Phase-field modeling of microstructure evolution in ... - Semantic Scholar

7 downloads 0 Views 6MB Size Report
Thermodynamics, Bratislava, April 6, 2010. Outline. • Introduction: modeling of microstructure evolution. • Principles of phase field modeling. • Application ...
Phase-field modeling of microstructure evolution in multi-component alloys Nele Moelans Department of Metallurgy and Materials Engineering (MTM) K.U.Leuven, Belgium Liesbeth Vanherpe, Jeroen Heulens, Bert Rodiers COST MP0602 – Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

Outline

• Introduction: modeling of microstructure evolution • Principles of phase field modeling • Application examples • • • •



Anisotropic grain growth Precipitates on grain boundaries Lead-free solder joints Solidification

Summary

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

2

Role of microstructures in materials science Chemical composition + Temperature, pressure, cooling rate, deformation, …

Low-C steel: wt% C < 0.022 Ferrite + small carbides 250 Pm Steel: wt% C = 0.4, slow cooling rate

Microstructure Shape, size and orientation of the grains, mutual distribution of the phases

50 Pm

Ferrite + cementite

Material properties

Steel: wt% C = 0.4, fast cooling rate

Strength, deformability, hardness, toughness, fatigue…

Ferrite needles+ perlite

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

50 Pm

3

Microstructure evolution in multicomponent alloys •

Connected grain structures



Complex morphologies



Concurrent processes • Solidification - grain growth Ostwald ripening – diffusion phase growth



Materials’ properties are largely related to microstructure • •

Low C-steel, ferritic grain structure

Material development Reliability

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

4

Microstructure evolution in multicomponent alloys •

High complexity • Anisotropy, segregation, solute drag, second-phase precipitates, pipe diffusion, mutual distribution of phases, … • Many material properties: Crystal structure, Gibbs energy, diffusion coefficient of different phases? Structure, energy, mobility of grain boundaries? • Evolution connected grain structure ? – Mesoscale simulations



Importance • Material development: heat treatment, alloying • Reliability

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

5

Phase-field modelling Strength • • •

Complex shapes Multi-grain, multi-phase structures Thermodynamic driving forces

F = Fchem + Fint + Felast + Fmagn + ... • •

Multi-component Transport equations •

Mass and heat diffusion/convection

Difficulties • •

Implementation for realistic length scales Parameter choice

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

6

Principles of phase field modeling • • • • • •

Diffuse interface concept Phase field variables Thermodynamic free energy functional Evolution equations Parameter assessment Numerical implementation

Diffuse-interface description •

Sharp interface

• • •



Discontinuous variation in properties Requires tracking of the interfaces Simplified grain morphologies

Diffuse interface

• • •

Continuous variation in properties Interfaces implicitly given by local variations in phase-field variables Complex grain morphologies

• Diffuse interface approach (van der Waals, CahnCahn-Hilliard (1958), GinzburgGinzburg-Landau (1950)) • Microstructure evolution started ± 20 years ago COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

8

Representation of microstructures •

Phase-field variables: continuous functions in space and time • •

Local composition

G G xB ( r , t ), cB ( r , t )

Local structure and orientation

G η (Gr , t ) φ ( r, t )

Binary alloy A-B • Phase D: K = 0 • Phase E: K = 1

Antiphase boundary COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

9

Thermodynamics and kinetics •

Free energy functional F = Fbulk + Fsurface

κ p ε C 2 = ∫ f 0 ( xi ,ηk , T ) + ∑ (∇ηk ) + ∑ (∇xi )2 dV 2 k =1 2 i =1 V

Homogeneous free energy (chemical, elastic, …)



Gradient free energy (

diffuse interfaces)

Evolution of field variables • Non-conserved field variables ( G ∂F ( x1 ,..., xC ,η1 ,...,η p ) ∂ηk ( r, t ) G = −L ∂t ∂ηk ( r, t )

• Conserved composition fields (

Interface movement) G ( +ξ ( r, t ))

Mass diffusion)

