Ohne Titel

2 downloads 0 Views 5MB Size Report
filtering, collaborative search, personalized social search engines. 1. Introduction ...... Golder, S. A. (2006). Usage patterns of collaborative tagging systems.
The  Many  Ways  of  Searching  the  Web  Together:   A  Comparison  of  Social  Search  Engines    

Manuel  Burghardt,  Markus  Heckner  und  Christian  Wolff     Media  Informatics  Group   Institute  for  Information  and  Media,  Language  and  Culture   University  of  Regensburg,  93040  Regensburg,  Germany     E-­‐‑mail:  {firstname.lastname}@ur.de     Abstract:  This  article  illustrates  and  explains  the  ambiguity  and  vagueness  of  the  term   social  search  and  aims  at  describing  and  classifying  the  heterogeneous  landscape  of  social   search   implementations   on   the   WWW.   We   have   looked   at   different  definitions   as   well   as  the  context  of  social  search  by  carrying  out  an  extensive  literature  review,  and  tried  to   unify   and   enhance   existing   ideas   and   concepts.   Our   definition   of   social   search   is   illustrated  by  a  general  review  of  existing  social  search  engines,  which  are  analyzed  and   described  by  their  specific  features  and  social  aspects.     Keywords:   social   search   engines,   social   tagging,   social   question-­‐‑answering,   collaborative   filtering,  collaborative  search,  personalized  social  search  engines    

1.   Introduction   Before   the   digital   age   and   the   rise   of   the   WWW,   information   seeking   almost   always   occurred   in   a   social   context,   i.e.   users   had   to   ask   a   person   from   their   social   environment   –   either   a   qualified   friend   or   an   information   professional   –     when   they   wanted   to   obtain   some   kind   of   information.   The   advantage   of   information   sought   in   such   a   socially   mediated   way   lies   in   the   ease   of   evaluating   its   particular   quality,   as   the   source   of   information   is   in   most   cases   personally  known  for  his  or  her  competence  in  a  specific  field  of  knowledge.   Today,  most  algorithmic  web  search  engines  suffer  from  a  lack  of  trust  in  the   quality   of   the   retrieved   information.   The   problem   is   no   longer   to   find   any   information   about   a   certain   topic   at   all,   but   to   be   able   to   judge   which   piece   of   information   from   the   vast,   automatically   generated   list   of   results   is   actually   relevant  and  of  decent  quality.  Another  problem  is  that  existing  search  engines   adopt  a  “one  size  fits  all”  (Ahn,  Brusilovsky,  &  Farzan,  2005)  approach,  i.e.  they   don’t  consider  user-­‐‑specific  and  contextual  aspects  of  the  search  process.  Thus,   it  seems  obvious  to  integrate  some  kind  of  social  context  into  the  process  of  web  

 

1  

search,   as   real   people   from   a   user’s   social   environment   are   trusted   more   than   abstract   and   non-­‐‑transparent   search   algorithms.   Social   search   can   be   understood  as  a  generic  term,  which  was  coined  to  summarize  a  wide  variety  of   concepts  to  approach  this  issue.   Most   traditional   web   search   engines   focus   on   text-­‐‑   and   content-­‐‑based   retrieval   algorithms,   whereas   social   search   engines   focus   on   human   judgment   when  it  comes  to  ranking  and  assessing  the  relevance  of  online  resources.  This   means,  the  ranking  algorithm  of  a  social  search  engine  is  not  (primarily)  based   on   the   frequency   and   distribution   of   specific   keywords   in   a   single   document,   but   on   the   fact   that   other   users   evaluate   certain   documents   as   interesting   and   relevant  with  respect  to  a  certain  information  need.  Ahn  et  al.  (2005)  point  out   another   problem   of   current   web   search   engines   which   is   constituted   by   the   traditional   IR-­‐‑assumption   that   the   users’   queries   and   the   document-­‐‑ representation   share   a   common   language   and   can   be   matched.   Social   approaches   like   e.g.   social   tagging   try   to   overcome   this   mismatch   by   allowing   users  to  describe  documents  in  their  own  terms.  

2.   What  is  social  search?     While   the   social   web   is   still   changing   at   a   very   fast   pace,   the   concept   of   social   search   is   evolving,   too.   As   a   result   of   this   development,   and   because   of   the   highly   generic   nature   of   the   term   social   search,   a   wide   range   of   different   interpretations   and   implementations   for   social   search   engines   can   be   found   on   the   web.   This   chapter   aims   at   describing   and   comparing   the   heterogeneous   landscape  of  social  search  implementations  on  the  WWW.   2.1.   Context  and  history  of  social  information  retrieval     Although  there  is  a  plethora  of  different  social  search  engines  on  the  web,  most   of   them   build   on   basic   concepts   and   ideas   from   the   IR-­‐‑field   that   have   been   around   for   at   least   50   years.   The   problems   and   limitations   of   exclusively   automatic,   query-­‐‑based   search,   which   cause   a   low   precision   of   the   result   set   (at   least  in  the  case  of  output  without  relevance  ranking),  have  been  known  to  IR-­‐‑ researchers  for  years.  A  first  approach  to  use  human  judgment  for  an  increased   precision   of   results   can   be   seen   in   Rocchio’s   introduction   of   relevance   feedback   (Rocchio,   1971)   which   allows   the   user   to   gradually   refine   his   query   by   evaluating  the  relevance  of  the  particular  results.  Although  this  idea  dates  back   to   the   1970s,   it   has   been   difficult   to   implement   effectively   ever   since.   The   reasons  are  basic  problems  of  motivation  and  acceptance,  as  it  is  very  difficult  to   get  the  user  to  voluntarily  give  feedback  to  an  IR-­‐‑system  about  the  relevance  of   the  results:  Users  primarily  want  to  find  information  and  not  give  feedback.  The  

 

2  

various  applications  of  the  social  web  (social  networks,  social  tagging,  etc.)  as  well   as   a   change   in   the   mentality   of   its   users   (from   passive   consumers   to   active   contributors   and   collaborators   or   prosumers)   enable   a   large-­‐‑scale   realization   of   the  relevance  feedback  idea,  adding  the  possibility  of  socially  sharing  feedback   with  many  other  users.     Another   crucial   development   in   the   1990s,   setting   the   course   for   social   search,   was   the   consideration   of   cognitive   and   contextual   aspects   during   the   information   seeking   process.   Before   this   development   IR-­‐‑systems   were   evaluated   using   the   so-­‐‑called   “Laboratory   Model   of   Information   Retrieval”   (Ingwersen   &   Järvelin,   2010)   in   the   Cranfield   paradigm   which   focuses   on   theoretical  aspects  and  the  system  itself.  In  the  last  decades  this  mainly  system-­‐‑   and  theory-­‐‑driven  tradition  of  IR  research  has  been  broadened  by  a  more  user-­‐‑ oriented   stand   of   research,   especially   the   by   the   Scandinavian   school   of   information   retrieval   (Ingwersen,   1996):   Starting   from   the   special   situation   of   information   seeking   as   an   “anomalous   state   of   knowledge“   (ASK)   (Belkin,   Oddy,  &  Brooks,  1982)  the  adequate  cognitive  modeling  of  information  needs  as   well   as   the   user’s   perception   of   information   as   presented   by   information   systems  gain  importance.  Wilson  models  the  search  process  as  an  integral  part   of  information  (use)  behavior  (Wilson,  1999)  and  (Ingwersen  &  Järvelin,  2010)  see   information   retrieval   and   information   behavior   as   part   of   the   social   context.   Their   theory   of   polyrepresentation   claims   that   retrieval   quality   may   become   better   if   many   different   representations   of   documents   and   media   can   be   analyzed   for   information   search.   Among   these   representations   are   information   types   as   different   as   full   text   indices,   keywords   attached   to   documents   by   information   professionals   or   users’   tags   as   offered   on   tagging   platforms   like   Connotea.   The   result   of   this   approach   is   not   equivalent   to   a   genuine   theory   of   social   search,   but   approaches   like   social   tagging   can   be   explained   with   the   polyrepresentation   model:   By   adding   new   methods   of   collaborative   indexing   like  e.g.  social  tagging,  an  additional  and  different  representation  of  the  original   unit  of  information  is  created,  which  can  help  optimize  the  search  process.  This   kind   of   social   indexing   is   prominent   in   those   cases   where   no   general   purpose   algorithms  for  automatic  indexing  exist,  and  at  the  same  time  the  sheer  number   (and   quality)   of   informational   units   precludes   intellectual   indexing   by   information   professionals,   e.   g.   in   the   case   of   image   and   video   retrieval.   Well-­‐‑ known  platforms  which  are  a  good  example  include  Flickr  and  YouTube.     2.2.   The  social  graph   Graph   theory   can   be   used   to   formalize   a   user’s   social   context.   Graphs   are   frequently   used   to   represent   networks,   as   they   allow   for   an   easy   modeling   of   objects   (as   nodes)   and   relations   (as   edges).   The   application   of   this   model   to   a  

 

3  

user’s  social  context  on  the  web  is  called  social  graph  (de  Choudhury,  Sundaram,   John,  &  Seligmann,  2010).  The  nodes  of  the  social  graph  describe  people  on  the   Internet,  the  edges  describe  relations  between  those  people.  People  may  have  an   immediate   connection,   i.e.   they   know   each   other   directly,   or   they   only   know   each  other  indirectly  that  means  they  share  a  connection  via  a  third  person  they   both   know.   Milgram   introduced   the   so   called   “small   world   phenomenon”   in   1967,   claiming   that   everybody   on   the   world   is   connected   via   six   degrees   of   separation   (Milgram,   1967)   which   means   that   everybody   knows   everybody   else   via  a  maximum  of  six  other  persons.  Depending  on  the  degree  of  separation,  a   user’s   social   graph   can   be   divided   into   several   sub-­‐‑graphs,   denoting   different   groups   of   social   connections   and   indicating   different   levels   of   intimacy.   In   practice,   a   user   may   have   several   parallel   social   graphs   for   different   social   networks.   One   of   the   main   challenges   for   social   search   engines   will   be   to   aggregate   different   social   graphs   and   provide   the   user   with   information   from   his  entire  social  circle,  or  only  from  a  pre-­‐‑selected  sub-­‐‑circle.  Markup  languages   for   social   networks   like   e.g.   the   RDF-­‐‑based   FOAF-­‐‑format   (friend   of   a   friend)   (Brickley   &   Miller,   2010)   constitute   an   important   step   towards   a   standardized   and  interoperable  representation  of  a  user’s  social  graph.   2.3.   Defining  social  search   The   heterogeneous   field   of   existing   social   search   engines   illustrates   that   the   concept   of   social   search   allows   for   a   wide   range   for   interpretations,   and   obviously   lacks   a   standardized   and   generally   accepted   definition.   In   order   to   understand   and   define   social   search,   it   is   necessary   to   clarify   the   slightly   ambiguous   term   social.   Some   search   engines   are   labeled   social   because   they   search   for   social   data,   which   can   be   either   information   about   real   people   (cf.   Table  1),  or  real-­‐‑time  search  in  social  media  (cf.  Table  2),  whereas  other  search   engines   use   the   knowledge   and   judgment   of   people   to   back   up   web   search   in   various   ways.   In   the   first   case,   search   engines   are   just   used   for   social   data-­‐‑ mining  (Evans  &  Chi,  2008),  i.e.  they  are  treated  as  “systems  searching  for  social   data”.       Name   Pipl   iSearch   Wink   123people   Yasni      

