observable interactions using basic geometric algebra

1 downloads 0 Views 182KB Size Report
Abstract: Maxwell equation in geometric algebra formalism with equally weighted basic solutions is subjected to continuously acting Clifford translation.
State/observable interactions using basic geometric algebra solutions of the Maxwell equation Alexander SOIGUINE1 1 SOiGUINE

Quantum Computing, Aliso Viejo, CA 92656, USA

http://soiguine.com Email address: [email protected]

Abstract: Maxwell equation in geometric algebra formalism with equally weighted basic solutions is subjected to continuously acting Clifford translation. The received states, operators acting on observables, are analyzed with different values of the Clifford translation time factor and through the observable measurement results.

1. Introduction Let’s consider special case of g-qubits [1] [2]: 𝛼 + 𝛽𝐡1 + 𝛼𝐡2 + 𝛽𝐡3 = 𝛼 + 𝛽𝐡3 + (𝛼 + 𝛽𝐡3 )𝐡2

(1.1)

with basic bivectors satisfying usual anticommutative multiplication rules: 𝐡1 𝐡2 = βˆ’π΅3 , 𝐡1 𝐡3 = 𝐡2 , 𝐡2 𝐡3 = βˆ’π΅1 . The normalization in this case is: 𝛼 2 + 𝛽2 + 𝛼 2 + 𝛽2 = 1 ⟹ 𝛼 2 + 𝛽2 =

1 2

2

2

(√2𝛼) + (√2𝛽) = 1

or

1

With this normalization √2𝛼 = cos πœ‘ for some angle πœ‘. Then Ξ² =

√2

sin πœ‘, Ο† = cos βˆ’1 (√2𝛼).

The state (1.1) is one possible lift of conventional quantum mechanical qubit (𝛼+𝑖𝛽 ) with 𝛼+𝑖𝛽 1

𝛼 2 + 𝛽2 = 2, when complex plane is specified as the plane of 𝐡3 . Write state (1.1) in exponential form: 𝛼 + 𝛽𝐡1 + 𝛼𝐡2 + 𝛽𝐡3 = 𝑒 𝐼𝐡 πœ‘ , πœ‘ = π‘π‘œπ‘  βˆ’1 (√2𝛼), 𝐼𝐡 =

𝛽 √1βˆ’2𝛼 2

𝐡1 +

(1.2) 𝛼

√1βˆ’2𝛼2

𝐡2 +

𝛽 √1βˆ’2𝛼2

𝐡3

Apply Clifford translation in the plane of 𝐡3 to (1.2) (see, for example [3]): 𝑒 𝐼𝐡3 𝛾 𝑒 𝐼𝐡 πœ‘ = π‘π‘œπ‘  𝛾 π‘π‘œπ‘  πœ‘ + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘ (𝐼𝐡3 β‹… 𝐼𝐡 ) + 𝑠𝑖𝑛 𝛾 π‘π‘œπ‘  πœ‘ 𝐼𝐡3 + π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ 𝐼𝐡 + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘ 𝐼𝐡3 ∧ 𝐼𝐡 =

1

π‘π‘œπ‘  𝛾 π‘π‘œπ‘  πœ‘ βˆ’

𝛽

𝛽

π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ 𝐡1 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛼 𝛽 𝛽 + π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ 𝐡2 + π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ 𝐡3 + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘ 𝐡2 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛼 + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘ 𝐡1 = √1 βˆ’ 2𝛼 2

π‘π‘œπ‘  𝛾 π‘π‘œπ‘  πœ‘ βˆ’

𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘ + 𝑠𝑖𝑛 𝛾 π‘π‘œπ‘  πœ‘ 𝐡3 +

𝛽

𝛽 𝛼 𝑠𝑖𝑛 𝛾 sin πœ‘ + ( π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘) 𝐡1 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛼 𝛽 +( π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘ + 𝑠𝑖𝑛 𝛾 𝑠𝑖𝑛 πœ‘) 𝐡2 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛽 + (𝑠𝑖𝑛 𝛾 π‘π‘œπ‘  πœ‘ + π‘π‘œπ‘  𝛾 𝑠𝑖𝑛 πœ‘) 𝐡3 √1 βˆ’ 2𝛼 2

