On a Subclass of Meromorphic Functions Defined by Hilbert Space ...

1 downloads 0 Views 2MB Size Report
May 30, 2013 - For a complex-valued function analytic in a domain of the complex plane con- taining the spectrum ..... Complex Analysis. Journal of.
Hindawi Publishing Corporation Geometry Volume 2013, Article ID 671826, 4 pages http://dx.doi.org/10.1155/2013/671826

Research Article On a Subclass of Meromorphic Functions Defined by Hilbert Space Operator Thomas Rosy and S. Sunil Varma Department of Mathematics, Madras Christian College, Tambaram, Chennai, Tamil Nadu 600 059, India Correspondence should be addressed to Thomas Rosy; [email protected] Received 26 April 2013; Accepted 30 May 2013 Academic Editor: JinLin Liu Copyright Β© 2013 T. Rosy and S. S. Varma. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In this paper, we define a new operator on the class of meromorphic functions and define a subclass using Hilbert space operator. Coefficient estimate, distortion bounds, extreme points, radii of starlikeness, and convexity are obtained.

let 𝑓(𝑇) denote the operator on 𝐻 defined by the RieszDunford integral [4]

1. Introduction Let Ξ£ denote the class of meromorphic functions

𝑓 (𝑇) =

∞

1 𝑓 (𝑧) = + βˆ‘ π‘Žπ‘› 𝑧𝑛 𝑧 𝑛=1

(1)

defined on π‘ˆ = {𝑧 ∈ 𝐢 : 0 < |𝑧| < 1}. For 𝑓 ∈ Ξ£ given by (1) and 𝑔 ∈ Ξ£ given by

where 𝐼 is the identity operator on 𝐻 and 𝐢 is a positively oriented simple closed rectifiable closed contour containing the spectrum 𝜎(𝑇) in the interior domain [5]. The operator 𝑓(𝑇) can also be defined by the following series: 𝑓(𝑛) (0) 𝑛 𝑇 𝑛! 𝑛=0

𝑓 (𝑇) = βˆ‘

(2)

the Hadamard product (or convolution) [1] of 𝑓 and 𝑔 is defined by 1 ∞ + βˆ‘ π‘Ž 𝑏 𝑧𝑛 , 𝑧 𝑛=1 𝑛 𝑛

(4)

∞

1 ∞ 𝑔 (𝑧) = + βˆ‘ 𝑏𝑛 𝑧𝑛 , 𝑧 𝑛=1

(𝑓 βˆ— 𝑔) (𝑧) =

1 ∫ (𝑧𝐼 βˆ’ 𝑇)βˆ’1 𝑓 (𝑧) 𝑑𝑧, 2πœ‹π‘– 𝐢

𝑧 ∈ π‘ˆ.

(3)

Many subclasses of meromorphic functions have been defined and studied in the past. In particular, the subclasses 𝛼 𝑀𝑙,π‘š1 (πœ†, 𝛼), 0 ≀ 𝛼 < 1 and 0 ≀ πœ† < 1 [2], and π‘Š(𝛼, 𝛽), 0 ≀ 𝛼 < 1 and 0 < 𝛽 ≀ 1 [3], are considered by researchers. Let 𝐻 be a complex Hilbert space and 𝐿(𝐻) denote the algebra of all bounded linear operators on 𝐻. For a complex-valued function 𝑓 analytic in a domain 𝐸 of the complex plane containing the spectrum 𝜎(𝑇) of the bounded linear operator 𝑇,

(5)

which converges in the norm topology. In this paper, we introduce a subclass 𝑀𝑃 (𝛼, πœ†, 𝑇) of Ξ£ defined using Hilbert space operator and prove a necessary and sufficient condition for the function to belong to this class, the distortion theorem, radius of starlikeness, and convexity. In [6], Atshan and Buti had defined an operator acting on analytic functions in terms of a definite integral. We modify their operator for meromorphic functions as follows. Lemma 1. For 𝑓 ∈ Ξ£ given by (1), 0 ≀ πœ‡ ≀ 1, and 0 ≀ πœƒ ≀ 1, if the operator π‘†πœ‡πœƒ : Ξ£ β†’ Ξ£ is defined by π‘†πœ‡πœƒ 𝑓 (𝑧) =