 

URL   http://pipl.com   http://www.isearch.com   http://wink.com   http://www.123people.com   http://www.yasni.com     Table  1:  Examples  for  people  search  engines  

4  

Name   Socialmention   Whostalking   Technorati   Google  Realtime   Kurrently  

URL   http://www.socialmention.com   http://www.whostalkin.com   http://technorati.com   http://www.google.com/realtime/   http://www.kurrently.com     Table  2:    Examples  for  social  media  search  engines  

  In   the   second   case,   search   engines   are   treated   as   “systems   searching   socially”,   which  means  they  rely  on  the  actions  of  real  people,  therefore  often  being  called   people  powered  search  engines.   Although   social   search   is   often   used   as   an   umbrella   term   to   capture   both   definitions,  we  argue  for  understanding  social  search  and  social  search  engines   in   the   tradition   of   social   software:   In   its   loosest   definition,   social   software   describes  any  software  that  enables  and  supports  people  to  communicate  and  to   collaborate   (Deans,   2008).   By   seeing   social   search   engines   as   one   of   the   many   types  of  social  software  (in  line  with  e.g.  blogs,  wikis,  etc.),  we  will  use  the  term  in   the  meaning  of  “systems  searching  socially”,  as  the  search  for  a  person  or  some   kind   of   social   media   content   is   per   se   not   an   act   of   communication   and   collaboration.   Croft,   Metzler   &   Strohman   (2010)   claim   that   social   search   needs   some   kind   of   social   environment   which   “can   be   defined   as   an   environment   where   a   community   of   users   actively   participate   in   the   search   process”   .   McDonnell   &   Shiri   (2011:9),   along   with   the   previous   definitions,   define   social   search  as  “the  use  of  social  media  to  aid  finding  information  on  the  Internet”.  In   addition,   they   include   a   special   case   of   the   “systems   searching   for   social   data”   interpretation  in  their  very  definition,  by  claiming  that  the  search  for  an  expert   which  is  actually  some  kind  of  people  search  is  social  search  as  well.  This  seems   plausible,   as   the   search   for   a   person   with   expertise   in   a   certain   domain   can   be   seen   as   some   kind   of   meta-­‐‑search,   while   the   searcher   is   actually   trying   to   find   somebody  who  can  fulfill  his  or  her  information  need.  After  experts  are  found,   they   are   integrated   into   the   user’s   social   context,   enabling   communication   and   collaboration.   Actually,   this   scenario   occurs   in   some   social   question-­‐‑answering   systems,   where   users   search   experts   to   answer   their   specific   questions.   The   social   search   engine   Aardvark   hides   this   meta-­‐‑search   step   from   the   user,   as   it   tries  to  find  experts  to  a  question  automatically,  and  only  returns  the  answer  of   this  expert  to  the  initial  questioner.   Building  on  the  context  of  social  software,  we  propose  to  use  the  term  social   search  for  any  IR-­‐‑system  that  in  some  way  relies  on  the  user’s  social  context  in   order  to  enhance  the  search  process.  Such  a  social  enhancement  requires  active   communication  and  collaboration.   Another   distinctive   criterion   is   needed   to   narrow   down   the   mode   of   communication   and   collaboration   in   a   social   environment,   as   Sherman   (2006)  

 

5  

rightly   claims   that   social   collaboration   has   been   around   on   the   web   since   its   very  beginning,  and  is  almost  omnipresent.  He  argues  that  every  web  page  and   every  search  algorithm  was  created  by  a  human  initially,  so  even  if  a  user  types   a   query   into   Google,   the   results   he   gets   back   are   based   on   an   algorithm   which   eventually   reflects   human   judgments   about   quality   and   relevance.   In   order   to   distinguish   social   collaboration,   the   concept   of   intent,   which   can   be   implicit   or   explicit,  has  been  suggested  by  several  authors  (Golovchinsky,  Pickens,  &  Back,   2009;  Lewandowski,  2009;  McDonnell  &  Shiri,  2011).  Implicit  collaboration  can   take   many   forms,   where   some   are   even   more   implicit   than   others.   Google’s   PageRank  (Brin  &  Page,  1998)  is  a  good  example  for  the  implicit  collaboration  of   all   people   editing   and   linking   web   pages,   as   they   evaluate   and   rank   other   websites   by   linking   to   them.   The   algorithm   considers   the   hyperlink   structure   (link  topology)  of  the  web  and  derives  relevance  criteria  which  are  based  on  the   human   judgment   of   the   link   builders.   Another   implicit   form   of   collaboration   can   be   found   in   the   statistical   analysis   of   user’s   surfing   behavior   on   the   web,   where   the   click  popularity   gives   clues   to   the   relevance   of   web   pages.   These   two   basic  forms  of  implicit  collaboration  represent  two  user  groups:       •   link  topology:  authors  of  websites     •   click  popularity  and  user  statistics:  consumers  of  websites     Implicit   collaboration   in   the   context   of   social   search   almost   always   means   that   people  perform  some  kind  of  action  which  is  not  primarily  intended  to  enhance   search  but  to  fulfill  some  other  task.   In   contrast,   explicit   collaboration   in   social   search   is   always   (at   least   to   some   degree)  directed  and  deliberate,  and  can  take  many  different  forms,  such  as:   (1)   social  tagging   (2)   social  question  answering   (3)   collaborative  search   (4)   collaborative  filtering   (5)   personalized  social  search  engines     Figure   1   gives   a   visualization   of   the   various   social   approaches   to   information   retrieval  as  described  above.      

 

6  

Taxonomy  of  Social  Search

social  data  mining

people  powered  search   (systems  searching  socially)

social  media  search (search  for  social   media  content)

people  search*   (search  for  people)

*not  to  be  confused   with  systems  that  search   for  experts,  who  are   able  to  support  the   search  process  because   of  their  expertise

explicit

social  tagging

personalized   social  search   engines

implicit

collaborative   search social  question   answering

collaborative   filtering

click  popularity   and  user  statistics

Figure  1:  Taxonomy  of  Social  Search  Approaches  

link  topology

 

  In  the  following  we  will  investigate  the  various  possibilities  to  realize  active  and   explicit  participation  of  a  community  in  the  search  process.  We  will  also  show  in   some  more  detail  that  our  definition  for  social  search  still  leaves  plenty  of  room   for   interpretation,   as   “search”   is   a   vague   concept   that   includes   different   activities  like  e.g.  tagging,  querying  or  ranking.  Accordingly,  the  possibilities  to   search  socially  are  numerous.  This  is  well  reflected  by  the  vast  and  heterogeneous   field  of  actual  social  search  implementations  which  can  be  found  on  the  web.  

3.   Social  tagging  systems   Storing  and  retrieving  books  and  documents  with  the  help  of  catalogs  has  been   a   well-­‐‑established   practice   long   before   electronic   information   retrieval   systems   were   developed.   Analog   catalogs   require   manual   indexing   with   bibliographic  

 

7  

metadata   such   as   author   or   title   as   well   as   content-­‐‑related   categories   and   keywords.   The   goal   of   document   indexing   is   to   create   a   representation   of   the   document,  which  can  be  easily  stored  in  a  catalog  and  is  therefore  available  for   later  retrieval  (Lancaster,  2003).  This  manual  indexing  process  is  still  applied  in   certain   web   directories,   where   human   editors   are   collecting   and   annotating   relevant   links   for   a   given   set   of   topics.   One   of   the   first   web   directories   was   founded   by   Yahoo   in   1994   under   the   name   “Jerry   and   David’s   Guide   to   the   World  Wide  Web”.  This  directory  was  an  attempt  to  create  a  basic  catalog  of  the   WWW  (Hayhurst  &  Weston,  2007).  Today,  this  catalog  only  plays  a  minor  role   on  Yahoo’s  web  sites  and  has  largely  been  replaced  by  their  web  search  engine   (Griesbaum,   Bekavac,   &   Rittberger,   2009).   Given   the   limitations   of   physical   libraries   and   their   catalogs,   manual   indexing   and   cataloging   is   a   viable   task,   whereas  the  web’s  scale  makes  manual  indexing  a  futile  effort:  No  organization   can   provide   a   large   enough   number   of   professional   indexers   to   annotate   all   documents   and   websites   on   the   WWW.   The   fact   that   web   documents   are   constantly   changing   and   growing   in   number   makes   this   task   even   harder.   In   order  to  alleviate  this  problem  the  social  tagging  approach  suggests  that  (web)   authors  and  users,  both  become  indexers  (i.  e.,  taggers)  of  resources  on  the  web.   3.1.   Fundamentals  and  motivation  for  social  tagging   A  major  problem  of  manual  indexing  is  constituted  by  the  fact  that  indexers  are   in   most   cases   completely   separated   from   the   retrieval   process   (Mathes,   2004),   i.e.  the  professional  indexer  or  author  of  a  document  usually  does  not  search  for   the   same   document.   This   can   hinder   the   retrieval   process:   When   a   user   has   to   formulate   a   search   query   based   on   an   abstract   information   need,   a   gap   occurs   between  the  representation  created  by  the  professional  indexer  and  the  searcher   (vocabulary   problem)   (Furnas,   Landauer,   Gomez,   &   S.   T.   Dumais,   1987).   Social   tagging   alleviates   this   problem,   as   indexing   becomes   a   collaborative   effort   in   which   all   users   of   the   system   search   and   annotate   the   same   set   of   documents   (Blank,   Bopp,   Hampel,   &   Schulte,   2008;   Mathes,   2004).   Users   can   assign   an   arbitrary   number   of   keywords   to   describe   various   resource   types   (Marlow,   Naaman,  Boyd,  &  Davis,  2006),  which  can  be  employed  by  other  users  to  search   for  documents  later  on.  In  the  social  web,  any  web  user  can  become  a  potential   document   indexer.   This   additional   manpower   can   at   least   theoretically   match   the   number   of   sites   that   can   be   automatically   indexed.   In   addition,   social   tagging  can  apply  human  intellect  to  resources  that  are  notoriously  difficult  to   be  indexed  automatically,  as  users  can  easily  assign  content-­‐‑based  keywords  to   images,   videos   and   audio   files.   Moreover,   certain   platforms   allow   parallel   tagging   of   one   resource   by   several   taggers,   which   creates   different   user   perspectives  on  the  same  document  (Blank  et  al.,  2008).  