This will be used later for the g-qubits generated by Maxwell equation. To make the following text more comprehensive let’s briefly recall how the system of the electromagnetic Maxwell equations is formulated as one equation in geometric algebra terms [4]. βƒ— , where 𝐼3 is righthand screw unit Take geometric algebra element of the form: 𝐹 = 𝐸⃗ + 𝐼3 𝐻 volume in the three dimensions. The electromagnetic field 𝐹 is created by some given distribution of charges and currents, also written as geometric algebra multivector: 𝐽 ≑ 𝜌 βˆ’ 𝑗. Apply operator πœ•π‘‘ + βˆ‡ to 𝐹. The result will be: βƒ— )+⏟ βƒ— + 𝐼⏟ βƒ— (πœ•π‘‘ + βˆ‡)𝐹 = βˆ‡βŸ βˆ™ 𝐸⃗ + πœ• βˆ‡ ∧ 𝐸⃗ + 𝐼3 πœ•π‘‘ 𝐻 3 (βˆ‡ β‹… 𝐻 ) βŸπ‘‘ 𝐸⃗ + 𝐼3 (βˆ‡ ∧ 𝐻 π‘ π‘π‘Žπ‘™π‘Žπ‘Ÿ

π‘π‘–π‘£π‘’π‘π‘‘π‘œπ‘Ÿ

π‘£π‘’π‘π‘‘π‘œπ‘Ÿ

Comparing component wise (πœ•π‘‘ + βˆ‡)𝐹 and 𝐽 we get: 𝛻 βˆ™ 𝐸⃗ ≑ 𝑑𝑖𝑣𝐸⃗ = 𝜌 βƒ— ) ≑ πœ•π‘‘ 𝐸⃗ βˆ’ π‘Ÿπ‘œπ‘‘π» βƒ— = βˆ’π‘— πœ•π‘‘ 𝐸⃗ + 𝐼3 (𝛻 ∧ 𝐻 βƒ— ≑ 𝐼3 π‘Ÿπ‘œπ‘‘πΈβƒ— + 𝐼3 πœ•π‘‘ 𝐻 βƒ— =0 𝛻 ∧ 𝐸⃗ + 𝐼3 πœ•π‘‘ 𝐻 βƒ— ) ≑ 𝐼3 (𝑑𝑖𝑣𝐻 βƒ—)=0 𝐼3 (𝛻 β‹… 𝐻 { Thus, we have usual system of Maxwell equations: 𝑑𝑖𝑣𝐸⃗ = 𝜌 βƒ— = βˆ’π‘— πœ•π‘‘ 𝐸⃗ βˆ’ π‘Ÿπ‘œπ‘‘π» βƒ— + π‘Ÿπ‘œπ‘‘πΈβƒ— = 0 πœ•π‘‘ 𝐻 βƒ— =0 { 𝑑𝑖𝑣𝐻

equivalent to one equation (πœ•π‘‘ + βˆ‡)𝐹 = 𝐽 Without charges and currents the equation becomes (πœ•π‘‘ + βˆ‡)𝐹 = 0 2

π‘π‘ π‘’π‘’π‘‘π‘œπ‘ π‘π‘Žπ‘™π‘Žπ‘Ÿ

Arbitrary linear combination of the two basic solutions of the above Maxwell equation in geometric algebra terms is [5]: +

βˆ’

+

πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘

βˆ’

(1.3)

where πœ‘ Β± = cosβˆ’1 (

1

√2

Β± πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ = 𝐼𝑆

cos πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ])),

π‘ π‘–π‘›πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ])

+𝐼𝐡0

π‘π‘œπ‘ πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ])

√1 + 𝑠𝑖𝑛2 πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) √1 + 𝑠𝑖𝑛2 πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) π‘ π‘–π‘›πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) + 𝐼𝐸0 √1 + 𝑠𝑖𝑛2 πœ”(𝑑 βˆ“ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ])

The triple of unit value basis orthonormal bivectors {𝐼𝑆 , 𝐼𝐡0 , 𝐼𝐸0 } is comprised of 𝐼𝑆 bivector, dual, that’s received by applying righthand screw unit volume 𝐼3 , to the propagation direction vector, 𝐼𝐡0 is dual to initial vector of magnetic field, 𝐼𝐸0 is dual to initial vector of electric field. The expression (1.3) is linear combination of two geometric algebra states, g-qubits [1], [2], and can particularly be transformed by a Clifford translation, geometric algebra lift of matrix Hamiltonian action on two-dimensional complex vectors, qubits in terms of conventional quantum mechanics. 0 2𝑖𝛾 Suppose conventional matrix Hamiltonian is ( ). Its geometric algebra lift makes βˆ’2𝑖𝛾 0 rotation of the state (1.3) in the 𝐼𝐸0 plane by angle 2𝛾1 and the lift is 𝑒 2𝛾𝐼𝐸0 . One interesting example of the current formalism is calculating the Berry potential +

