Oct 21, 2016 - Virtual Synchronous Generator. (VSG) Control. Conventional. Droop Control. Load Sharing. Swing Equation. Emulation. Smooth Transition.
Niagara 2016 Symposium on Microgrids October 20-21, 2016 Niagara, Canada
Parallel Operation of Distributed Generators by Virtual Synchronous Generator Control in Microgrids Jia Liu* and Toshifumi Ise Osaka University, Japan October 21, 2016
2
Contents • Introduction • Parallel Inverters • Synchronous Generator + Inverter • Conclusion
3
Contents • Introduction • Parallel Inverters • Synchronous Generator + Inverter • Conclusion
Inertial feature of Synchronous Generators Synchronous Generator
4
Kinetic Energy of Rotating Mass Swing Equation
Frequency fluctuation under active power transition limited by the inertia
DC/AC Inverter No intrinsic relation Undesirable frequency dynamics
5
Concept of VSG Control Conventional Droop Control
Load Sharing
Smooth Transition between Islanding and Grid-connection
Swing Equation Emulation Inertia Support
Virtual Synchronous Generator (VSG) Control
A New Concept of Inverter Control in AC Microgrid
6
Objectives
Conventional droop control
• Two topics to be discussed • Parallel Inverters • Synchronous Generator + Inverter
To apply VSG control to DC-AC inverters in microgrids
What is the benefit? Without Frequency Restoration
Slower frequency variation rate
Frequency during Loading transition With Frequency Restoration
Frequency during Three-phase ground fault cleared in 0.1 s
Less maximum frequency deviation
Less maximum frequency deviation
7
8
Contents • Introduction • Parallel Inverters • Synchronous Generator + Inverter • Conclusion
9
Microgrid: Parallel Inverters Fluctuated loading 100m 22mm2 (0.14+j0.015)Ω
.
Lf1:1mH
BK1 Load1
0.0942pu DG1 Sbase1=10kVA
Vout1 Iout1
R*line1:0.035pu L*line1:0.00375pu
Cf1:10μF 66.31pu 100m 22mm2 (0.14+j0.015)Ω
Lf2:1mH
BK2 Load2
* Vout2 Iout2 R* line2:0.0175pu L line2:0.00188pu
0.0471pu DG2 Sbase2=5kVA
2 parallel DGs equipped with VSG control
Cf2:10μF 33.16pu
P0*_ i , Q0*_ i
MGCC
Vbus BUS
Grid
BK3
.
Microgrid Central Controller (MGCC) Frequency and voltage restoration
VSG Control Scheme (Basic Part) .
V^ bus
E0 (Constant) Q0 + − kq + +
Qref
Swing Equation
.
V–Q Droop Controller .
kq:V–Q droop coef. Q0:Set value of reactive power
Q0 ^ Vbus Q Droop
Distributed Generator Qref + -
Zls
Energy Storage PI +
+ E0
Governor Pin Swing Model Equation ω 1/s m P0 ωg Function Vbus Estimator LPF
Zline
Lf Vout(abc)
Cf
Iout(abc)
J:Virtual inertia D:Damping factor ωm:Virtual rotor frequency
BUS
E Stator Vpwm PWM Impedance Adjuster θpwm θm
Vout(αβ)
abc/αβ Iout(αβ)
Frequency Detector Pout Qout
Power Meter .
.
ωm
10
ω0 (Constant) P0 + − kp + +
ω–P Droop Controller Pin .
kp: ω–P droop coef. P0:Set value of active power
11
VSG Control Scheme (Enhanced Part)
Stator Impedance Adjuster
.
Distributed Generator Q0 ^ Vbus Q Droop
Qref + -
Zls
Energy Storage PI +
+ E0
Governor Pin Swing Model Equation ω 1/s m P0 ωg Function Vbus Estimator
Lf Vout(abc)
Cf
Iout(abc)
.