 

8  

Various  attempts  to  define  social  tagging  have  been  made:  Barsky  &  Purdon   (2006)   describe   tagging   as   a   form   of   classification   through   tags   or   keywords,   whereas   Tonkin   (2006)   emphasizes   the   informal   character   of   tagging   by   describing   tags   as   free-­‐‑text   with   “unconstrained   and   arbitrary   values”.   Voß   (2007)   describes   tagging   as   a   manual   form   of   indexing   and   thus   makes   an   explicit   connection   to   the   classic   method   of   assigning   keywords   through   professional  indexers  (e.g.  librarians).  Finally,  Huang  &  Chuang  (2009)  analyze   tagging  as  a  form  of  communication  in  the  tradition  of  Peirce’s  semiotics.  Social   tagging   also   differs   from   indexing   by   professional   and   authors   with   respect   to   motivation   for   tagging.   Professional   indexers   and   authors   are   consciously   and   systematically  indexing  for  others,  but  these  conventions  do  not  apply  for  social   taggers,   who   are   not   bound   to   any   conventions.   The   major   motivations   for   social   taggers   presumably   are   information   sharing   (information   should   be   discovered   by   others)   and   information   management   (information   should   be   retrieved   by   the   tagger   at   a   later   stage)   (Heckner,   Heilemann,   &   Wolff,   2009;   Thom-­‐‑Santelli,  Muller,  &  Millen,  2008).   3.2.   Direct  usage  of  social  tagging  systems   Social   tagging   systems   allow   users   to   add   any   kind   of   web   resource   to   an   existing  collection.  Tags  are  typically  assigned  when  the  resources  are  added  to   the   collection.   The   explicit   act   of   adding   a   resource   to   a   collection   can   be   regarded  as  an  implicit  positive  judgment  of  relevance.  Social  tagging  can  affect   different   resource   types,   including   bookmarks   (cf.   Delicious)   images   (cf.   Flickr),   videos  (cf.  YouTube),  presentations  (cf.  Slideshare)  as  well  as  different  text  types   such   as   scientific   papers   (cf.   Connotea)   or   social   media   content   like   e.g.   blog   posts  (cf.  Technorati).  Typically,  social  tagging  systems  offer  the  following  three   approaches  for  search:   (1)   Query  based  search  through  tags:  Users  transform  their  information  need  into   query   terms   and   the   system   compares   these   terms   with   the   internal   document  representation,  which  at  least  partly  consists  of  tags.   (2)   Serendipitous  findings  in  the  collections  of  others:   Social   tagging   systems   often   contain  collections  of  items  which  can  be  allocated  to  a  certain  user.  Since  a   resource  which  occurs  in  the  collection  of  two  different  users  also  indicates   some  kind  of  shared  interest,  navigating  in  the  collections  of  other  users  can   produce   valuable   resources,   which   could   have   not   been   discovered   otherwise.   (3)   Navigation   based   search   through   tag-­‐‑clouds:   Users   can   navigate   through   tag   clouds,   which   visualize   the   information   space   indexed   through   tags   by   consolidating  and  unifying  the  most  frequent  terms  in  a  single  view  (Hearst   &  Rosner,  2008;  Sinclair  &  Cardew-­‐‑Hall,  2008).  

 

9  

Using   the   Connotea   interface   as   an   example,   Figure   2   gives   examples   for   the   three  types  of  tag  usage  for  social  search.  

  Figure  2:  Alternatives  for  search  in  social  tagging  systems  exemplified  with  Connotea     (image  source:  http://www.connotea.org).  

  Indexing  by  a  large  number  of  users  of  a  social  tagging  system  makes  it  possible   to   index   collections   that   would   otherwise   have   been   much   too   large   to   be   handled   by   professional   indexers   (Golder,   2006;   Marlow   et   al.,   2006).   Additionally,  serendipitous  discoveries  in  collections  of  other  users  can  be  made   (N.   Ford,   2005).   Social   tagging   systems   potentially   alleviate   the   vocabulary   problem   because   the   representation   of   the   document   in   the   system   and   the   representation  of  the  user’s  information  need  are  created  by  users  with  a  shared   set   of   previous   knowledge.   The   gap   between   the   vocabulary   of   a   professional   indexer  and  a  user  is  potentially  becoming  narrower.   3.3.   Indirect  usage  of  social  tags  as  input  for  search  algorithms   Apart   from   directly   using   search   terms,   tags   can   also   be   used   as   additional   parameters  for  retrieval  algorithms.  Bao  et  al.  (2007)  propose  two  algorithms  for   optimizing   web   search:   SocialSlimRank   and   SocialPageRank.   Hotho,   Jäschke,   Schmitz   &   Stumme   (2006)   propose   a   ranking   algorithm   (FolkRank)   for   optimizing   search.   Begelman,   Keller   &   Smadja   (2006)   employ   clustering   techniques   to   optimize   the   user   experience   of   a   social   tagging   system   and   Milicevic,  Nanopoulos,  &  Ivanovic  (2010)  provide  an  overview  of  using  tags  in   recommender   systems.   Aurnhammer,   Hannape   &   Steels   (2006)   combine   visual  

 

10  

 

properties  of  images  and  social  tagging  for  image  retrieval.  Finally,  systems  like   50  matches2  directly  search  in  social  tagging  systems  (social  powered  search).  

4.   Social  question-­‐‑answering   Question  answering  (QA)  systems  constitute  a  special  version  of  search  engines,   which  most  notably  differ  from  other  IR  systems  in  how  the  users  can  formulate   their   information   need.   QA   systems   have   a   long   tradition   which   can   be   traced   back   to   the   time   of   command   line   interfaces   where   question   answering   was   proposed  to  enhance  human  computer  interaction  by  enabling  natural  language   communication  with  IR  systems  (Simmons,  1970).  The  basic  constituents  of  any   QA  system  that  answers  a  user’s  information  need  on  the  basis  of  a  collection  of   documents   are   a   component   for   matching   the   natural   language   query   to   the   internal  document  representation,  a  component  for  extracting  relevant  answers   and   a   processing   component,   i.e.   an   IR   engine   (Kwok,   Etzioni,   &   Weld,   2001).Until   today,   the   biggest   advantage   of   any   QA   system   is   its   intuitive   handling:     users   can   formulate   their   information   needs   in   natural   language   which  means  they  are  not  forced  to  translate  it  into  less  intuitive  descriptors  and   operators,  which  can  be  understood  by  an  automatic  retrieval  function.  Also  the   results   are   returned   in   natural   language,   and   are   an   immediate   answer   to   the   user’s  question,  not  a  list  of  interesting  or  relevant  websites.     4.1.   Fundamentals  of  social  QA   Social   QA   systems   realize   some   of   those   components   by   means   of   human   intelligence.  Similar  to  Amazon’s  Mechanical  Turk  platform,  the  knowledge  base   of   social   QA   systems   may   be   called   artificial  artificial  intelligence  (Pontin,   2007).   These   systems   are   social,   because   they   mediate   between   an   asking   user   and   a   user   who   might   know   the   answer   to   that   question,   and   provide   features   to   interact   and   evaluate,   rank   or   revise   questions   and   answers.   In   social   QA   systems   the   user   not   only   gets   answers   from   real   humans,   but   also   has   the   chance   to   get   in   contact   with   like-­‐‑minded   users   or   experts   in   a   certain   field   of   interest.   These   contacts   can   add   to   the   user’s   social   circle,   even   after   a   specific   QA   process   has   ended   (Croft   et   al.,   2010:   419-­‐‑420),   thus   building   a   network   of   people   which   can   be   tapped   to   answer   future   questions   in   a   similar   field.   Another  crucial  feature  of  social  QA  systems  which  is  implied  by  the  possibility   to   formulate   queries   in   natural   language   is   that   people   can   ask   even   complex   questions  directly,  without  needing  to  translate  them  into  manageable  subtasks   or  sub-­‐‑questions,  which  can  be  processed  and  computed  by  a  machine.                                                                                                                      http://www.50matches.com  

2

 

11  

  A   basic   problem   of   social   QA   systems   is   that   there   is   no   guaranty   for   the   correctness   of   an   answer.   Social   mechanisms   like   rating   those   users   who   have   given  answers  before,  as  well  as  the  position  of  the  answering  person  in  a  user’s   personal  social  circle  help  to  evaluate  that  quality  and  correctness  of  an  answer.   Another  drawback  of  asynchronous  QA  systems  is  that  you  never  know  when   you   will   get   an   answer   to   your   question   or   whether   you   will   get   an   answer   at   all.   The   biggest   problem   in   open   social   QA   systems   lies   in   the   poor   quality   of   answers,  which  is  often  closely  related  to  the  bad  quality  of  the  actual  questions.   The   fact   that   users   can   pose   questions   and   formulate   answers   in   natural   language   is   not   always   beneficial,   but   actually   promotes   informal,   off-­‐‑topic   dialogues  that  are  lacking  a  neutral  point  of  view,  and  often  remind  of  threads   in   forums   (Dearman   &   Truong,   2010).   Agichtein,   Castillo,   Donato,   Gionis,   &   Mishne  (2008)  try  to  address  this  problem  by  proposing  a  framework  to  identify   high  quality  content  in  social  media  with  their  social  QA  system  Yahoo!  Answers.     Social   QA   systems   are   numerous   (cf.   Table   3),   but   most   of   them   can   be   characterized  by  three  dimensions:   •   temporal  dimension:  synchronous  vs.  asynchronous   •   cost  dimension:  free  vs.  fee   •   social  dimension:  community  vs.  experts3     Name  

URL  

temporal   dimension  

Yahoo Answers Amazon Askville Wiki Answers Google Answers UClue Aardvark

http://answers.yahoo.com http://askville.amazon.com http://wiki.answers.com http://answers.google.com http://uclue.com http://vark.com

asynchronous asynchronous asynchronous asynchronous asynchronous asynchronous

cost   dimens ion   free free free fee fee free

Ether

http://www.ether.com

synchronous

fee

 

social   dimension   open community open community open community preselected experts preselected experts preselected experts (from the user's social graph) self-proclaimed experts

Table  3:    Examples  for  social  question  answering  systems  

  Especially   the   social   dimension   makes   existing   social   QA   systems   distinguishable.   We   will   describe   community-­‐‑based   systems   and   expert-­‐‑based   (but  socially  mediated)  systems  in  some  more  detail.  