G JG ∂F ( x1 ,..., xC ,η1 ,...,η p ) 1 ∂xi ( r, t ) JG G = ∇M ⋅ ∇ Vm ∂t ∂xi ( r, t ) COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

10

G ( +ξ ( r, t ))

Homogeneous free energy functional •

Anti-phase boundary

Boundary energy:

∝ κ ( ∆f 0 ) max

Boundary width:



Boundary velocity: COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

η4 η2  f 0 = 4( ∆f 0 ) max  −  2   4

κ ( ∆f 0 ) max

∝κL 11

Homogeneous free energy •

Binary two-phase system

f 0β E D

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

f 0α

f 0 = h (φ ) f β (c, T ) + 1 − h (φ ) f α ( c, T ) + ω g (φ ) with f α ( c, T ) = 12

α m

G , Vm

Gmβ f ( c, T ) = Vm β

(CALPHAD)

Homogeneous free energy •

Binary two-phase system

f 0β

f 0α

f 0 = h (φ ) f β (c, T ) + 1 − h (φ ) f α ( c, T ) + ω g (φ ) Double well function COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

13

Homogeneous free energy •

Binary two-phase system

f 0β

f 0α

f 0 = h (φ ) f β (c, T ) + 1 − h (φ ) f α ( c, T ) + ω g (φ ) Interpolation function COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

14

Effect of elastic stresses and strain •

Coupling with micro-elasticity theory

F = Fchem + Fint + Felast

• Effect of transformation and thermal strains, applied stress/strain • Martensitic transformation, precipitate growth

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

15

Polycrystalline structures •

Polycrystalline microstructure

G η1 ,η2 ,...,ηi (r , t ),...,η p •

Grain i of matrix-phase (η1 ,η2 ,...,ηi ,...,η p ) = (0,0,...,1,...,0)

ηi = 1

Grain i ηj = 0

ηj =1

Grain j

• ηi = 0

Free energy functional

F = Fsurface

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

16

κ p = ∫ f 0 (η1 ,η2 ,...η p ) + ∑ (∇ηk ) 2dV 2 k =1 V

Multi-phase and multi-component alloys •

Phase field variables: • Grains

G ηα 1 ,ηα 2 ,...,ηαi ( r, t ),...,

ηβ 1 ,ηβ 2 ,...η p • Composition

G x A , xB ( r, t ),..., xC −1 •

Free energy functional f bulk ( xk ,ηρ i )

= ∑ hρ (ηρ i ) f ρ ( xkρ )

2 phase polycrystalline structure

ρ

Gmρ ( xkρ ) = ∑ hρ (ηρ i ) Vm ρ COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

17

Parameter assessment •

Different kinds of input data (calculated and/or measured) • • • •



Phase stabilities, phase diagram information – CALPHAD (ab-initio, experiments) Interfacial energy and mobility – ab-initio, (MD, MC ab-initio), experimental Elastic properties, crystal structure, lattice parameters – ab-initio, experimental Atomic diffusion mobilities – CALPHAD ((MC ab-initio), experimental)

Orientation and composition dependence •

Anisotropy, segregation, solute drag

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

18

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

19

Quantitative aspects •

Numerical solution of partial differential equations • Bounding box algortihm • Sparse data structure • Object oriented C++ (L. Vanherpe et al., K.U.Leuven)

• Discretization (Finite differences, finite elements, Fourier-spectral method

• Discretization MICRESS, commercial software forphasefield coupled with CALPHAD COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

• Adaptive meshing (M. Dorr et al. AMPE, LLNL) 20

Examples of applications • • • •

Anisotropic grain growth Precipitates on grain boundaries Lead-free solder systems Solidification

Columnar films with fiber texture •

Grain boundary energy: • Fourfold symmetry • Extra cusp at T = 37.5° • Read-shockley



2D simulation White: θ = 1.5 Gray: θ = 3 Red: θ = 37,5 Black: θ > 3, θ  37.5



DiscreteG orientations

• •

Constant mobility Initially random grain orientation and grain boundary type distributions In collaboration with F. Spaepen, School of Engineering and Applied Sciences, Harvard University