+

βˆ’

βˆ’

associated with (1.3) state transformation 𝑒 2𝛾𝐼𝐸0 (πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ): +

πœ• 2𝛾𝐼 + βˆ’ + βˆ’ 𝑒 𝐸0 (πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ) πœ•π›Ύ + + βˆ’ βˆ’ + βˆ’ βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘+ βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘βˆ’ = (πœ†π‘’ + πœ‡π‘’ )𝑒 βˆ’2𝛾𝐼𝐸0 (βˆ’2𝑒 2𝛾𝐼𝐸0 )(πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ) +

βˆ’

βˆ’

𝐴(𝛾) = (πœ†π‘’ βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ )𝑒 βˆ’2𝛾𝐼𝐸0 𝐼𝐸0 +

+

βˆ’

βˆ’

βˆ’

βˆ’

+

+

= (βˆ’2) (πœ†2 + πœ‡ 2 + πœ†πœ‡(𝑒 βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 βˆ’πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ )) If the two basic solutions are equally weighted, Ξ» = ΞΌ, we get a potential, instantly nonlocally spread in three-dimensional space and independent of time, and, up to electric/magnetic field amplitude value, the potential is2:

The same result takes place if Clifford translation makes rotation in the plane of 𝐼𝐡0 Contrary to conventional quantum mechanics formalism where states, particularly qubits, are only defined up to a phase, the geometric algebra with variable complex plane paradigm is much deeper theory, thus the statement that Berry potential is not observable due to gauge redundancy makes here no sense 1 2

3

𝐴(𝛾)|πœ†=πœ‡ ~ βˆ’ π‘π‘œπ‘  2 [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ] It is scalar field, thus invariant in any 𝐺3+ measurements [1].

2. Clifford translation continuously acting on a state received as the Maxwell equation solution +

βˆ’

+

βˆ’

Let’s initially calculate πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ assuming again Ξ» = ΞΌ, say both are equal to 1. +

+

βˆ’

βˆ’

𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ 1 1 = cos πœ”(𝑑 βˆ’ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) + 𝐼𝑆 π‘ π‘–π‘›πœ”(𝑑 βˆ’ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) √2 √2 1 1 + 𝐼𝐡0 π‘π‘œπ‘ πœ”(𝑑 βˆ’ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) + 𝐼𝐸0 π‘ π‘–π‘›πœ”(𝑑 βˆ’ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) √2 √2 1 1 + cos πœ”(𝑑 + [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) + 𝐼𝑆 π‘ π‘–π‘›πœ”(𝑑 + [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) √2 √2 1 1 + 𝐼𝐡0 π‘π‘œπ‘ πœ”(𝑑 + [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) + 𝐼𝐸0 π‘ π‘–π‘›πœ”(𝑑 + [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) √2 √2 2 = cos πœ”([(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) (cos πœ”π‘‘ + 𝐼𝑆 sin πœ”π‘‘ + 𝐼𝐡0 cos πœ”π‘‘ + 𝐼𝐸0 sin πœ”π‘‘) √2 +

βˆ’

+

βˆ’

We see that the state 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ has the form of (1.1) considered in Introduction, thus the results for the Clifford translation obtained there can be applied. Suppose that the angle in the above Clifford translation continuously changes in time, 𝛾 = πœ”π‘Ÿ 𝑑. Then Clifford translation with 𝐼𝐻 = 𝐼𝐸0 and |𝐻| = 2𝛾 gives: +

+

βˆ’

+

βˆ’

+

βˆ’

βˆ’