                                                                                                               

 In   an   open   community   anybody   can   ask   and   give   answers.   In   semi-­‐‑open   communities   only   people   from   the   user’s   closer   social   environment   can   answer   questions.   In   expert-­‐‑based  systems   self-­‐‑proclaimed  or  preselected  experts  (similar  to  paid  editors)  can  answer  questions.     3

 

12  

4.2.   Community-­‐‑based  systems   One   of   the   biggest   and   most   prominent   social   QA   systems   is   Yahoo!   Answers   (Arrington,  2006).  It  allows  registered  users  to  pose  questions  and  give  answers   to   other   users’   questions.   Users   can   search   for   answered   or   unanswered   questions  via  full-­‐‑text  search  or  by  browsing  different  question-­‐‑categories.  They   may   answer   open   questions   themselves,   or   rate   and   comment   questions   and   existing  answers  on  some  kind  of  meta-­‐‑level.  Some  social  QA  systems  like  Wiki   Answers  not  only  allow  for  commenting  on  given  answers,  but  to  edit  and  revise   answers   in   a   wiki-­‐‑like   manner   (i.e.   user   don’t   even   have   to   register   on   the   service).   Building   on   the   idea   of   the   wisdom   of   the   crowd   (Surowiecki,   2007),   social   QA   systems   guarantee   a   maximum   of   social   interaction,   but   also   cause   corresponding  problems  known  from  Wikipedia,  such  as  vandalism  and  edit  wars   (Viégas,  Wattenberg,  &  Dave,  2004;  Wilkinson  &  Huberman,  2007).   A  lot  of  free  and  open  for  everybody  social  QA  systems  try  to  counter  such   quality  problems  with  internal  motivation  systems  where  users  are  promoted  to   different  levels  according  to  their  achievements.  Yahoo!  Answers  even  has  some   kind   of   currency   system   where   users   can   earn   points   when   they   answer   questions   or   rate   other   users’   answers.   If   users   want   to   pose   a   question,   they   need   to   pay   with   some   of   their   points.   A   high   number   of   points   also   brings   special  privileges,  like  e.g.  being  allowed  to  post  more  comments  or  pose  more   questions.  Systems  like  Amazons  Askville  try  to  activate  and  motivate  their  users   with  a  sophisticated  achievements  system  which  shows  some  elements  of  game   experience  design,  prominent  in  MMORPGs  (Yee,  2005).  In  Askville,  the  user  can   get   a   reward   for   all   kinds   of   tasks,   like   e.g.   posing   over   100   questions   with   at   least   two   answers   each.   Additionally,   as   some   kind   of   community-­‐‑building   social   glue,   users   can   give   and   get   compliments   to   each   other.   Recently,   this   type   of   information   seeking   –   posing   natural   language   questions   to   other   humans   over   some   QA   platform   –   has   been   discovered   in   social   networks   like   Facebook  and  Twitter  as  well,  where  users  post  questions  as  a  status  update,  and   get   answers   from   the   community   via   the   comment   function.   This   kind   of   QA   system   is   semi-­‐‑open,   as   only   users   from   a   person’s   social   graph   can   read   and   answer  the  question.   4.3.   Expert-­‐‑based  systems   In   addition   to   the   many   free   and   open   social   QA   systems,   there   are   numerous   systems   that   are   available   for   a   fee,   which   in   most   cases   imply   a   closed   community  of  answering  persons,  who  have  some  kind  of  expertise  in  a  specific   field.   Experts   are   either   preselected   by   the   operator   of   the   QA   system,   or   they   can   register   as   self-­‐‑proclaimed   experts   with   the   system.   As   people   are   paid   to   answer   a   question,   the   quality   of   answers   is   for   the   most   part   significantly  

 

13  

higher  than  in  open  systems.  This  holds  true  for  the  quality  of  questions,  too.  A   basic  challenge  is  that  questioners  obviously  want  to  assess  whether  an  expert  is   really   competent   in   a   certain   field.   For   both   preselected   and   self-­‐‑proclaimed   experts,  the  questioners  can  use  previous  answers  of  an  expert,  or  the  ratings  for   an   expert   by   other   questioners.   Therefore,   an   expert-­‐‑based   QA   system   has   to   provide  a  history  of  answered  questions,  and  /  or  a  method  to  evaluate  and  rate   experts.  Another  basic  distinction  for  expert-­‐‑based  systems  can  be  made  in  the   temporal   dimension.   Google   Answers,   which   is   no   longer   answering   new   questions,   but   still   provides   an   archive   of   answered   questions,   and   Uclue,   are   two   examples   for   asynchronous   systems,   where   a   person   posts   a   question   in   a   specific   category,   and   an   expert   takes   some   time   to   deliver   an   appropriate   answer.     Another   variant   of   expert-­‐‑based   systems   which   operate   in   real-­‐‑time   and   therefore   enable   synchronous   communication   are   so-­‐‑called   call-­‐‑an-­‐‑expert   services   (Del   Conte,   2006).   Platforms   like   e.g.   Ether   allow   users   to   present   themselves  as  experts  in  a  certain  field.  Questioners  can  either  search  for  those   experts   directly,   or   browse   through   a   topic-­‐‑directory,   which   is   similar   to   web   directories   like   e.g.   the   open   directory   project   (DMOZ),   to   find   the   appropriate   expert  for  their  question.  The  main  difference  between  such  systems  and  social   QA   services   like   e.g.   Yahoo!   Answers   or   Google   Answers   lies   in   the   mode   of   interaction   which   is   live   and   allows   spoken,   natural   language   (via   Skype   or   telephone).   It’s   advantageous   that   questioners   can   give   immediate   relevance   feedback   and   reformulate   their   questions   if   necessary   while   speaking   to   the   answering   expert.   Additionally   many   such   platforms   allow   the   experts   to   provide   (and   bill)   additional   digital   material   which   can   be   used   to   answer   a   question  in  more  detail.  As  mentioned  before,  this  kind  of  social  QA  resembles  a   meta-­‐‑people  search,  and  thus  poses  a  special  case  of  our  previous  social  search   definition.  In  such  systems  users  search  for  social  content  (i.e.  a  human  expert),   but  also  search  socially,  as  they  interact  with  the  detected  experts  and  rate  their   answers,  which  again  constitutes  an  indirect  collaboration  with  other  users  who   are   searching   for   experts.   Zhang   &   Ackerman   (2005)   note   that   this   kind   of   expertise  search  does  not  necessarily  require  a  social  QA  system,  but  can  also  be   observed  in  social  networks.     Aardvark,   which   was   bought   up   by   Google   in   2010,   is   another   system   which   mediates  between  questioners  and  experts,  but  does  so  automatically.  A  striking   feature   of   Aardvark   is   that   it   identifies   experts   ad   hoc   from   the   user’s   social   graph,   based   on   the   user’s   questions.   The   basic   functionality   of   Aardvark   is   described   by   Horowitz   &   Kamvar   (2010):   In   order   to   find   appropriate   experts   from  a  user’s  social  graph,  which  is  realized  by  social  media  activities  like  e.g.  a   user’s   participation   on   Facebook,   the   system   does   not   search   for   an   answer,   but   for  a  person  who  might  be  able  to  give  an  answer.  Thus,  Aardvark  doesn’t  index  

 

14  

documents,  but  people  (social  crawling)  and  tries  to  assign  areas  of  expertise  (so   called   topics)   to   these   people.   A   topic   parser   tries   to   identify   topics   from   structured  data  fields,  like  e.g.  an  expert’s  interests  and  activities  on  his  Facebook   profile,   a   topic   extractor   tries   to   identify   topics   in   unstructured   text   data,   e.g.   social  media  content  created  by  the  user  (e.g.  in  his  blog  or  on  his  Facebook  wall).   In  addition  to  topic  information,  Aardvark  stores  ratings  of  other  users  about  the   actual  topic  competence  of  the  expert,  which  is  called  score.  An  expert’s  score  is   high   if   he   gives   many,   good   answers,   and   low   if   he   gives   few   and   /   or   bad   answers.  

5.   Collaborative  search     Collaborative   search   can   be   seen   as   a   subset   of   social   search,   with   the   most   explicit   form   of   cooperation,   where   users   “share   an   information   need   and   […]   actively   work   together   to   fulfill   that   need”(Morris   &   Teevan,   2010:   2).   Collaboration  always  indicates  some  kind  of  direct  cooperation  between  users,   whereas   social   search   may   take   looser   and   more   indirect   forms   of   cooperation   during   the   search   process.   Collaborative   searchers   often   know   each   other,   and   have  a  specific  goal  they  want  to  achieve  together.  It  is  best  suited  for  complex   search   processes,   which   can   be   divided   amongst   several   individual   searchers.   Therefore,   a   collaborative   search   system   has   to   provide   mechanisms   to   coordinate   a   combined   search   of   different   users.   Van   Setten   &   Moelaert-­‐‑El   Hadidy  (2000)  identify  an  improved  group  understanding  of  a  complex  search   process  and  the  division  of  labor  as  the  main  advantages  of  collaborative  search.   Collaborative  search  can  be  further  distinguished  into  collaborative  querying   and   collaborative   browsing.   Collaborative   querying   supports   the   information   seeking  process  by  allowing  to  share  other  users’  search  experiences  (expressed   via  queries)  and  help  users  to  reformulate  those  queries  for  their  own  needs  (Fu,   Ciszek,   Marchionini,   &   Solomon,   2006).   Collaborative   browsing   can   take   various  forms,  such  as  “searching  for  specific  information,  exploring  previously   unexplored  territory  to  see  what'ʹs  interesting,  or  some  combination  of  the  two”   (Lieberman,  Van  Dyke,  &  Vivacqua,  1999).  A  third  form  of  collaborative  search   may   be   seen   in   collaborative   filtering,   which   is   –   due   to   its   highly   implicit   nature  (Golovchinsky  et  al.,  2009)  –  treated  as  a  social  search  genre  of  its  own.   One   challenge   for   collaborative   search   systems   is   an   adequate   visualization   of  other  users’  searches.  It  is  necessary  to  present  relevant  search  paths  to  fellow   searchers   in   order   to   avoid   redundant   searches,   and   allow   them   to   join   the   search  somewhere  along  the  way,  or  to  turn  off  to  some  other  sub-­‐‑paths  of  the   given   search   route.   Another   requirement   for   collaborative   systems   is   the   availability  of  commenting  and  rating  mechanisms  as  a  means  to  communicate  

