Paths and indices of maximal tail dependence

2 downloads 0 Views 1MB Size Report
Tails do matter! 12 December 2015. CMStatistics 2015, London, UK -- R. Zitikis. 2. Müller-Lyer illusion. Franz Carl Müller-Lyer (1857–1916). Just in case you ...
Paths and indices of maximal tail dependence Ričardas Zitikis University of Western Ontario, London, Canada [email protected]

12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

1

Tails do matter!

Müller-Lyer illusion Franz Carl Müller-Lyer (1857–1916)

Just in case you thought otherwise, the shafts of the arrows are of the same length 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

2

Talk is based on Furman, Su, and Zitikis (2015) Paths and indices of maximal tail dependence ASTIN Bulletin, 45 (3), 661—678

Jianxi Su

Edward Furman 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

3

Bivariate distributions 𝐹𝑋,𝑌 𝑥, 𝑦 = 𝐏[𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦] 𝑣 = 𝐹𝑌 (𝑦) marginal cdf

𝑢 = 𝐹𝑋 (𝑥) marginal cdf

𝐶(𝑢, 𝑣) copula captures dependence

Hence 𝐹𝑋,𝑌 𝑥, 𝑦 = 𝐶(𝐹𝑋 𝑥 , 𝐹𝑌 (𝑦)) 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

4

Copula tails • Financiers When 𝑢, 𝑣 ↓ 0, then 𝐶(𝑢, 𝑣) ~ ? • Actuaries

When 𝑢, 𝑣 ↑ 1, then 𝐶(𝑢, 𝑣) ~ ? • Classical indices 𝐶(𝑢,𝑢) 𝑢 ↓0 𝑢

 Lower index λ𝐿 = lim  Upper index λ𝑈 = 12 December 2015

𝐶(𝑢,𝑢) lim 𝑢 ↓0 𝑢

( 𝐶 survival copula )

CMStatistics 2015, London, UK -- R. Zitikis

5

Lower-tail indices • They are based on 𝐶 𝑢, 𝑢 = 𝐏[ 𝑈 ≤ 𝑢, 𝑉 ≤ 𝑢] = 𝐏[ 𝑈, 𝑉 ∈ [0, 𝑢] × 0, 𝑢 ] • Why the cube 0, 𝑢 × 0, 𝑢 ?

• Why along the diagonal? 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

6

From cubes to rectangles • Find φ(𝑢) and ψ(𝑢) that maximize 𝐏[ 𝑈, 𝑉 ∈ [0, φ(𝑢)] × 0, 𝜓 𝑢 ] • On the same “footing” as the classical index Area([0, φ(𝑢)] × 0, 𝜓 𝑢 ) = φ(𝑢) ψ(𝑢) = Area([0, 𝑢] × 0, 𝑢 ) ) = 𝑢2 • Hence, ψ 𝑢 = 𝑢2 / φ(𝑢) and so pathφ 𝑢 ≝ φ 𝑢 , 𝑢2 / φ(𝑢) • Classics: φ 𝑢 = 𝑢 12 December 2015



pathφ 𝑢 = 𝑢, 𝑢 CMStatistics 2015, London, UK -- R. Zitikis

7

New notion of tail dependence • Find φ 𝑢 , called function of max-dependence, such that 𝐶 pathφ 𝑢

is maximal

• Find minimal κ∗ ≥ 0, called index of max-dependence, such that 𝐶 pathφ 𝑢

≈sv

∗ κ 𝑢

when 𝑢 ↓ 0

≈sv means “up to a slowly varying function”

• Note: classical κ ≥ 0 is such that 𝐶 𝑢, 𝑢 ≈sv 𝑢κ when 𝑢 ↓ 0 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

8

Fatal shocks and the Marshall-Olkin copula • Motivation  Company consists of two business lines, L1 & L2  Poisson process sends a fatal shock to only line L1  Another Poisson process sends a fatal shock to only line L2  Yet another Poisson sends a fatal shock to the entire company (L1 & L2)

• Notation  T1 is the failure time of line L1  T2 is the failure time of line L2  Joint survival function of T1 and T2 𝑆T1,T2 𝑥, 𝑦 = exp − λ1 𝑥 − λ2 𝑦 − λ12 max 𝑥, 𝑦 where λ1 , λ2 , λ12 are the arrival rates of the three (independent) Poissons 12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

9

Marshall-Olkin copula Joint survival function of T1 & T2 𝑆T1,T2 𝑥, 𝑦 = 𝐶𝑎,𝑏 (𝑆T1 𝑥 , 𝑆T2 𝑦 ) where 𝐶𝑎,𝑏 (𝑢, 𝑣) = min{ 𝑢1−𝑎 𝑣, 𝑢𝑣 1−𝑏 }

and

12 December 2015

λ12 𝑎= λ1 + λ12

and

λ12 𝑏= λ2 + λ12

CMStatistics 2015, London, UK -- R. Zitikis

10

Marshall-Olkin copula • Function of max-dependence φ 𝑢 = 𝑢2𝑏/(𝑎+𝑏) and so 𝐶 pathφ 𝑢

=

• Classical φ 𝑢 = 𝑢 gives

12 December 2015

∗ κ 𝑢

with

κ∗

=2−

2𝑎𝑏 𝑎+𝑏

𝜅 = 2 − min 𝑎, 𝑏 𝜅 ≥ κ∗ always 𝜅 = κ∗ only when 𝑎 = 𝑏

CMStatistics 2015, London, UK -- R. Zitikis

11

Marshall-Olkin copula

12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

12

Mixture of M-O copulas • Symmetric copula with off-diagonal max-dependence functions 1 1 𝐶𝑎,𝑏 𝑢, 𝑣 + 𝐶𝑏,𝑎 𝑢, 𝑣 2 2 • Functions of max-dependence  φ 𝑢 = 𝑢2𝑏/(𝑎+𝑏)  φ 𝑢 = 𝑢2𝑎/(𝑎+𝑏) • Index of maximal dependence ∗

κ =2 12 December 2015

2𝑎𝑏 − 𝑎+𝑏

CMStatistics 2015, London, UK -- R. Zitikis

13

Mixture of M-O copulas

12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

14

Concluding notes • Be careful when using classical indices of tail dependence because they are good reflectors of (maximal) tail dependence only for special dependence structures • Example: For the Gaussian copula, the path of maximal taildependence is diagonal The proof is (very) complex: Furman, Kuznetsov, Su, and Zitikis (2015). Tail Dependence of the Gaussian Copula Revisited. Available at SSRN: http://ssrn.com/abstract=2558675

12 December 2015

CMStatistics 2015, London, UK -- R. Zitikis

15

Suggest Documents