𝑒 𝐼𝐻 |𝐻|𝑑 (πœ†π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + πœ‡π‘’ πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ )|Ξ»=ΞΌ=1 = 𝑒 2𝐼𝐸0 πœ”π‘Ÿ 𝑑 (𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ) = π‘π‘œπ‘  2 πœ”π‘Ÿ 𝑑 π‘π‘œπ‘  πœ‘ 𝛽 βˆ’ 𝑠𝑖𝑛 2πœ”π‘Ÿ 𝑑 sin πœ‘ √1 βˆ’ 2𝛼 2 𝛽 𝛼 +( π‘π‘œπ‘  2πœ”π‘Ÿ 𝑑 𝑠𝑖𝑛 πœ‘ + 𝑠𝑖𝑛 2πœ”π‘Ÿ 𝑑 𝑠𝑖𝑛 πœ‘) 𝐡1 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛼 𝛽 +( π‘π‘œπ‘  2πœ”π‘Ÿ 𝑑 𝑠𝑖𝑛 πœ‘ + 𝑠𝑖𝑛 2πœ”π‘Ÿ 𝑑 𝑠𝑖𝑛 πœ‘) 𝐡2 √1 βˆ’ 2𝛼 2 √1 βˆ’ 2𝛼 2 𝛽 + (𝑠𝑖𝑛 𝛾2πœ”π‘Ÿ 𝑑 π‘π‘œπ‘  πœ‘ + π‘π‘œπ‘  2πœ”π‘Ÿ 𝑑 𝑠𝑖𝑛 πœ‘) 𝐡3 √1 βˆ’ 2𝛼 2 where 𝛼 =

2 √2

π‘π‘œπ‘  πœ”([(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) π‘π‘œπ‘  πœ”π‘‘ and 𝛽 =

2 √2

After some trigonometry the result is:

4

π‘π‘œπ‘  πœ”([(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ]) 𝑠𝑖𝑛 πœ”π‘‘

+

βˆ’

+

βˆ’

𝑒 2𝐼𝐸0 πœ”π‘Ÿ 𝑑 (𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ) 2

cos[(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ] {cos(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘) + sin(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)𝐼𝐸0 √2 + [cos(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘) + sin(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)𝐼𝐸0 ]𝐼𝐡0 } =

We see that action of the Clifford translation 𝑒 2𝐼𝐸0 πœ”π‘Ÿ 𝑑 on the general solution constructed as equal weight sum of basic solutions of the Maxwell equation gives, up to the space location defined factor, the state which is the sum of rotation in the plane of 𝐼𝐸0 by angle 2πœ”π‘Ÿ 𝑑 + πœ”π‘‘ plus the same rotation followed by flip around plane of 𝐼𝐸0 . It can also be read as a single 𝐺3+ element: +

+

βˆ’

βˆ’

𝑒 2𝐼𝐸0 πœ”π‘Ÿ 𝑑 (𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ + 𝑒 πΌπ‘ƒπ‘™π‘Žπ‘›π‘’ πœ‘ ) = 2 π‘π‘œπ‘ [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ] 𝑒 𝐼𝑅 πœ‘ where πœ‘ = π‘π‘œπ‘  βˆ’1 (

1

√2

1

𝐼𝑅 =

√2

π‘π‘œπ‘ (2πœ”π‘Ÿ 𝑑 + πœ”π‘‘))

𝑠𝑖𝑛(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)𝐼𝑆 +

1 √2

(2.1)

π‘π‘œπ‘ (2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)𝐼𝐡0 +

1 √2

𝑠𝑖𝑛(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)𝐼𝐸0

(2.2)

3. Measurement of an observable Though the Clifford translation result received above is linear combination of two geometric 1 0 algebra states corresponding to some conventional qubits 𝑐1 ( ) and 𝑐2 ( ) (see, for 0 1 example [5]), measurement of a 𝐺3 valued observable is not linear combination of measurements by those states because measurement in the currently used formalism does not follow the distributive law. So, we need to use general formula, the geometric algebra variant of the Hopf fibration (see [2], Sec.5.1): If we have a state 𝛼 + 𝛽1 𝐡1 + 𝛽2 𝐡2 + 𝛽3 𝐡3 , 𝛼 2 + 𝛽12 + 𝛽22 + 𝛽32 = 1, and observable 𝐢0 + 𝐢1 𝐡1 + 𝐢2 𝐡2 + 𝐢3 𝐡3 then the result of measurement is: 𝛼+𝛽1 𝐡1 +𝛽2 𝐡2 +𝛽3 𝐡3