 

15  

relevance   assessments   between   the   collaborators.   Collaborative   systems   can   be   classified   by   using   the   time  space  taxonomy,   which   has   been   proposed   for   early   groupware   systems   (Ellis,   Gibbs,   &   Rein,   1991).   According   to   this   taxonomy,   a   collaborative   search   can   be   performed   by   several   persons   on   one   shared   workplace   (co-­‐‑located   search),   or   by   collaborating   from   distributed   work   places   (remote  search),   which   are   connected   via   the   Internet.  Considering   the   temporal   dimension,  collaborative  search  can  happen  in  real-­‐‑time  (synchronous  search),  or   with   some   kind   of   delay   (asynchronous   search).   A   good   example   for   co-­‐‑located   collaboration   can   be   found   in   the   CoSearch   system   (Amershi   &   Morris,   2008),   where   one   user   acts   as   the   so-­‐‑called   driver   which   is   actually   the   head   of   the   search   group   and   starts   the   search   process   on   a   collectively   used   monitor.   All   other   searchers   take   the   role   of   so-­‐‑called   observers,   who   can   affect   the   driver’s   search   efforts   via   input   devices   like   e.g.   multiple   computer   mice   or   smartphones.   Observers   may   click   on   relevant   results   of   the   driver   query,   forwarding   them   to   some   kind   of   waiting   queue,   which   can   be   worked   off   by   the  driver  successively,  or  they  may  formulate  new  queries,  which  are  collected   in   a   query   queue   and   can   be   executed   later   on   by   the   driver.   Additionally,   results   and   queries   can   be   annotated   and   commented.   Although   not   all   users   are   having   equal   rights   in   CoSearch,   they   can   search   for   information   synchronously.  SearchTogether  is  another  system  for  collaborative  search,  which   enables   remote   search   on   distributed   computers   (Morris   &   Horvitz,   2007).   In   this   system   all   queries   are   visible   for   all   collaborating   users   and   may   be   commented   or   even   edited.   Remote   searches,   where   users   work   from   different   work   places,   oftentimes   allow   asynchronous   collaboration,   which   implies   the   need  for  a  mechanism  to  persistently  store  and  document  the  joint  search  efforts   for   the   time   of   the   search   project   (Croft   et   al.,   2010:   426)   and   alleviates   the   entrance  of  collaborators,  who  join  the  search  project  at  a  later  point  in  time.   The   biggest   problem   of   collaborative   search   systems   lies   in   the   absolute   transparency   of   each   user’s   actions   during   the   process   of   collaboration.   By   sharing   personal   queries   and   relevance   rankings   directly   and   evidently   with   other  users,  collaborative  search  systems  are  challenged  with  privacy  and  trust   issues  (Burghardt,  Buchmann,  Boehm,  &  Clifton,  2009),  as  users  might  hesitate   to  make  a  supposedly  silly,  naive  or  redundant  query  or  comment.    

6.   Collaborative  filtering  and  recommender  services   (Baeza-­‐‑Yates   &   Ribeiro-­‐‑Neto,   1999:   21)   make   a   distinction   between   two   basic   approaches  towards  information  retrieval:  On  the  one  hand  there  is  browsing  as   a   way   of   interacting   with   information,   on   the   other   hand   they   see   the   query-­‐‑ based   model   of   retrieval   where   ad   hoc   retrieval   and   information   filtering   are  

 

16  

further   subtypes.   In   the   framework   of   ad   hoc   retrieval,   the   user   continuously   formulates   queries   for   an   IR   system   with   a   more   or   less   static   document   collection.  Filtering,  on  the  other  hand,  describes  IR  processes  where  documents   are  dynamically  added  to  the  collection  whiles  others  may  be  removed  and  the   same  query  (or  filter)  is  constantly  matched  against  the  changing  collection.  The   query  may  be  formulated  as  a  user  profile  used  for  selecting  relevant  items  from   the   stream   of   documents   being   filtered   (“selective   dissemination   of   information“,  (Callan,  1996:  262)).  To  create  a  basic  (search)  profile,  the  user  has   to  specify  his  information  need  using  keywords  as  precise  as  possible.  By  giving   relevance   judgments   on   selected   documents,   this   profile   may   successively   be   refined  during  the  filtering  process.  Ideally,  this  profile  will  become  stable  after   some   iterations   of   the   relevance   feedback   loop   (Baeza-­‐‑Yates   &   Ribeiro-­‐‑Neto,   1999:   22-­‐‑23).   Although   document   filtering   can   be   seen   as   an   example   of   personalized   IR   systems,   the   main   aspect   is   the   matching   between   documents   and  a  user  profile.  Based  on  the  assumption  that  users  with  similar  profiles  –  or   similar   information   needs   –   tend   to   judge   the   same   documents   as   relevant,   collaborative  filtering  (X.  Su  &  Khoshgoftaar,  2009)  extends  document  filtering   by  analyzing  the  relevance  judgments  of  different  users.   By   adding   the   degree   of  similarity  between  different  profiles  to  the  search  process,  document  filtering   is  enhanced  by  a  social  or  collaborative  dimension  (S.  Dumais  et  al.,  2000):  Users   will   be   presented   relevant   documents   which   are   judged   as   relevant   based   on   other   users’   profiles   and   which   would   not   have   been   selected   using   the   individual  user’s  profile  only  (Croft  et  al.,  2010:  436).     Collaborative   filtering   is   typically   used   for   implementing   recommendation   services  which  suggest  potentially  relevant  items  that  are  not  to  be  found  with   the   original   user’s   query.   Relevant   items   are   selected   automatically   using   judgments   of   “similar”   users.   The   key   tasks   of   a   collaborative   filtering   system   are   the   identification   of   similar   user   profiles   and   the   generation   of   helpful   recommendations   from   the   differences   in   otherwise   similar   profiles.   A   central   problem   in   collaborative   filtering   is   the   users’   lack   of   willingness   for   giving   explicit  relevance  judgments.  More  implicit  ratings  like  e.g.  the  buying  decision   on   e-­‐‑commerce   platforms   like   Amazon   work   fine,   though   (Linden,   Smith,   &   York,   2003):   An   article   bought   by   a   user   can   typically   be   judged   as   being   relevant   with   respect   to   the   user’s   information   need.   In   the   case   of   text   documents,   implicit   relevance   criteria   can   be   reading   duration   or   the   downloading  or  printing  of  a  document  (Ferber,  2003).  Another  typical  problem   of   recommendation   systems   is   the   cold   start   or   new   item   /   new   user   problem   (Adomavicius   &   Tuzhilin,   2005):   New   documents   cannot   be   recommended   without  ratings  and  new  users  get  little  recommendations,  as  too  little  is  known   about   them   and   their   profile   is   not   very   specific   yet.   Table   4   gives   some   examples   of   web-­‐‑based   recommendation   systems   which   make   use   of  

 

17  

collaborative  filtering.  These  services  may  be  treated  as  vertical  search  engines,   as  they  recommend  collaboratively  filtered  results  for  different  subareas  like  e.g.   a  library  or  an  e-­‐‑commerce  platform.      

  Name   Amazon  

URL  

Type  of  recommendation  

http://www.amazon.de  

products  (books,  software  etc.)  

BibTip  

http://www.bibtip.com  

books  

Hunch  

http://hunch.com/  

generic  recommendations  

Last.fm  

http://www.lastfm.de  

music    

Mendeley  

http://www.mendeley.com  

scientific  articles  /  research  trends  

MovieLens  

http://www.movielens.org  

movies  

Table  4:  Examples  for  recommender  services  based  on  collaborative  filtering.  

Alongside   we   find   systems   like   e.g.   Hunch,   which   pursue   a   more   comprehensive  filtering  approach  in  order  to  build  a  so-­‐‑called  taste  graph.  In  the   long  run,  this  graph  is  meant  to  represent  all  objects  and  people  on  the  Internet   together  with  their  specific  connections  (edges  of  the  graph),  e.g.  person  A  likes   object  B  (K.  Ford,  2010).  The  taste  graph  can  also  be  exported  and  mapped  with   the   users’   individual   social   graph,   which   allows   customized   applications   like   e.g.  a  recommender  service  for  gifts  and  presents  for  a  user’s  friends  (Schonfeld,   2010).   Hunch   also   delivers   an   interesting   approach   which   tries   to   alleviate   the   cold-­‐‑start   problem   for   new   users:   If   users   register   to   Hunch,   they   are   asked   to   answer   20   (on   a   voluntary   basis   even   more)   questions   about   their   personal   interests   and   tastes   (cf.   Figure   3),   allowing   a   basic   comparison   with   existing   profiles.  

 

Figure  3:  .„TeachHunchAboutYou“  –  exemplary  questions  for  the  definition  and  refinement  of  user   profiles  (image  source:  http://hunch.com/).  

 

Hunch  can  be  either  browsed  via  existing  categories,  or  queried  with  a  specific   search   term.   Categories,   which   are   called   topics   in   Hunch,   can   be   created   and   edited   socially.   Any   suggestion   for   a   new   category   is   first   discussed   by   the   community   in   a   topicworkshop.   For   each   topic,   users   can   define   restrictive  

 

18  

questions   that   allow   later   users   to   focus   their   search   within   a   topic 5 .   The   collaboratively   filtered   results   can   be   ranked   (pro   and   con)   or   commented   by   the  users,  to  optimize  future  result  lists  for  similar  searches.  Like  in  many  social   QA   systems,   Hunch   provides   a   sophisticated   awards   system   of   points   and   medal  to  keep  their  users  motivated.     By  matching  user  profiles  with  regard  to  their  specific  interests,  collaborative   filtering   extends   the   social   dimension   from   “friends   and   acquaintances”   to   “like-­‐‑minded   people”,   who   share   the   same   interests   and   attitudes,   but   don’t   necessarily   have   to   know   each   other   (Anderson,   2005).   The   downside   of   this   approach   is   the   lack   of   transparency,   i.e.   users   often   don’t   know   why   they   get   certain   recommendations,   or   with   whom   they   implicitly   collaborate.   Although   collaborative  filtering  systems  are  a  more  implicit  form  of  collaboration  during   the   search   process,   the   systems   require   users   to   define   detailed   and   specific   profiles,  which  can  be  achieved  best  by  users  explicitly  refining  their  profiles  (cf.   the  TeachHunchAboutYou  approach).  