∞

1 (1 βˆ’ πœ‡)

πœƒ+1

Ξ“ (πœƒ + 1)

∫ π‘‘πœƒ+1 π‘’βˆ’(𝑑/(1βˆ’πœ‡)) 𝑓 (𝑧𝑑) 𝑑𝑑, 0

(6)

2

Geometry

then

Conversely, let π‘†πœ‡πœƒ 𝑓 (𝑧) =

1 ∞ + βˆ‘ 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑧𝑛 , 𝑧 𝑛=1

(7)

where 𝐿(𝑛, πœƒ, πœ‡) = (1 βˆ’ πœ‡)𝑛+1 Ξ“(𝑛 + πœƒ + 2)/Ξ“(πœƒ + 1). Denote by Σ𝑃 the class of all functions 𝑓 ∈ Ξ£ with π‘Žπ‘› β‰₯ 0. Definition 2. For 0 ≀ πœ† < 1, 0 ≀ 𝛼 < 1, a function 𝑓 ∈ Σ𝑃 is in the class 𝑀𝑃 (𝛼, πœ†, 𝑇) if σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑇(π‘†πœƒ 𝑓 (𝑇))σΈ€  βˆ’ {(πœ† βˆ’ 1) π‘†πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœƒ 𝑓 (𝑇))σΈ€  }σ΅„©σ΅„©σ΅„© πœ‡ πœ‡ πœ‡ σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σΈ€  < 󡄩󡄩󡄩𝑇(π‘†πœ‡πœƒ 𝑓 (𝑇)) σ΅„© σΈ€  σ΅„© σ΅„© + (1 βˆ’ 2𝛼) {(πœ† βˆ’ 1) π‘†πœ‡πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœ‡πœƒ 𝑓 (𝑇)) }σ΅„©σ΅„©σ΅„© σ΅„©

(8)

for all operators 𝑇 with ‖𝑇‖ < 1 and 𝑇 =ΜΈ 0, 0 being the zero operator on 𝐻.

2. Coefficient Bounds Theorem 3. A meromorphic function 𝑓 ∈ Σ𝑃 given by (1) is in the class 𝑀𝑃 (𝛼, πœ†, 𝑇) if and only if ∞

βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› ≀ 1 βˆ’ 𝛼.

(9)

𝑛=1

σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑇(π‘†πœƒ 𝑓 (𝑇))σΈ€  βˆ’ {(πœ† βˆ’ 1) π‘†πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœƒ 𝑓 (𝑇))σΈ€  }σ΅„©σ΅„©σ΅„© πœ‡ πœ‡ πœ‡ σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σΈ€  < 󡄩󡄩󡄩𝑇(π‘†πœ‡πœƒ 𝑓 (𝑇)) σ΅„© σΈ€  σ΅„© σ΅„© + (1 βˆ’ 2𝛼) {(πœ† βˆ’ 1) π‘†πœ‡πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœ‡πœƒ 𝑓 (𝑇)) }σ΅„©σ΅„©σ΅„© . σ΅„©

(11)

This implies that σ΅„©σ΅„© ∞ σ΅„©σ΅„© σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© βˆ‘ [(𝑛 + 1) (1 βˆ’ πœ†)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑇𝑛+1 σ΅„©σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑛=1 σ΅„©σ΅„© σ΅„©σ΅„© ∞ σ΅„©σ΅„© ≀ σ΅„©σ΅„©σ΅„©2 (1 βˆ’ 𝛼) βˆ’ βˆ‘ [𝑛 + (1 βˆ’ 2𝛼) (πœ† βˆ’ 1) + πœ† (1 βˆ’ 2𝛼) 𝑛] σ΅„©σ΅„© 𝑛=1 σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© Γ— 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑇𝑛+1 σ΅„©σ΅„©σ΅„© . σ΅„©σ΅„© σ΅„© (12) Choose 𝑇 = 𝑒𝐼, 0 < 𝑒 < 1. Then, βˆ‘βˆž 𝑛=1 [(𝑛 + 1)(1 βˆ’ [𝑛 + (1 βˆ’ 2𝛼)(πœ† βˆ’ 1) + πœ†(1 βˆ’ πœ†)]𝐿(𝑛, πœƒ, πœ‡)π‘Žπ‘› 𝑒𝑛 /(2𝑒(1 βˆ’ 𝛼) βˆ’ βˆ‘βˆž 𝑛=1 2𝛼)𝑛]𝐿(𝑛, πœƒ β‹… πœ‡)π‘Žπ‘› 𝑒𝑛 ) ≀ 1. As 𝑒 β†’ 1, we obtain (9). Corollary 4. If 𝑓 of the form (1) is in 𝑀𝑃 (𝛼, πœ†, 𝑇), then π‘Žπ‘› ≀