η1 ,η2 ,...,ηi ( r, t ),...,η60 ⇒ ∆θ = 1.5°

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

22

3D simulations for wires with fiber texture

ϑ < 6° COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

23

Microstructure analysis: films •



Misorientation distribution function (MDF)

Evolution mean grain area

A − A0 = keff t

• Evolution towards stead-state regime Simple mean field models COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

24

neff

neff =

keff =

kt → 1, t → ∞ Ah (0) + kt

dAeff dt

=

k 1 + N ’/ N

Examples of applications • • • •

Anisotropic grain growth Precipitates on grain boundaries Lead-free solder systems Solidification

Zener pinning •

Mechanism for controlling grain size • •



E.g. NbC, AlN, TiN,... in HSLAsteels Nano-grain structures

Zener relation for limiting grain size

R lim 1 =K b fV r



Influence of • • • •

Shape of the particle Interfacial properties of particles Initial distribution Fe-0.09 to 0.53 w% Evolution particles

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

C-0.02 w% P with Ce2O3 inclusions (PhD. M. Guo)

26

20 Pm

Simulation results: Al thin films Film preparation



Thin films with CuAl2 - precipitates

R lim 1 = 1.28 0.5 fa r

r = 3, f a = 0.12, l3 = 21 (exp from H.P. Longworth and C.V. Thompson) COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

27

Simulation results: effect of particle shape and coarsening •



Ellipsoid particles

Evolving particles

ε = 3, fV = 0.05 Modified Zener relation R lim r 1 =K a s 1 + ara fVb

K = 3.7, b = 1, a = 3.1 L. Vanherpe, K.U. Leuven COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

28

fV=0.12, L=10M

Jerky motion during recrystallization in Al-Mn alloy •

In-situ EBSD observation of recrystallization in AA3103 at 400 °C •



Jerky grain boundary motion • •



CamScan X500 Crystal Probe FEGSEM

Stopping time: 15-25 s Pinning by second-phase precipitates – Al6(Fe,Mn), D-Al12(Fe,Mn)3Si

Added to phase field model • •

Grain boundary diffusion Driving force for recrystallization

20Pm In collaboration with A. Miroux, E. Anselmino, S. van der Zwaag, T. U. Delft

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

29

Material properties at 723K Grain boundary energy high angle

γh = 0.324 J/m2

Interfacial energy Al6Mn precipitates

γpr = 0.3 J/m2

Mobility high angle grain boundary At solute content 0.3w% Mn

Mh = 2.94·10-11 m2s/kg

Equilibrium composition of matrix

cMn,eq = 0.0524 w% (0.02456 at%) (PhD thesis Lok 2005)

Actual composition of matrix (supersaturated)

cMn = 0.3 w% (0.1474 at%) (PhD thesis Lok 2005)

Mn diffusion in fcc Al

-2 2 D0,bulk 0,bulk = 10 m /s, Qbulk = 211 kJ/mol Dbulk = 5.5973·10-18 m2/s

(Miroux et al.,Mater. Sci. Forum,467-470,393(2004))

Pipe diffusion high angle boundaries, D0,p = D0,bulk 0,bulk, Qp = 0.65Qbulk precipitate/matrix interface Dp = 1.2195·10-12 m2/s Bulk energy density: fρ = Aρ(x-xρ0)2 COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

Am = 6·1011; xm0 = 0.000258 Ap = 6·1012; xp0 = 0.1429 30

Precipitate coarsening and unpinning •

PD < PZS (PD § PZS)



• Pinning: PZS=3.6 MPa • Rex: PD=3.1 MPa

Unpinning mainly through surface diffusion around precipitates 7·10-10

J = J x2 + J y2

6s

0.9µm x 0.375µm

COST MP0602 Industrial Seminar on Thermodynamics, Bratislava, April 6, 2010

31

Precipitate coarsening and unpinning •



PD

Suggest Documents