1 BUS
Iout + 0 Ithresh
E Stator Vpwm PWM Impedance Adjuster θpwm θm
Vout(αβ)
Iout(αβ)
θm
Power Meter .
vout_α + vout_β iout_α ωm iout_β
Rline ×
+ -
v^ bus_β
Rline
ρθ/αβ
ωm iout_β
+ - vline_α
eβ
+ vZls_α -
Rls ×
Stator Impedance Adjuster
Lls × Rls
+ vline_β +
Estimate bus voltage for proper reactive power sharing
Virtual ΔRls = Rls Stator Impedance Calculator ΔLls+ Lls 1/ω0 + Lls0
vpwm_α Vpwm + + + + vpwm_β αβ/ρθ θpwm -
+ vZls_β + .
•
Bus voltage estimator
Lline ×
Vbus
1 + (R / X )2
eα
^
αβ/ρθ
1 + ( X / R) 2 1
E
iout_α
v^ bus_α
kZ
ΔZls
abc/αβ
Frequency Detector Pout Qout
LPF
Zline
•
Constant part ‐ Transient power sharing ‐ Increased damping Transient part ‐ Overcurrent limiting
12
Control Parameters Parameter
Value
Parameter
Value
10 kVA 5 kVA 200 V
0.0125 pu
376.99 rad/s 8s
1 pu
17 pu
0.05 s
1 pu
6.39 mH
0 pu
13.81 mH
20 pu
1.79 pu
5 pu
5
Simulation Results Loading Transition
Droop Control
VSG Control
Reduced frequency deviation
Islanding
Loading Transition
Islanding
Loading Transition
13
Simulation Results Three-Phase Ground Fault Droop Control
VSG Control
Reduced frequency deviation
3P Ground Fault
3P Ground Fault
14
Fault Current During Three-Phase Ground Fault Without Transient Stator Impedance
With Transient Stator Impedance
.
1
Iout + 0 Ithresh
kZ
iout_α ωm iout_β
1 + (R / X )2
eα ρθ/αβ
eβ
vpwm_α Vpwm + + + + vpwm_β αβ/ρθ θpwm -
Fault Current is limited by Transient Stator Impedance
+ vZls_α -
Rls ×
Stator Impedance Adjuster
Lls × Rls
1 + ( X / R) 2 1
E θm
ΔZls
Virtual ΔRls = Rls Stator Impedance Calculator ΔLls+ Lls 1/ω0 + Lls0
+ vZls_β + .
15
16
Effect of Constant Stator Reactance Without Constant Stator Reactance
With Constant Stator Reactance
Simulation Oscillation eliminated
Islanding
Loading Transition
P0_2 Change
Islanding
Loading Transition
Oscillation damped P0_2 Change
Experiment Oscillation damped
Oscillation eliminated Loading Transition
P0_2 Change
Loading Transition
P0_2 Change
State-Space Model of Islanded Microgrid
Loading Change of Active Transition Power Set Value Disturbance: Frequency
Active Power
Output:
• The damping ratio of oscillation in output parameters is determined by the eigenvalues of state matrix A
17
18
Relation between Output Reactance and Damping Ratio
• Total output reactance X increases • ⇒Damping ratio ζ increases
Oscillation can be damped by increasing output reactance
19
Transient Load Sharing
• When the disturbance is a loading transition – If the total output reactance of each VSG is of the same per unit value, poles are cancelled by zeros and oscillation is eliminated
20
Design of Constant Stator Reactance
.
1
Iout + 0 Ithresh
kZ
iout_α ωm iout_β
1 + (R / X )2
eα ρθ/αβ
eβ
vpwm_α Vpwm + + + + vpwm_β αβ/ρθ θpwm -
+ vZls_α -
Rls ×
Stator Impedance Adjuster
Lls × Rls
1 + ( X / R) 2 1
E θm
ΔZls
Virtual ΔRls = Rls Stator Impedance Calculator ΔLls+ Lls 1/ω0 + Lls0
+ vZls_β + .
21
Effect of Constant Stator Reactance Without Constant Stator Reactance
Simulation
With Constant Stator Reactance
Reactive power sharing improved
Islanding
Loading Transition
P0_2 Change
Experiment
Islanding
Loading Transition
P0_2 Change
Reactive power sharing improved
Loading Transition
P0_2 Change
Loading Transition
P0_2 Change
22
Cause of Poor Reactive Power Sharing
If the input of droop controller is equal, reactive power should be shared properly
ω–P Droop
V–Q Droop
Bus Voltage Estimator for Proper Reactive Power Sharing .
