Phase measurement of a segmented wave front using PISton and TILt interferometry (PISTIL) Maxime Deprez, Benoit Wattellier, Cindy Bellanger, Laurent Lombard, Jerôme Primot
To cite this version: Maxime Deprez, Benoit Wattellier, Cindy Bellanger, Laurent Lombard, Jerôme Primot. Phase measurement of a segmented wave front using PISton and TILt interferometry (PISTIL). Optics Express, Optical Society of America, 2018, 26 (5), page 5212-5224. .
HAL Id: hal-01728928 https://hal.archives-ouvertes.fr/hal-01728928 Submitted on 12 Mar 2018
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Vol. 26, No. 5 | 5 Mar 2018 | OPTICS EXPRESS 5212
Phase measurement of a segmented wave front using PISton and TILt interferometry (PISTIL) MAXIME DEPREZ,1,2,* BENOIT WATTELLIER,1 CINDY BELLANGER,2 LAURENT LOMBARD,2 AND JÉRÔME PRIMOT2 1Phasics SA, Bâtiment Explorer Parc Technologique de Saint-Aubin, Route de l’Orme des Merisiers, 91190 Saint-Aubin, France 2ONERA–The French Aerospace Lab, F-91761 Palaiseau, France *
[email protected]
Abstract: New architectures for telescopes or powerful lasers require segmented wave front metrology. This paper deals with a new interferometric wave front sensing technique called PISTIL (PISton and TILt), able to recover both piston and tilts of segment beams. The main advantages of the PISTIL technique are the absence of a reference arm and an access to the tilt information. An explanation of the principle, as well as an experimental implementation and the use of a segmented active mirror, are presented. Measurement errors of λ/200 for piston and 40 µrad for tilts have been achieved, well beyond performances requested for the above mentioned applications. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (010.1080) Active or adaptive optics; (010.7350) Wave-front sensing; (120.3180) Interferometry; (120.5050) Phase measurement; (140.3298) Laser beam combining; (350.1260) Astronomical optics.
References and links 1. 2. 3. 4. 5.
6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
https://www.eso.org/sci/facilities/eelt G. Chanan, M. Troy, F. Dekens, S. Michaels, J. Nelson, T. Mast, and D. Kirkman, “Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm,” Appl. Opt. 37(1), 140–155 (1998). G. Mourou, B. Brocklesby, T. Toshiki, and J. Limpert, “The future is fiber accelerators,” Nat. Photonics 7(4), 258–261 (2013). M. Deprez, C. Bellanger, L. Lombard, B. Wattellier, and J. Primot, “Piston and tilt interferometry for segmented wavefront sensing,” Opt. Lett. 41(6), 1078–1081 (2016). K. Dohlen, M. Langlois, P. Lanzoni, S. Mazzanti, A. Vigan, L. Montoya, E. Hernandez, M. Reyes, I. Surdej, and N. Yaitskova, “ZEUS: a cophasing sensor based on the Zernike phase contrast method,” Proc. SPIE 6267, 626734 (2006). S. Esposito, E. Pinna, A. Puglisi, A. Tozzi, and P. Stefanini, “Pyramid sensor for segmented mirror alignment,” Opt. Lett. 30(19), 2572–2574 (2005). T. K. Korhonen, “Interferometric method for optical testing and wavefront error sensing,” Proc. SPIE 0444, Advanced Technology Optical Telescopes I (1983). R. Penrose and J. A. Todd, “A generalized inverse for matrices,” Math. Proc. Camb. Philos. Soc. 51(3), 406–413 (1955). M. G. Löfdahl and H. Eriksson, “Algorithm for resolving 2π ambiguities in interferometric measurements by use of multiple wavelengths,” Opt. Eng. 40(6), 984–990 (2001). B. Toulon, J. Primot, N. Guérineau, R. Haïdar, S. Velghe, and R. Mercier, “Step-selective measurement by grating-based lateral shearing interferometry for segmented telescopes,” Opt. Commun. 279(2), 240–243 (2007). M. Takeda, H. Ina, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72(1), 156–160 (1982). J.-C. Chanteloup and M. Cohen, “Compact high resolution four wave lateral shearing interferometer,” Proc. SPIE 5252, 5252 (2004). W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70(8), 998– 1006 (1980). http://www.irisao.com/ http://www.jai.com A. Helmbrecht, T. Juneau, M. Hart, and N. Doble, “Performance of a high-stroke segmented MEMS deformablemirror technology,” Proc. SPIE 6113, 61130L (2006). R. K. Tyson, M. Scipioni, and J. Viegas, “Generation of an optical vortex with a segmented deformable mirror,” Appl. Opt. 47(33), 6300–6306 (2008).
#309954 Journal © 2018
https://doi.org/10.1364/OE.26.005212 Received 17 Nov 2017; revised 19 Jan 2018; accepted 20 Jan 2018; published 21 Feb 2018
Vol. 26, No. 5 | 5 Mar 2018 | OPTICS EXPRESS 5213
18. A. Norton, D. Gavel, and D. Dillon, “High-power visible-laser effect on a 37-segment Iris AO deformable mirror,” Proc. SPIE 7595, 759506 (2010). 19. http://phasicscorp.com/ 20. J. Le Dortz, A. Heilmann, M. Antier, J. Bourderionnet, C. Larat, I. Fsaifes, L. Daniault, S. Bellanger, C. Simon Boisson, J.-C. Chanteloup, E. Lallier, and A. Brignon, “Highly scalable femtosecond coherent beam combining demonstrated with 19 fibers,” Opt. Lett. 42(10), 1887–1890 (2017). 21. L. Daniault, S. Bellanger, J. Le Dortz, J. Bourderionnet, E. Lallier, C. Larat, M. Antier-Murgey, J.-C. Chanteloup, A. Brignon, C. Simon-Boisson, and G. Mourou, “XCAN – A coherent amplification network of femtosecond fiber-chirped-pulse amplifiers,” Eur. Phys. J. Spec. Top. 224(13), 2609–2613 (2015).
1. Introduction New applications using segmented wave fronts appeared recently in several projects. One is the new generation of telescopes for astronomy where one of the best known is the E-ELT [1]. Composed by segmented mirrors (up to 800), the reconstituted primary mirror need a step of co-phasing [2] to retrieve a high quality image. Other field where segmented wave fronts emerge is the new generation of high energy and high repetition rate lasers based on the combination of smaller individually amplified laser fibers as proposed, for example, for LaserWakeField Acceleration (LWFA) [3]. These two applications require a wave front sensor to measure pistons and tilts of a wave front segmented into a Hexagonal or Cartesian mesh. Due to the difference between astronomy field (turbulence, few photons) and laser field (negligible high orders, high power), this paper will be focus on coherent combining of fibers. In particular case of laser field, the set-up must be fast, typically in the kHz range, to reach a real-time correction. It must also address a high dynamic range, up to 100 λ with a piston measurements error below λ