7.   Personalized  social  search   Although   at   least   location-­‐‑based   selection   of   retrieval   results   has   become   a   wide-­‐‑spread   feature,   many   algorithmic   web   search   engines   still   don’t   offer   personalized   search   results,   i.e.   every   user   gets   the   same   list   of   results   for   the   same  query.  In  contrast,  a  personalized  search  engine  has  the  ability  to  produce   individual   results   for   different   users   and   different   contexts   (Dalal,   2007).   In   order  to  consider  a  specific  user  and  his  context  for  personalized  search  results,   such   a   system   needs   a   persistent   user   profile,   which   stores   information   about   personal  preferences,  search  history,  and  other  contextual  aspects.     Social   search   engines   that   enable   personalized   results   can   be   described   as   “systems   that   consider   the   behavior   of   other   users   of   the   system   when   generating   search   results   and   recommendations”   (Keenoy   &   Levene,   2005),   which   means   they   not   only   consider   the   user’s   profile,   but   also   other   users’   profiles,  who  are  in  the  actual  searchers  social  graph.  Personalized  social  search   engines  (cf.  Table  5)  like  Rollyo  and  Eurekster  may  be  labeled  programmable  search   engines  (Marchiori,  2007)  as  well,  as  they  build  on  Yahoo’s  web  search  and  allow   users  to  define  individual  sub-­‐‑search  engines  which  only  search  in  preselected   document  collections  (i.  e.,  websites).  The  approach  assumes  that  different  users   have  expertise  in  different  domains,  and  thus  know  the  sources  which  are  more   prone  to  contain  potential  results  for  a  query  in  a  specific  field.  A  web  designer,                                                                                                                  

 Users   searching   in   the   category   “new   cars”   could   e.g.   be   asked   if   they   prefer   “speedy   sports   cars”,   “roomy   family   cars”   or   “something”   else   (cf.   the   Hunch   styleguide:     http://hunch.com/info/style-­‐‑guide/).   5

 

19  

for  instance,  might  know  some  insider  blogs  on  design  and  web  programming,   a  monthly  online  journal  with  a  huge  digital  archive  of  freely  available  articles   and   some   sites   for   the   official   documentation   of   recent   web   standards   –   all   queries   from   the   domain   of   web   design   have   a   good   chance   to   find   relevant   results   and   answers   in   this   personalized   document   collection.   The   immediate   effect   of   searching   only   in   interesting,   high   quality   sites   increases   precision   of   the   result   set.   At   the   same   time,   the   recall   decreases   considerably,   as   only   a   fraction  of  the  existing  web  sites  is  searched.       The   social   aspect   of   these   personalized   search   engines,   which   Rollyo   for   instance   calls   searchrolls,   lies   in   the   possibility   to   share   specific   sub-­‐‑search   engines   with   other   users   by   tagging   and   classifying   them.   In   this   way,   which   can  be  seen  as  a  special  application  of  social  tagging,  users  build  a  classification   of  personalized  search  engines  together,  which  can  be  browsed  or  searched  by   other  users.  If  users  find  a  predefined  personal  search  engine,  they  can  modify  it   and   build   a   personalized   version   of   it   for   themselves,   by   e.g.   dropping   some   sites  the  original  creator  had  considered  relevant,  and  adding  some  pages  which   are   of   personal   relevance   for   themselves.   Eurekster   implements   another   social   component   by   allowing   users   to   rate   and   comment   on   others’   personalized   search   engines   (these   are   called   Swickis),   so   that   other   users   can   assess   the   usefulness   of   a   specific   personalized   search   engine.   Additionally,   Eurekster   aggregates   and   visualizes   the   most   frequent   queries   in   a   tag   cloud,   allowing   spontaneous   discovery   and   serendipity   effects   for   its   users.   Blekko,   another   example   for   personalized   social   search   engines,   allows   defining   restrictions   of   the   search   area   and   saving   them   in   so-­‐‑called   slashtags.   These   slashtags   can   be   added   to   a   query   as   a   suffix,   enabling   the   combination   of   different   users’   personalized  slashtags  for  a  specific  information  need  (cf.  Figure  4).      

 

Figure  4:  Exemplary  search  for  „global  warming“.  Blekko  only  searches  websites  which   are  defined  in  the  slashtags  /tech  and  /date  (image  source:  http://blekko.com/).  

  Recently,  Google  and  Yahoo  have  started  to  provide  personalization  features  of   their   own   (Google   Co-­‐‑op   and   Yahoo   Search   BOSS),   expanding   the   infrastructure   for  a  social  usage  of  personalized  search  engines.     name   Rollyo   Eurekster  

 

URL   http://www.rollyo.com   http://www.eurekster.com  

20  

Blekko   Google  Co-­‐‑op   Yahoo  Search  BOSS  

http://blekko.com   http://www.google.com/cse/   http://developer.yahoo.com/search/boss/     Table  5:  Examples  for  personalized  social  search  engines  

  The   advantage   of   personalized   social   search   engines   certainly   lies   in   the   intelligent  human  preselection  and  narrowing  of  the  search  area,  which  not  only   increases   precision   but   also   considers   criteria   like   topicality   and   provenance   of   the   source   of   information.   This   advantage   at   the   same   time   implies   that   the   personalized   search   engines   have   to   be   maintained   manually,   which   can   be   problematic  if  its  initial  creators  lose  interest  during  the  course  of  time.  The  low   recall   of   personalized   searches   can   be   disadvantageous   too,   as   users   of   such   systems   constantly   run   the   risk   of   missing   relevant   information   from   sources,   which   are   not   defined   in   the   vertical   search   setups.   Putting   all   this   together,   personalized   social   search   engines   are   particularly   useful   for   quick   and   incomplete  searches,  but  have  a  serious  drawback  when  it  comes  to  exhaustive   researches,  which  aim  at  a  high  recall.  

8.   Outlook   In  this  chapter  we  have  discussed  the  concept  of  social  search  and  its  context  as   well   as   different   genres   of   social   search   engines,   each   having   their   very   own   approach  to  enhance  search  with  a  social  dimension.  Social  search  engines  have   the   potential   to   overcome   traditional   IR   challenges,   like   e.g.   the   vocabulary   problem,  a  realistic  implementation  of  relevance  feedback  or  the  personalization  and   customization   of   search.   Although   there   are   sound   arguments   for   the   consideration  and  utilization  of  a  user’s  social  context  during  the  search  process,   until   now   the   actual   benefits   of   such   systems   over   algorithmic   search   engines   like   e.g.   Google   have   been   evaluated   only   sporadically   (Lewandowski   &   Maaß,   2008).  Results  of  such  evaluation  work  could  bring  about  best  practices  of  how   and  when  to  use  different  types  of  social  search  engines,  and  how  to  effectively   combine  them  with  each  other  as  well  as  with  algorithmic  search  engines.   While  there  is  a  lack  of  social  search  evaluation,  the  latest  social  search  efforts   (cf.  Table  6)  of  Google  (“social  search  is  the  future”  (Sherrets  &  Mayer,  2008))  can   be   interpreted   as   an   indicator   for   the   relevance   of   the   concept.   Besides   the   acquisition  of  the  social  QA  system  Aardvark,  Google  provides  a  browser  toolbar   called   Google   Sidewiki   which   allows   its   users   to   annotate   and   share   websites   directly   in   the   browser.   Another   approach   which   aims   at   integrating   Google’s   algorithmic  search  with  social  interaction  with  the  search  results  can  be  found  in   the   Google   SearchWiki.   Users   can   arrange   documents   from   the   Google   list   of  

 

21  

results,   and   delete   irrelevant   documents   or   add   new   documents   that   weren’t   found  by  the  algorithmic  search.  SearchWiki  is  social,  because  users  can  look  at   other   users’   search   wikis   to   a   specific   query,   i.e.   if   a   user   searches   for   topic   X,   and   knows   user   Y   is   an   expert   in   this   field,   he   might   want   to   use   this   user’s   search  wiki  for  his  own  query.  With  Google  Social  Search  the  company  presents  a   comprehensive   approach   to   integrate   results   from   different   social   graphs   (e.g.   graphs  from  Twitter,  Friendfeed,  etc.).  Recently,  Google  announced  the  +1-­‐‑button,   taking  after  Facebook’s  like-­‐‑button,  which  allows  ubiquitous  tagging  of  resources   all  across  the  web,  and  integrating  them  into  the  user’s  social  graph  on  Facebook. Name   Aardvark   Google  Sidewiki   Google  Search  Wiki   Google  Social  Search   Google  +1-­‐‑button  

URL   http://vark.com/   http://www.google.com/support/toolbar/bin/static.py?page=guide.cs&gu ide=24296   http://googleblog.blogspot.com/2008/11/searchwiki-­‐‑make-­‐‑search-­‐‑your-­‐‑ own.html   http://googleblog.blogspot.com/2009/10/introducing-­‐‑google-­‐‑social-­‐‑ search-­‐‑i.html   http://www.google.com/+1/button/     Table  6:  Google’s  efforts  in  the  social  search  field.  

Google’s   efforts   point   towards   an   understanding   of   social   search,   where   the   concept   will   probably   not   replace   traditional   search   engines,   but   rather   complement  them.   Concepts   like   the   Facebook   like-­‐‑button   promote   a   rapid   growth   of   a   user’s   social  graph,  which  causes  a  blurred  view  of  one’s  social  contacts  and  a  loss  of   overview  and  control.  Often  the  social  graph  of  a  user  in  specific  social  services   is  not  in  accordance  with  the  user’s  social  context  from  real  life.  Consequently,  a   basic  problem  of  existing  social  search  engines  can  be  seen  in  trust  issues  with   relevance   rankings,   which   are   not   from   a   user’s   immediate   social   context.   The   possibility   of   human   relevance   ranking   not   only   produces   highly   subjective   results,   but   also   brings   about   the   risk   of   deliberate   manipulation   of   search   results,   which   is   in   most   cases   motivated   by   commercial   aspects.   The   biggest   drawback   of   social   search   may   be   seen   in   its   limited   document   collection,   causing  high  precision  and  low  recall  values.  This  means  extensive  searches  for   a   maximum   number   of   relevant   documents   will   depend   on   content-­‐‑based,   algorithmic  search  in  the  near  future,  social  search  (at  this  stage)  can  be  seen  as   complementary   means   to   perform   deliberately   vertical   searches,   where   precision  is  more  important  than  recall.    

