9 25
5
5 1 P ( E1 ) 6 6 Required probability P ( E2 ) 5 3 1 6 6
2
1 1 4 1 4 1 4 P( E ) 6 6 6 6 6 6 6
| x y| 4
(where 0 y , y 10 )
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
25 36
10. Total number of ways of which papers of 4 students , can be checked by seven teachers 74
Now , choosing two teachers out of 7 is 7 C2 21 The number of ways in which 4 papers can be checked by exactly two teachers 24 2 14 Favourable ways (21)(14)
Required probability
49 P 49
(21)(14) 7
4
from graph , p
6 49
6 =6 49
3
1
2
3! 2 10 C2 270 2!
3
C C1 C1 C1 C1 27 p1 26 6 C3 C3 200
Case (ii) John pick 1 black and 2 white balls 3 C 3C2 p2 16 C3 Now , p p1 p2
25 25 64 p 8 2 2 100
14. Total number of ways of dialing the last three digits such that exactly 2 of them are same
11. Case (i) John pick 2 black and 1 white ball 3
100 (36) 64 100 100
2 C1 1C1 3C1 27 6 C3 200
p
1 270
(1080) p 4
15.
27 100
100 p 9 3
12. Sum of 6 in three throws (2 , 2 , 2) , (3 , 0 , 3) , (0 , 3 , 3) , (3 , 3 , 0) Total number of triangles equals to 8 C3 56 Total number of equilateral triangles whose one vertex
Mathematics for IIT-JEE (Hints/Solutions)
[51]
is A equals to 3. (AFH , AFC and AHC ) . Now total number of equilateral triangles are equal 8 3 8 3 Total number of isosceles triangle in plane ABCD is 4. Total number of isosceles triangles (not equilateral) are equal to 4 6 24 Now total number of scalene triangles
to
8C3 24 8 24 Now , all proper isosceles triangle (not equilateral) are right angled triangles. Because scalene triangle is formed by one edge , one force diagonal and one cube diagonal , so all scalene triangle are right angled triangles. Total right angled triangle 24 24 48
5
3 P (occurrence of 3 , 4 , 5 on all the dice) 6 Now , required probability 5
5
5
5
4 3 3 2 6 6 6 6 5
5
5
2 1 1 2 3 2 3 5
5
2 1 1 3 3 2
4
16. (a) m = 3 Smallest number appearing on dice is 3 and it may appear on one or more dice
s c i t a m e h t a a m r M a E e h JE iv .S T K t . II c L . je Er b O
P (m 3) (Probability of occurrence of 3 , 4 , 5 , 6 on all the five dice) – (Probability of occurrence of 4 , 5 , 6 on all the dice) 5
5
4 3 Required probability 6 6
5
5
2 1 3 2 (b) n 4 5
5
5
5
4 3 2 1 P(n 4) 6 6 3 2 (c) 2 m 4
P ( E ) P (m 2) P (m 3) P (m 4) 5
5
5
5
5
5
5 4 2 1 3 2 6 6 3 2 6 6 5
5
5
5
5
5 2 2 1 1 1 6 3 3 2 2 3 5
5 1 6 3
5
5
(d) m 2 and n 5
4 P (occurrence of 2, 3, 4, 5 on all the dice) 6 2 P (occurrence of 3 , 4 on all the dice) 6
5
5
5
3 P (occurrence of 2 , 3 , 4 on all the dice) 6
Mathematics for IIT-JEE (Hints/Solutions)
[52]