𝐢0 + 𝐢1 𝐡1 + 𝐢2 𝐡2 + 𝐢3 𝐡3 β†’ 𝐢0 2) 2 2 )] 2 [(𝛼 (𝛽 + (𝐢1 + 𝛽1 βˆ’ 2 + 𝛽3 + 2𝐢2 (𝛽1 𝛽2 βˆ’ 𝛼𝛽3 ) + 2𝐢3 (𝛼𝛽2 + 𝛽1 𝛽3 ))𝐡1 + (2𝐢1 (𝛼𝛽3 + 𝛽1 𝛽2 ) + 𝐢2 [(𝛼 2 + 𝛽22 ) βˆ’ (𝛽12 + 𝛽32 )] + 2𝐢3 (𝛽2 𝛽3 βˆ’ 𝛼𝛽1 ))𝐡2 + (2𝐢1 (𝛽1 𝛽3 βˆ’ 𝛼𝛽2 ) + 2𝐢2 (𝛼𝛽1 + 𝛽2 𝛽3 ) + 𝐢3 [(𝛼 2 + 𝛽32 ) βˆ’ (𝛽12 + 𝛽22 )])𝐡3 In the current case: 𝐡1 = 𝐼𝑆 , 𝐡2 = 𝐼𝐡0 , 𝐡3 = 𝐼𝐸0 , 𝛼=

1 √2

𝛽1 =

π‘π‘œπ‘ (2πœ”π‘Ÿ 𝑑 + πœ”π‘‘),

1 √2

𝑠𝑖𝑛(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘), 𝛽2 =

1 √2

π‘π‘œπ‘ (2πœ”π‘Ÿ 𝑑 + πœ”π‘‘), 𝛽3 =

1 √2

𝑠𝑖𝑛(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘)

and then the result of measurement (without the distance factor 4π‘π‘œπ‘  2 [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ] ) is: 𝐢0 + 𝐢3 𝐼𝑆 + (𝐢1 sin 2(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘) + 𝐢2 cos 2(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘))𝐼𝐡0 + 5

(βˆ’πΆ1 cos 2(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘) + 𝐢2 sin 2(2πœ”π‘Ÿ 𝑑 + πœ”π‘‘))𝐼𝐸0

(3.1)

Geometrically, it means the following: -

-

The observable in the measurement by 𝑒 𝐼𝑅 πœ‘ , πœ‘ and 𝐼𝑅 defined in (2.1) and (2.2), is rotated counterclockwise by πœ‹β„2 around the axis dual to 𝐼𝐡0 , thus the observable third bivector component of the value 𝐢3 becomes lying in 𝐼𝑆 and does not further change; Two other components, with initial values 𝐢1 and 𝐢2 in the planes of 𝐼𝑆 and 𝐼𝐡0 , become orthogonal to 𝐼𝑆 and rotate clockwise around axis dual to 𝐼𝑆 with angle πœ‹β„ βˆ’ 2(2πœ” 𝑑 + πœ”π‘‘)3. π‘Ÿ 2

Like in above simple example of Berry potential, the result of measurement, including the factor 4π‘π‘œπ‘  2 [(𝐼3 𝐼𝑆 ) βˆ™ π‘Ÿ], spreads through the whole space at any instant of time.

4. Conclusions It was shown that for the special case of g-cubit states that particularly appear as solutions of the Maxwell equation in geometric algebra terms the result of measurement of any 𝐺3 valued observable is spread through the whole three-dimensional space at any instant of time.

Works Cited

[1] A. Soiguine, "Geometric Algebra, Qubits, Geometric Evolution, and All That," January 2015. [Online]. Available: http://arxiv.org/abs/1502.02169. [2] A. Soiguine, Geometric Phase in Geometric Algebra Qubit Formalism, Saarbrucken: LAMBERT Academic Publishing, 2015. [3] A. Soiguine, "Polarizations as States and Their Evolution in Geometric Algebra Terms with Variable Complex Plane," Journal of Applied Mathematics and Physics, vol. 6, no. 4, 2018. [4] A. Soiguine, Methods of Vector Algebra in Applied Problems, Leningrad: Naval Academy, 1990. [5] A. Soiguine, "The geometric algebra lift of qubits via basic solutions of Maxwell equation," 21 May 2018. [Online]. Available: https://arxiv.org/abs/1805.11953.

3

Obviously, the result qualitatively does not depend on extra state rotation caused by Clifford translation. The latter just increases the speed of rotation around vector dual to 𝐼𝑆 .

6