 

22  

9.   References   Adomavicius,   G.,   &   Tuzhilin,   A.   (2005).   Toward   the   next   generation   of   recommender   systems:  a  survey  of  the  state-­‐‑of-­‐‑the-­‐‑art  and  possible  extensions.  IEEE  Transactions   on  Knowledge  and  Data  Engineering,  17(6),  734-­‐‑749.  Published  by  the  IEEE  Computer   Society.   Agichtein,   E.,   Castillo,   C.,   Donato,   D.,   Gionis,   A.,   &   Mishne,   G.   (2008).   Finding   high-­‐‑ quality   content   in   social   media.   Proceedings   of   the   international   conference   on   Web   search  and  web  data  mining  -­‐‑   WSDM  ’08  (pp.  183-­‐‑194).  New  York,  New  York,  USA:   ACM  Press.   Ahn,   J.-­‐‑wook,   Brusilovsky,   P.,   &   Farzan,   R.   (2005).   Investigating   users’   needs   and   behavior   for   social   search.   Proceedings   of   the   workshop   on   new   technologies   for   personalized   information   access   (part   of   the   10th   international   conference   on   user   modelling  (UMʼ05))  Edinburgh,  Scotland,  UK  (p.  1–12).   Amershi,  S.,  &  Morris,  M.  R.  (2008).  CoSearch:  a  system  for  co-­‐‑located  collaborative  web   search.   Proceeding   of   the   twenty-­‐‑sixth   annual   SIGCHI   conference   on   Human   factors   in   computing  systems  (p.  1647–1656).  ACM.   Anderson,   C.   (2005).   Why   Social   Software   Makes   for   Poor   Recommendations.   Wired   (Blog   Network).   Retrieved   from   http://longtail.typepad.com/the_long_tail/2005/02/why_social_netw.html.   Arrington,   M.   (2006).   Yahooʼs   Big   Win.   TechCrunch.   Retrieved   May   3,   2011,   from   http://techcrunch.com/2006/11/30/yahoos-­‐‑big-­‐‑win/.   Aurnhammer,  M.,  Hannape,  P.,  &  Steels,  L.  (2006).  Integrating  collaborative  tagging  and   emergent   semantics   for   image   retrieval.   Proceedings  WWW  2006,  Collaborative  Web   Tagging  Workshop.   Baeza-­‐‑Yates,   R.,   &   Ribeiro-­‐‑Neto,   B.   (1999).   Modern   Information   Retrieval.   Harlow:   Addison-­‐‑Wesley.   Bao,   S.,   Wu,   X.,   Fei,   B.,   Xue,   G.,   Su,   Z.,   &   Yu,   Y.   (2007).   Optimizing   web   search   using   social  annotations.  Proceedings  of  the  16th  international  conference  on  World  Wide  Web   -­‐‑  WWW  ’07  (pp.  501-­‐‑510).  New  York,  New  York,  USA:  ACM  Press.   Barsky,   E.,   &   Purdon,   M.   (2006).   Introducing   Web   2.0:   Social   networking   and   social   bookmarking   for   health   librarians.   Journal   of   the   Canadian   Health   Libraries   Association,  27,  65-­‐‑67.   Begelman,   G.,   Keller,   P.,   &   Smadja,   F.   (2006).   Automated   tag   clustering:   Improving   search   and   exploration   in   the   tag   space.   Collaborative   Web   Tagging   Workshop   at   WWW2006  (p.  15–33).   Belkin,  N.  J.,  Oddy,  R.  N.,  &  Brooks,  H.  M.  (1982).  ASK  for  Information  Retrieval:  Part  II.   Results  of  a  Design  Study.  Journal  of  Documentation,  38(3),  145-­‐‑164.   Blank,  M.,  Bopp,  T.,  Hampel,  T.,  &  Schulte,  J.  (2008).  Social  Tagging  =  Soziale  Suche?  In   B.  Gaiser,  T.  Hampel,  &  S.  Panke  (Eds.),  Good  Tags  -­‐‑   Bad  Tags.  Social  Tagging  in  der   Wissensorganisation.  (pp.  85-­‐‑97).  Münster:  Waxmann.   Brickley,   D.,   &   Miller,   L.   (2010).   FOAF   Vocabulary   Specification   0.98.   Namespace   Document   9   August   2010   -­‐‑   Marco   Polo   Edition.   Retrieved   May   25,   2011,   from   http://xmlns.com/foaf/spec/20100809.html.  

 

23  

Brin,  S.,  &  Page,  L.  (1998).  The  anatomy  of  a  large-­‐‑scale  hypertextual  Web  search  engine.   Computer  Networks  and  ISDN  Systems,  30(1-­‐‑7),  107-­‐‑117.   Burghardt,  T.,  Buchmann,  E.,  Boehm,  K.,  &  Clifton,  C.  (2009).  Collaborative  Search  and   User   Privacy:   How   Can   They   Be   Reconciled?   Collaborative  Computing:  Networking,   Applications  and  Worksharing,  85–99.  Springer.   Callan,  J.  (1996).  Document  Filtering  with  Inference  Networks.  SIGIR  ’96:  Proceedings  of   the   19th   annual   international   ACM   SIGIR   conference   on   Research   and   development   in   information  retrieval  (pp.  262-­‐‑269).   Choudhury,   M.   de,   Sundaram,   H.,   John,   A.,   &   Seligmann,   D.   D.   (2010).   Analyzing   the   Dynamics   of   Communication   in   Online   Social   Networks.   In   B.   Fuhrt   (Ed.),   Handbook   of   Social   Network   Technologies   and   Applications   (pp.   59-­‐‑94).   New   York:   Springer.   Croft,   B.,   Metzler,   D.,   &   Strohman,   T.   (2010).   Search   Engines:   Information   Retrieval   in   Practice.  Addison  Wesley.   Dalal,   M.   (2007).   Personalized   social   &   real-­‐‑time   collaborative   search.   Proceedings  of  the   16th  international  conference  on  World  Wide  Web  -­‐‑   WWW  ’07,   1285.   New   York,   New   York,  USA:  ACM  Press.   Deans,  P.  C.  (2008).  Social  Software  and  Web  2.0  Technology  Trends.  Retrieved  June  15,   2011,  from  http://portal.acm.org/citation.cfm?id=1502262.   Dearman,   D.,   &   Truong,   K.   N.   (2010).   Why   users   of   yahoo!:   answers   do   not   answer   questions.   Proceedings   of   the   28th   international   conference   on   Human   factors   in   computing  systems  (p.  329–332).  ACM.   Del   Conte,   N.   (2006).   BitWine   Gives   Access   To   Those   In   The   Know.   TechCrunch.   Retrieved  June  2,  2011,  from  http://techcrunch.com/2006/11/28/bitwine-­‐‑gives-­‐‑acces-­‐‑ to-­‐‑those-­‐‑in-­‐‑the-­‐‑know/.   Dumais,   S.,   Grudin,   J.,   Poltrock,   S.,   Bruce,   H.,   Fidel,   R.,   &   Pejtersen,   A.   M.   (2000).   Collaborative  information  retrieval  (CIR).  CHI  ’00  extended  abstracts  on  Human  factors  in   computing  systems  -­‐‑  CHI  ’00.  New  York,  New  York,  USA:  ACM  Press.   Ellis,   C.   A.,   Gibbs,   S.   J.,   &   Rein,   G.   (1991).   Groupware:   some   issues   and   experiences.   Communications  of  the  ACM,  34(1),  39–58.  ACM.   Evans,   B.   M.,   &   Chi,   E.   H.   (2008).   Towards   a   model   of   understanding   social   search.   Proceedings   of   the   ACM   2008   conference   on   Computer   supported   cooperative   work   -­‐‑   CSCW  ’08.  New  York,  New  York,  USA:  ACM  Press.   Ferber,   R.   (2003).   Information   Retrieval.   Suchmodelle   und   Data-­‐‑Mining-­‐‑Verfahren   für   Textsammlungen  und  das  Web.  Heidelberg:  dpunkt.   Ford,   K.   (2010).   Hunch’s   “taste   graph”   now   exceeds   10   billion   connections.  HunchBlog.   Retrieved  May  12,  2011,  from  http://blog.hunch.com/?p=20404.   Ford,  N.  (2005).  New  cognitive  directions.  In  A.  Spink  &  C.  Cole  (Eds.),  New  directions  in   cognitive  information  retrieval  (pp.  81-­‐‑98).  Dordrecht.   Fu,   X.,   Ciszek,   T.,   Marchionini,   G.,   &   Solomon,   P.   (2006).   Annotating   the   Web:   An   exploratory  study  of  Web  usersʼ  needs  for  personal  annotation  tools.  Proceedings  of   the  American  Society  for  Information  Science  and  Technology,  42(1).   Furnas,   G.   W.,   Landauer,   T.   K.,   Gomez,   L.   M.,   &   Dumais,   S.   T.   (1987).   The   vocabulary   problem   in   human-­‐‑system   communication.   Communications   of   the   ACM,   30(11),   964-­‐‑971.  