1βˆ’π›Ό . [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡)

(13)

The result is sharp for 𝑓(𝑧) = 1/𝑧 + ((1 βˆ’ 𝛼)/[𝑛 + 𝛼 βˆ’ π›Όπœ†(𝑛 + 1)]𝐿(𝑛, πœƒ, πœ‡))𝑧𝑛 .

The result is sharp for the function 𝑓(𝑧) = 1/𝑧 + ((1 βˆ’ 𝛼)/[𝑛 + 𝛼 βˆ’ π›Όπœ†(𝑛 + 1)]𝐿(𝑛, πœƒ, πœ‡))𝑧𝑛 .

𝑛 Proof. Let 𝑓(𝑇) = π‘‡βˆ’1 + βˆ‘βˆž 𝑛=1 π‘Žπ‘› 𝑇 . Assume that (9) holds. Then,

Theorem 5. Let 𝑓0 (𝑧) = 1/𝑧 and 𝑓𝑛 (𝑧) = 1/𝑧 + ((1 βˆ’ 𝛼)/[𝑛 + π›Όβˆ’π›Όπœ†(𝑛+1)]𝐿(𝑛, πœƒ, πœ‡))𝑧𝑛 , 𝑛 β‰₯ 1, 0 ≀ 𝛼 < 1, 0 ≀ πœ† < 1. Then, 𝑓 is in the class 𝑀𝑃 (𝛼, πœ†, 𝑇) if and only if it can be expressed in the form 𝑓(𝑧) = βˆ‘βˆž 𝑛=0 πœ‡π‘› 𝑓𝑛 (𝑧), where πœ‡π‘› β‰₯ 0 (𝑛 = 0, 1, 2, . . .) and βˆ‘βˆž 𝑛=0 πœ‡π‘› = 1.

σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑇(π‘†πœƒ 𝑓 (𝑇))σΈ€  βˆ’ {(πœ† βˆ’ 1) π‘†πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœƒ 𝑓 (𝑇))σΈ€  }σ΅„©σ΅„©σ΅„© πœ‡ πœ‡ πœ‡ σ΅„©σ΅„© σ΅„©σ΅„© σΈ€  σ΅„©σ΅„© βˆ’ 󡄩󡄩󡄩𝑇(π‘†πœ‡πœƒ 𝑓 (𝑇)) σ΅„©

σΈ€  σ΅„© σ΅„© + (1 βˆ’ 2𝛼) {(πœ† βˆ’ 1) π‘†πœ‡πœƒ 𝑓 (𝑇) + πœ†π‘‡(π‘†πœ‡πœƒ 𝑓 (𝑇)) }σ΅„©σ΅„©σ΅„© σ΅„© σ΅„©σ΅„© ∞ σ΅„© σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© = σ΅„©σ΅„©σ΅„© βˆ‘ [(𝑛 + 1) βˆ’ πœ† (𝑛 + 1)] 𝐿 (𝑛, πœ‡, πœƒ) π‘Žπ‘› 𝑇𝑛 σ΅„©σ΅„©σ΅„© 󡄩󡄩𝑛=1 σ΅„©σ΅„© σ΅„© σ΅„© σ΅„©σ΅„© βˆ’1 (10) βˆ’ σ΅„©σ΅„©σ΅„©2𝑇 (1 βˆ’ 𝛼) ∞