V^ bus
E0 (Constant) Q0 + − kq + +
.
Qref
Q0 ^
.
V–Q Droop Controller kq:V–Q droop coef. Q0:Set value of reactive power
Distributed Generator
Vbus
Qref + Q Droop -
Zls
Energy Storage PI +
+ E0
Governor Pin Swing Model Equation ω 1/s m ω g Function P0 Vbus Estimator
Zline
Lf Vout(abc)
Cf
Iout(abc)
BUS
E Stator Vpwm PWM Impedance Adjuster θpwm θm
abc/αβ
Vout(αβ)
Iout(αβ)
Frequency Detector Pout Qout
LPF
23
Power Meter .
vout_α + vout_β iout_α ωm iout_β
Rline ×
v^ bus_α + -
v^ bus_β
^
αβ/ρθ
+ - vline_α
Bus voltage estimator
Lline × Rline
Vbus
+ vline_β +
Estimate bus voltage for proper reactive power sharing
24
Contents • Introduction • Parallel Inverters • Synchronous Generator + Inverter • Conclusion
25
Microgrid: SG + Inverter
• • • •
Stand-alone microgrid in remote area SG (10 kVA): Round-rotor moved by gas engine DG (10 kVA): Photovoltaic panels Load: Three-phase loads and single-phase Loads
26
Issues of Small Rating SG SG Controller
SG Parameters Parameter
Value
Parameter
Value
200 V
1 pu
10 kVA
0 pu
376.99 rad/s
20 pu
0.16 s
5 pu
20 pu
1s
0.025 s
AVR LPF cut-off frequency
20 Hz
Impedance Model
Poor inertia
0.219 pu 6.55 s
0.027 pu 0.039 s
Slow governor response
0.01 pu 0.85 s
0.071 s
27
Simulation of Single SG Operation Initial loading : 3P 1 kW, 0.5 kvar Connected loading : 1P 4.8 kW, 2.1 kvar Ripples due to 3P unbalance introduced by 1P loading Slow governor response cannot restore this frequency drop immediately Rotor frequency decreased rapidly due to poor inertia
28
Control Requirements of DG • 1. Reduce SG rotor frequency deviation – If SG rotor frequency drop below 90%, SG may be unstable – Virtual Synchronous Generator (VSG) Control • Generate virtual inertia to provide transient frequency support • Share active and reactive power with the SG
• 2. Eliminate Negative-Sequence Current from SG – Prevent SG from overheating and torsional stresses – Active power filter (APF)
• 3. Both 1+2 should be realized in ONE inverter
29
Proposed Modified VSG Control .
Distributed Generator Q0 Vout_dg Q Droop
Zls
Energy Storage
Qref_dg + -
PI
Cf
BUS
+ + E0
Edg
Stator Vpwm PWM Impedance Adjuster θpwm
Governor Pin_dg θm_dg Swing Model 1/s Equation ω m_dg Vcomp(αβ) Function P0 SG Neg.-Seq. Compensation Pout_dg ωg_dg − I out _ sg ( dq) θg_sg
Iout_dg Iout_dg(αβ)
Iout_dg(abc) Vout_dg(abc)
DDSRF LPF
Zline
Lf
abc/ Iout_sg(abc) αβ Vout_sg(abc)
Qout_dg .
30
.
Distributed Generator Q0 Vout_dg Q Droop
Zls
Energy Storage
Qref_dg + -
PI
Cf
DDSRF
BUS
+ + E0
Edg
Stator Vpwm PWM Impedance Adjuster θpwm
Governor Pin_dg θm_dg Swing Model 1/s Equation ω m_dg Vcomp(αβ) Function P0 SG Neg.-Seq. Compensation Pout_dg ωg_dg − I out θg_sg _ sg ( dq)
Double Decoupled Synchronous Reference Frame (DDSRF) Decomposition
Iout_dg Iout_dg(αβ)
θg ωg
.