 

24  

Golder,   S.   A.   (2006).   Usage   patterns   of   collaborative   tagging   systems.   Journal   of   Information  Science,  32(2),  198-­‐‑208.   Golovchinsky,  G.,  Pickens,  J.,  &  Back,  M.  (2009).  A  taxonomy  of  collaboration  in  online   information   seeking.   1st  International  Workshop  on  Collaborative  Information  Seeking,   1-­‐‑3.   Griesbaum,   J.,   Bekavac,   B.,   &   Rittberger,   M.   (2009).   Typologie   der   Suchdienste   im   Internet.   In   D.   Lewandowski   (Ed.),   Handbuch   Internet-­‐‑Suchmaschinen.   Nutzerorientierung  in  Wissenschaft  und  Praxis.  (pp.  18-­‐‑52).  Heidelberg:  AKA  Verlag.   Hayhurst,   C.,   &   Weston,   M.   R.   (2007).   Jerry   Yang   And   David   Filo   (Internet   Career   Biographies).  Rosen  Publishing  Group.   Hearst,   M.,   &   Rosner,   D.   (2008).   Tag   Clouds:   Data   Analysis   Tool   or   Social   Signaller?   Proceedings  of  the  41st  Annual  Hawaii  International  Conference  on  System  Sciences   (p.   160).  IEEE  Computer  Society.   Heckner,  M.,  Heilemann,  M.,  &  Wolff,  C.  (2009).  Personal  information  management  vs.   resource   sharing:   Towards   a   model   of   information   behaviour   in   social   tagging   systems.  Int’l  AAAI  Conference  on  Weblogs  and  Social  Media  (ICWSM)  (pp.  42-­‐‑49).   Horowitz,  D.,  &  Kamvar,  S.  D.  (2010).  The  anatomy  of  a  large-­‐‑scale  social  search  engine.   Proceedings   of   the   19th   international   conference   on   World   wide   web   -­‐‑   WWW   ’10,   431.   New  York,  New  York,  USA:  ACM  Press.   Hotho,   A.,   Jäschke,   R.,   Schmitz,   C.,   &   Stumme,   G.   (2006).   Information   retrieval   in   folksonomies:   Search   and   ranking.   The   Semantic   Web:   Research   and   Applications   (LNCS),  40,  411–426.  Springer.   Huang,   a   W.-­‐‑C.,   &   Chuang,   T.-­‐‑R.   (2009).   Social   tagging,   online   communication,   and   Peircean   semiotics:   a   conceptual   framework.   Journal   of   Information   Science,   35(3),   340-­‐‑357.   Ingwersen,   P.   (1996).   Cognitive   perspectives   of   information   retrieval   interaction:   Elements  of  a  cognitive  IR  theory.  Journal  of  Documentation,  52(1),  3-­‐‑50.   Ingwersen,   P.,   &   Järvelin,   K.   (2010).   The   Turn:   Integration   of   Information   Seeking   and   Retrieval  in  Context  (The  Information  Retrieval  Series).  Springer.   Keenoy,   K.,   &   Levene,   M.   (2005).   Personalisation   of   web   search.   (B.   Mobasher   &   S.   Anand,   Eds.)Intelligent   Techniques   for   Web   Personalization,   201–228.   Berlin   /   Heidelberg:  Springer.   Kwok,   C.,   Etzioni,   O.,   &   Weld,   D.   S.   (2001).   Scaling   question   answering   to   the   Web.   ACM  Transactions  on  Information  Systems  (TOIS),  19(3),  242–262.  ACM.   Lancaster,  F.  W.  (2003).  Indexing  and  Abstracting  in  Theory  and  Practice.  Facet  Publishing.   Lewandowski,   D.   (2009).   Wie   Suchmaschinen   von   Social   Software   profitieren.   Proceedings  des  Workshops  “Social  Software@  Work”  (Vol.  5,  pp.  1-­‐‑6).  Düsseldorf.   Lewandowski,   D.,   &   Maaß,   C.   (Eds.).   (2008).   Web-­‐‑2.0-­‐‑Dienste   als   Ergänzung   zu   algorithmischen  Suchmaschinen.  Berlin:  Logos-­‐‑Verl.   Lieberman,  H.,  Van  Dyke,  N.  W.,  &  Vivacqua,  A.  S.  (1999).  Letʼs  browse:  a  collaborative   browsing  agent.  Knowledge-­‐‑Based  Systems,  12(8),  427–431.  Elsevier.   Linden,   G.,   Smith,   B.,   &   York,   J.   (2003).   Amazon.com   recommendations:   item-­‐‑to-­‐‑item   collaborative  filtering.  IEEE  Internet  Computing,  7(1),  76-­‐‑80.   Marchiori,  M.  (2007).  Social  search  engines.  International  Journal  of  Bifurcation  and  Chaos,   17(07),  2355–2361.  World  Scientific  Publishing  Company.  

 

25  

Marlow,   C.,   Naaman,   M.,   Boyd,   D.,   &   Davis,   M.   (2006).   HT06,  tagging  paper,  taxonomy,   Flickr,   academic   article,   to   read.   Proceedings   of   the   seventeenth   conference   on   Hypertext   and  hypermedia  -­‐‑  HYPERTEXT  ’06.  New  York,  New  York,  USA:  ACM  Press.   Mathes,   A.   (2004).   Folksonomies   -­‐‑   Cooperative   Classification   and   Communication   Through   Shared   Metadata.   Retrieved   June   11,   2011,   from   http://www.adammathes.com/academic/computer-­‐‑mediated-­‐‑ communication/folks{Bibliography}onomies.html.   McDonnell,   M.,   &   Shiri,   A.   (2011).   Social   search:   A   taxonomy   of,   and   a   user-­‐‑centred   approach   to,   social   web   search.   Program:   electronic   library   and   information   systems,   45(1),  6-­‐‑28.   Milgram,  S.  (1967).  The  Small  World  Problem.  Psychology  Today,  1(1),  60-­‐‑67.   Milicevic,  A.  K.,  Nanopoulos,  A.,  &  Ivanovic,  M.  (2010).  Social  tagging  in  recommender   systems:   a   survey   of   the   state-­‐‑of-­‐‑the-­‐‑art   and   possible   extensions.   Artificial   Intelligence  Review,  33(3),  187-­‐‑209.  Springer  Netherlands.   Morris,   M.   R.,   &   Horvitz,   E.   (2007).   SearchTogether:   an   interface   for   collaborative   web   search.   Proceedings  of  the  20th  annual  ACM  symposium  on  User  interface  software  and   technology  (p.  3–12).  ACM.   Morris,  M.  R.,  &  Teevan,  J.  (2010).  Collaborative  Search:  Who,  What,  Where,  When,  Why,  and   How.  Morgan  and  Claypool  Publishers.   Pontin,   J.   (2007).   Artificial   Intelligence,   With   Help   From   the   Humans.   The   New   York   Times  -­‐‑  Onlineversion.   Rocchio,   J.   (1971).   Relevance   Feedback   in   Information   Retrieval.   In   G.   Salton   (Ed.),   SMART   Retrieval   System.   Experiments   in   Automatic   Document   Processing.   (pp.   313   -­‐‑   323).  Englewood-­‐‑Cliffs,  N.J.  Prentice-­‐‑Hall.   Schonfeld,  E.  (2010).  The  Hunch  Gift-­‐‑O-­‐‑Matic  Churns  Out  Holiday  Gift  Ideas  For  Your   Twitter  Pals.  TechCrunch.  Retrieved  from  http://techcrunch.com/2010/12/10/hunch-­‐‑ gift-­‐‑o-­‐‑matic/.   Setten,   M.   van,   &   Moelaert-­‐‑El   Hadidy,   F.   (2000).   Collaborative   Search   and   Retrieval:   Finding  Information  Together.  Submitted  to  ACM  CSCW.   Sherman,   C.   (2006).   Whatʼs   the   Big   Deal   With   Social   Search?   Search   Engine   Watch.   Retrieved   May   22,   2011,   from   http://searchenginewatch.com/article/2068090/Whats-­‐‑the-­‐‑Big-­‐‑Deal-­‐‑With-­‐‑Social-­‐‑ Search.   Sherrets,   D.,   &   Mayer,   M.   (2008).   Google’s   Marissa   Mayer:   Social   search   is   the   future.   VentureBeat.   Retrieved   December   1,   2010,   from   http://venturebeat.com/2008/01/31/googles?marissa?mayer?social?search?is?the?fu ture/.   Simmons,   R.   F.   (1970).   Natural   language   question-­‐‑answering   systems:   1969.   Communications  of  the  ACM,  13(1),  15–30.  ACM.   Sinclair,   J.,   &   Cardew-­‐‑Hall,   M.   (2008).   The   folksonomy   tag   cloud:   when   is   it   useful?   Journal  of  Information  Science,  34(1),  15-­‐‑29.   Su,   X.,   &   Khoshgoftaar,   T.   (2009).   A   Survey   of   Collaborative   Filtering   Techniques.   Advances  in  Artificial  Intelligence,  2009,  1-­‐‑20.   Surowiecki,  J.  (2007).  Die  Weisheit  der  Vielen.  Goldmann  Verlag.  

 

26  

Thom-­‐‑Santelli,   J.,   Muller,   M.   J.,   &   Millen,   D.   R.   (2008).   Social  tagging  roles.   Proceeding  of   the   twenty-­‐‑sixth   annual   CHI   conference   on   Human   factors   in   computing   systems  -­‐‑   CHI   ’08.  New  York,  New  York,  USA:  ACM  Press.   Tonkin,  E.  (2006).  Searching  the  long  tail:  Hidden  structure  in  social  tagging.  In  J.  Furner   &   J.   T.   Tennis   (Eds.),   Proceedings  of  the  17th  ASIS&T  SIG/CR  Classification  Research   Workshop  (Vol.  17,  pp.  1-­‐‑10).   Viégas,   F.   B.,   Wattenberg,   M.,   &   Dave,   K.   (2004).   Studying   cooperation   and   conflict   between  authors  with  history  flow  visualizations.  Proceedings  of  the  2004  conference   on   Human   factors   in   computing   systems   -­‐‑   CHI   ’04   (Vol.   6,   p.   575–582).   New   York,   New  York,  USA:  ACM  Press.   Voß,   J.   (2007).   Tagging,   folksonomy   &   co   -­‐‑   Renaissance   of   manual   indexing?   In   A.   Oßwald,  M.  Stempfhuber,  &  C.  Wolff  (Eds.),  Open  Innovation.  Neue  Perspektiven  im   Kontext  von  Information  und  Wissen,  ISI  2007.  (pp.  243-­‐‑254).   Wilkinson,   D.,   &   Huberman,   B.   (2007).   Cooperation   and   quality   in   wikipedia.   Proceedings   of   the   2007   international   symposium   on   Wikis   (p.   157–164).   New   York,   New  York,  USA:  ACM.   Wilson,   T.   D.   (1999).   Models   in   information   behaviour   research.   Journal   of   Documentation,  55(3),  249-­‐‑270.   Yee,  N.  (2005).  Motivations  of  play  in  MMORPGs.  Proceedings  of  DiGRA  2005.   Zhang,   J.,   &   Ackerman,   M.   S.   (2005).   Searching   for   expertise   in   social   networks:   a   simulation   of   potential   strategies.   Proceedings   of   the   2005   international   ACM   SIGGROUP  conference  on  Supporting  group  work  (p.  71–80).  ACM.    

 

27