βˆ’ βˆ‘ [𝑛 + (1 βˆ’ 2𝛼) (πœ† βˆ’ 1) + πœ† (1 βˆ’ 2𝛼) 𝑛] 𝑛=1

σ΅„© Γ— 𝐿 (𝑛, πœ‡, πœƒ) π‘Žπ‘› 𝑇𝑛 σ΅„©σ΅„©σ΅„©σ΅„© ∞

≀ βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› βˆ’ (1 βˆ’ 𝛼) 𝑛=1

≀ 0, by (9) , and hence 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇).

∞ Proof. Suppose that 𝑓(𝑧) = βˆ‘βˆž 𝑛=0 πœ‡π‘› 𝑓𝑛 (𝑧) = 1/𝑧+βˆ‘π‘›=1 πœ‡π‘› ((1βˆ’ 𝑛 𝛼)/[𝑛 + 𝛼 βˆ’ π›Όπœ†(𝑛 + 1)]𝐿(𝑛, πœƒ, πœ‡))𝑧 ; then, we have ∞

βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡)

𝑛=1

Γ—

πœ‡π‘› (1 βˆ’ 𝛼) [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡)

(14)

∞

= βˆ‘ πœ‡π‘› = 1 βˆ’ πœ‡0 < 1. 𝑛=1

By Theorem 3, 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇). Conversely, assume that 𝑓 is in the class 𝑀𝑃 (𝛼, πœ†, 𝑇); then, by Corollary 4, π‘Žπ‘› ≀

1βˆ’π›Ό . [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡)

(15)

Set πœ‡π‘› = ([𝑛+π›Όβˆ’π›Όπœ†(𝑛+1)]𝐿(𝑛, πœƒ, πœ‡)/(1βˆ’π›Ό))π‘Žπ‘› , 𝑛 = 1, 2, . . . and ∞ πœ‡0 = 1 βˆ’ βˆ‘βˆž 𝑛=1 πœ‡π‘› . Then, 𝑓(𝑧) = βˆ‘π‘›=0 πœ‡π‘› 𝑓𝑛 (𝑧) ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇).

Geometry

3

3. Distortion Bounds

4. Radii Results

In this section, we obtain growth and distortion bounds for the class 𝑀𝑃 (𝛼, πœ†, 𝑇).

We now find the radius of meromorphically starlikeness and convexity for functions 𝑓 in the class 𝑀𝑃 (𝛼, πœ†, 𝑇).

Theorem 6. If 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇), then

Theorem 8. Let 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇). Then, 𝑓 is meromorphically starlike of order 𝛿, (0 ≀ 𝛿 < 1) in |𝑧| < π‘Ÿ1 , where

1 1βˆ’π›Ό σ΅„© σ΅„©σ΅„© βˆ’ ‖𝑇‖ , 󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© β‰₯ ‖𝑇‖ (1 + 𝛼 βˆ’ 2π›Όπœ†) (1 βˆ’ πœ‡)2 (πœƒ + 1) (πœƒ + 2) 1 1βˆ’π›Ό σ΅„© σ΅„©σ΅„© + ‖𝑇‖ . 󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© ≀ ‖𝑇‖ (1 + 𝛼 βˆ’ 2π›Όπœ†) (1 βˆ’ πœ‡)2 (πœƒ + 1) (πœƒ + 2) (16) The result is sharp for 𝑓(𝑧) = 1/𝑧 + ((1 βˆ’ 𝛼)/(1 + 𝛼 βˆ’ 2π›Όπœ†)(1 βˆ’ πœ‡)2 (πœƒ + 1)(πœƒ + 2))𝑧.