Iout_dg(abc) Vout_dg(abc)
DDSRF LPF
Zline
Lf
Vαβ
abc/ Iout_sg(abc) αβ Vout_sg(abc)
T
+
Qout_dg
+ T
.
• Applied to both DG and SG voltage and current to extract positive and negative sequence components • Output power, voltage and current of DG are calculated from only positive sequence components • Prevent ripples due to negative sequence from entering the controller
Iαβ
T
–
T
+
− Vdqf
–2
+ Vdqf
+ -
LPF
+
Vdq− I dq+
T +2
T T
LPF
+
θg –
Vdq+
+2
θg T
PLL
vq+
–2
− I dqf
+ I dqf
LPF
LPF
I dq− .
LPF: 1st order low pass filter (cut-off frequency 40 Hz)
SG Neg.-Seq. Compensation .
Distributed Generator Q0 Vout_dg Q Droop
Zls
Energy Storage
Qref_dg + -
PI
Cf
BUS
Stator Impedance Adjuster
+ + E0
Edg
Stator Vpwm PWM Impedance Adjuster θpwm
Governor Pin_dg θm_dg Swing Model 1/s Equation ω m_dg Vcomp(αβ) Function P0 SG Neg.-Seq. Compensation Pout_dg ωg_dg − I out θg_sg _ sg ( dq)
Iout_dg Iout_dg(αβ)
Iout_dg(abc) Vout_dg(abc)
DDSRF LPF
Zline
Lf
abc/ Iout_sg(abc) αβ Vout_sg(abc)
Qout_dg .
SG Neg.-Seq. Compensation
Control SG Neg.-Seq. to be 0
31
32
Parameter Design of Inverter Parameter
Value 200 V
Parameter
Value 1 pu
10 kVA
0 pu
376.99 rad/s
20 pu
0.16 s
5 pu
8.7 pu
0s
1.122 mH
0.69 pu
1.836 mH
5
PI Controller for Reactive Power 0.05 pu PI Controller for SG Neg.-Seq. Compensation 0.1 pu
0.01 s 20 Hz
All parameters in red should be set equal to SG in per unit value to ensure proper transient and steady power sharing Design of Parameters in blue will be discussed in detail
33
Set equal to SG in order to share transient active power?
Low frequency oscillation indicated by oscillatory conjugated eigenvalues
34
Constant Virtual Stator Inductance Output reactance of DG and SG should be set equal to share transient power, but how about the value? Connection of DG
35
Simulation of 1P Loading Transition Initial loading : 3P 1 kW, 0.5 kvar Connected loading : 1P 4.8 kW, 2.1 kvar SG only
Improved SG rotor frequency deviation (Frequency Support of VSG)
SG + VSG
Initial loading : 3P 2 kW, 1 kvar Connected loading : 1P 9.6 kW, 4.2 kvar (2x of SG only case)
36
Simulation of 1P Loading Transition
w/o DDSRF and SG Neg. Seq.
with DDSRF and SG Neg. Seq.
Ripples due to unbalance have been eliminated
37
Phase Current
w/o DDSRF and SG Neg. Seq.
with DDSRF and SG Neg. Seq.
Balanced SG current
38
Contents • Introduction • Parallel Inverters • Synchronous Generator + Inverter • Conclusion
39
Conclusion Conclusion • VSG control can provide inertia support for microgrids, leading to less fluctuant frequency • Parallel inverters and SG + inverter operations were established, and several related issues were solved Future Plan • Operation of Multiple SGs + Multiple inverters
Thank you for your kind attention!
For more details, please refer to: • J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Transactions on Smart Grid., doi: 10.1109/TSG.2016.2521405. • J. Liu, Y. Miura, T. Ise, J. Yoshizawa, and K. Watanabe, “Parallel operation of a synchronous generator and a virtual synchronous generator under unbalanced loading condition in microgrids,” 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, China, 2016, pp. 3741-3748. • J. Liu, Y. Miura, and T. Ise, “Power quality improvement of microgrids by virtual synchronous generator control,” 10th Electric Power Quality and Supply Reliability Conference (PQ2016) , Tallinn, Estonia, 2016.