π‘Ÿ1 = inf[ 𝑛β‰₯1

(1 βˆ’ 𝛿) (𝑛+𝛼 βˆ’ π›Όπœ† (𝑛+1)) 𝐿 (𝑛, πœƒ, πœ‡) ] (1 βˆ’ 𝛼) (𝑛 + 2 βˆ’ 𝛿)

1/(𝑛+1)

,

(22)

𝑛 β‰₯ 1. 𝑛 Proof. Let 𝑓(𝑇) = π‘‡βˆ’1 + βˆ‘βˆž 𝑛=1 π‘Žπ‘› 𝑇 . Since 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇) is meromorphically starlike of order 𝛿,

σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© σ΅„©σ΅„© 𝑇𝑓󸀠 (𝑇) σ΅„©σ΅„© ≀ 1 βˆ’ 𝛿. σ΅„©σ΅„©βˆ’ βˆ’ 1 σ΅„©σ΅„© σ΅„©σ΅„© 𝑓 (𝑇) σ΅„© σ΅„©

Proof. By Theorem 3,

(23)

Substituting for 𝑓, the above inequality becomes

∞

(1 βˆ’ 𝛼 βˆ’ 2π›Όπœ†) 𝐿 (1, πœƒ, πœ‡) βˆ‘ π‘Žπ‘›

∞

𝑛=2

βˆ‘(

(17)

∞

≀ βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› ≀ 1 βˆ’ 𝛼.

𝑛=1

𝑛+2βˆ’π›Ώ ) ‖𝑇‖𝑛+1 π‘Žπ‘› ≀ 1. 1βˆ’π›Ώ

(24)

By Theorem 3,

𝑛=1

∞

[𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› ≀ 1. 1βˆ’π›Ό 𝑛=1

Therefore,

βˆ‘

∞

βˆ‘ π‘Žπ‘› ≀

𝑛=1

=

1βˆ’π›Ό (1 + 𝛼 βˆ’ 2π›Όπœ†) 𝐿 (1, πœƒ, πœ‡)

Thus, (24) will be true if (18)

1βˆ’π›Ό 2

(1 + 𝛼 βˆ’ 2π›Όπœ†) (1 βˆ’ πœ‡) (πœƒ + 1) (πœƒ + 2)

(

.

∞

1 1 σ΅„© σ΅„© βˆ’ βˆ‘ π‘Žπ‘› ‖𝑇‖𝑛 ≀ 󡄩󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© ≀ + βˆ‘ π‘Ž ‖𝑇‖𝑛 . ‖𝑇‖ 𝑛=1 ‖𝑇‖ 𝑛=1 𝑛

(19)

Since ‖𝑇‖ < 1, the above inequality becomes ∞

[𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) 𝑛+2βˆ’π›Ώ ) ‖𝑇‖𝑛+1 ≀ , (26) 1βˆ’π›Ώ (1 βˆ’ 𝛼)

that is,

𝑛 Also, if 𝑓(𝑇) = π‘‡βˆ’1 + βˆ‘βˆž 𝑛=1 π‘Žπ‘› 𝑇 , then ∞

(25)

1/(𝑛+1)

. (27)

Theorem 9. Let 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇). Then, 𝑓 is meromorphically convex of order 𝛿, (0 ≀ 𝛿 < 1) in |𝑧| < π‘Ÿ2 , where

∞

1 1 σ΅„© σ΅„© βˆ’ ‖𝑇‖ βˆ‘ π‘Žπ‘› ≀ 󡄩󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© ≀ + ‖𝑇‖ βˆ‘ π‘Žπ‘› . ‖𝑇‖ ‖𝑇‖ 𝑛=1 𝑛=1

(1 βˆ’ 𝛿) (𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)) 𝐿 (𝑛, πœƒ, πœ‡) ] ‖𝑇‖ ≀ [ (1 βˆ’ 𝛼) (𝑛 + 2 βˆ’ 𝛿)

(20)

Using (18), we get the result. Theorem 7. If 𝑓 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇), then 1 1βˆ’π›Ό σ΅„© σ΅„©σ΅„© σΈ€  󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© β‰₯ σ΅„© ‖𝑇‖2 βˆ’ (1 + 𝛼 βˆ’ 2π›Όπœ†) (1 βˆ’ πœ‡)2 (πœƒ + 1) (πœƒ + 2) , σ΅„© 1 1βˆ’π›Ό σ΅„© σ΅„©σ΅„© σΈ€  󡄩󡄩𝑓 (𝑇)σ΅„©σ΅„©σ΅„© ≀ σ΅„© ‖𝑇‖2 + (1 + 𝛼 βˆ’ 2π›Όπœ†) (1 βˆ’ πœ‡)2 (πœƒ + 1) (πœƒ + 2) . σ΅„© (21) The result is sharp for 𝑓(𝑧) = 1/𝑧 + ((1 βˆ’ 𝛼)/(1 + 𝛼 βˆ’ 2π›Όπœ†)(1 βˆ’ πœ‡)2 (πœƒ + 1)(πœƒ + 2))𝑧.

π‘Ÿ2 = inf [ 𝑛β‰₯ 1

(1 βˆ’ 𝛿) (𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)) 𝐿 (𝑛, πœƒ, πœ‡) ] (1 βˆ’ 𝛼) 𝑛 (𝑛 + 2 βˆ’ 𝛿)

1/(𝑛+1)

. (28)

Theorem 10. The class 𝑀𝑃 (𝛼, πœ†, 𝑇) is closed under convex combination. 𝑛 βˆ’1 + Proof. Let 𝑓(𝑧) = π‘‡βˆ’1 + βˆ‘βˆž 𝑛=0 π‘Žπ‘› 𝑇 and 𝑔(𝑧) = 𝑇 𝑛 𝑏 𝑇 ∈ 𝑀 (𝛼, πœ†, 𝑇). Then, by Theorem 3, βˆ‘βˆž 𝑃 𝑛=0 𝑛 ∞

βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› ≀ 1 βˆ’ 𝛼,

𝑛=1 ∞

βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) 𝑏𝑛 ≀ 1 βˆ’ 𝛼.

𝑛=1

(29)

4

Geometry

Define β„Ž(𝑇) = πœ†π‘“(𝑇) + (1 βˆ’ πœ†)𝑔(𝑇). Then, β„Ž(𝑇) = π‘‡βˆ’1 + 𝑛 βˆ‘βˆž 𝑛=1 [πœ†π‘Žπ‘› + (1 βˆ’ πœ†)𝑏𝑛 ]𝑇 . Now,

that is, βˆšπ‘Žπ‘› 𝑏𝑛 ≀

∞

βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) [πœ†π‘Žπ‘› + (1 βˆ’ πœ†) 𝑏𝑛 ]

(36)

It is enough to find the largest πœ‰ such that

𝑛=1

∞

= πœ† βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑛=1

(30)

∞

1βˆ’π›Ό . [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡)

+ (1 βˆ’ πœ†) βˆ‘ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) 𝑏𝑛

1βˆ’π›Ό (1 βˆ’ πœ‰) [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] ≀ [𝑛+𝛼 βˆ’ π›Όπœ† (𝑛 +1)] 𝐿 (𝑛 β‹… πœƒ, πœ‡) (1 βˆ’ 𝛼) [𝑛 + πœ‰ βˆ’ πœ‰πœ† (𝑛 + 1)] (37) which yields

𝑛=1

πœ‰ ≀ ((𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1))2 𝐿 (𝑛, πœƒ, πœ‡) βˆ’ (1 βˆ’ 𝛼)2 𝑛)

≀ πœ† (1 βˆ’ 𝛼) + (1 βˆ’ πœ†) (1 βˆ’ 𝛼) (using (30)) = 1 βˆ’ 𝛼.

Γ— ((1 βˆ’ 𝛼)2 (1 βˆ’ πœ† (𝑛 + 1))

Thus, β„Ž ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇).

(38) βˆ’1

+ (𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1))2 𝐿 (𝑛, πœƒ, πœ‡)) .

5. Hadamard Product

It follows from (38) that

Theorem 11. The Hadamard product 𝑓 βˆ— 𝑔 of two functions 𝑓 and 𝑔 in 𝑀𝑃 (𝛼, πœ†, 𝑇) belongs to the class 𝑀𝑃 (πœ‰, πœ†, 𝑇), where πœ‰ = 1 βˆ’ 2(1 βˆ’ 𝛼)2 (1 βˆ’ πœ†)/(1 βˆ’ 𝛼)2 (1 βˆ’ 2πœ†) + (1 βˆ’ 𝛼 βˆ’ 2π›Όπœ†)2 (1 βˆ’ πœ‡)2 (πœƒ + 1)(πœƒ + 2).

πœ‰ ≀ 1 βˆ’ (1 βˆ’ 𝛼)2 (𝑛 + 1) (1 βˆ’ πœ†) Γ— ((1 βˆ’ 𝛼)2 (1 βˆ’ πœ† (𝑛 + 1)) βˆ’1

+ (𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1))2 𝐿 (𝑛, πœƒ, πœ‡)) .

Proof. It suffices to prove that Let

∞

[𝑛 + πœ‰ βˆ’ πœ‰πœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑏𝑛 ≀ 1, βˆ‘ 1βˆ’πœ‰ 𝑛=1

(39)

(31)

𝛿 (𝑛) = (1 βˆ’ 𝛼)2 (𝑛 + 1) (1 βˆ’ πœ†) Γ— ((1 βˆ’ 𝛼)2 (1 βˆ’ πœ† (𝑛 + 1))

where

βˆ’1

+ (𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1))2 𝐿 (𝑛, πœƒ, πœ‡)) .

πœ‰ = 1 βˆ’ (2(1 βˆ’ 𝛼)2 (1 βˆ’ πœ†)) Γ— ((1 βˆ’ 𝛼)2 (1 βˆ’ 2πœ†) + (1 βˆ’ 𝛼 βˆ’ 2π›Όπœ†)2 2

(32)

βˆ’1

Γ— (1 βˆ’ πœ‡) (πœƒ + 1) (πœƒ + 2)) .

[𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› ≀ 1, 1βˆ’π›Ό

βˆ‘βˆž 𝑛=1 [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) 𝑏𝑛 ≀ 1. 1βˆ’π›Ό

(33)

By Cauchy-Schwartz inequality, βˆ‘βˆž 𝑛=1 [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) βˆšπ‘Žπ‘› 𝑏𝑛 ≀ 1. 1βˆ’π›Ό

(34)

We have to find the largest πœ‰ such that [𝑛 + πœ‰ βˆ’ πœ‰πœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) π‘Žπ‘› 𝑏𝑛 1βˆ’πœ‰ [𝑛 + 𝛼 βˆ’ π›Όπœ† (𝑛 + 1)] 𝐿 (𝑛, πœƒ, πœ‡) βˆšπ‘Žπ‘› 𝑏𝑛 , ≀ 1βˆ’π›Ό

Clearly 𝛿(𝑛) is an increasing function of 𝑛 (𝑛 β‰₯ 1). Letting 𝑛 = 1, we prove the assertion.

References

Since 𝑓, 𝑔 ∈ 𝑀𝑃 (𝛼, πœ†, 𝑇) βˆ‘βˆž 𝑛=1

(40)

(35)

[1] P. L. Duren, Univalent Functions, Springer, New York, NY, USA, 1983. [2] T. Rosy, G. Murugusundaramoorthy, and K. Muthunagai, β€œCertain subclasses of meromorphic functions associated with hypergeometric functions,” International Journal of Nonlinear Science, vol. 12, no. 2, pp. 1749–1759, 2011. [3] G. Murugusundaramoorthy and T. Rosy, β€œSubclasses of analytic functions associated with Fox-Wright’s generalized hypergeometric functions based on Hilbert space operator,” Studia Universitatis BabesΒΈ-Bolyai, vol. 56, no. 3, pp. 61–72, 2011. [4] N. Dunford and J. T. Schwartz, Linear Operators, Part I: General Theory, Wiley-Interscience, New York, NY, USA, 1958. [5] K. Fan, β€œAnalytic functions of a proper contraction,” Mathematische Zeitschrift, vol. 160, no. 3, pp. 275–290, 1978. [6] W. G. Atshan and R. H. Buti, β€œFractional calculus of a class of univalent functions with negative coefficients defined by Hadamard product with Rafid-Operator,” European Journal of Pure and Applied Mathematics, vol. 4, no. 2, pp. 162–173, 2011.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014