Sensors 2011, 11, 886-904; doi:10.3390/s110100886 OPEN ACCESS
sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Supporting Information
Porphyrin-Embedded Silicate Materials for Detection of Hydrocarbon Solvents Brandy J. Johnson *, Nicole E. Anderson, Paul T. Charles, Anthony P. Malanoski, Brian J. Melde, Mansoor Nasir and Jeffrey R. Deschamps Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, D.C. 20375, USA; E-Mails:
[email protected] (N.E.A);
[email protected] (P.T.C.);
[email protected] (A.P.M.);
[email protected] (B.J.M.);
[email protected] (M.N.);
[email protected] (J.R.D.) * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +1-202-404-6100; Fax: +1-202-767-9598. Received: 1 December 2010; in revised form: 5 January 2011 / Accepted: 13 January 2011 / Published: 14 January 2011
The supplementary data supplied here provides complete results of structural characterization and image analysis for exposure of the various materials to hexane, benzene, and toluene. A list of the metal salts used to generate metalloporphyrin variants is provided. Additional absorbance and fluorescence results and reflectance spectra are also included.
Table S1. Metal salts used in the preparation of metalloporphyrin variants. magnesium chloride yttrium (III) chloride titanium (II) chloride manganese (II) chloride iron (III) chloride cobalt (II) chloride nickle (II) chloride
copper (II) chloride zinc chloride silver chloride cadmium chloride tin (II) chloride platinum (IV) chloride gold (III) chloride
vanadium (III) bromide ruthenium (III) chloride praseodynium (III) chloride cerium (III) chloride europium (II) chloride osmium (III) chloride
Sensors 2011, 11
2
Table S2. Results of rapid screening for interaction of porphyrins with targets in solution. For C1TPP and C4TPP, results for the four selected candidates and the next four highest performers are provided. For C1S3TPP, results for the top six performers are provided. Porphyrin C1TPP
FeC1TPP
CuC1TPP
MnC1TPP
ZnC1TPP
CoC1TPP
MgC1TPP
NiC1TPP
C1S3TPP
FeC1S3TPP
NiC1S3TPP
Target Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane
Δλ 8 9 -8 -8 10 12 -10 8 7 6 7 4 8 9 8 9 8 8 9 10 12 6 6 6 -------
ΔI 0.062 0.134 -0.502 -0.462 0.145 0.222 -0.139 0.199 0.030 0.083 0.053 0.016 0.097 0.033 0.016 0.098 0.084 0.023 0.093 0.049 0.056 0.015 0.032 0.01 0.018 0.011 -0.016 0.014 --
Porphyrin C4TPP
FeC4TPP
MnC4TPP
ZnC4TPP
CoC4TPP
CuC4TPP
MgC4TPP
NiC4TPP
MnC1S3TPP
CuC1S3TPP
ZnC1S3TPP
Target Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane
Δλ 9 11 8 --10 ---9 8 -9 8 10 9 7 7 8 8 -10 9 -9 6 8 --6 8 6 --
ΔI 0.078 0.215 0.039 0.038 0.094 0.096 0.188 0.127 0.083 0.073 0.054 0.095 0.042 0.043 0.018 0.076 0.062 0.014 0.058 0.039 0.043 0.047 0.084 0.026 0.012 0.009 0.033 0.023 0.024 0.02 0.029 0.008 0.004
Sensors 2011, 11
3
Table S3. Interaction of candidate porphyrins with targets in solution. Rapid Screening Porphyrin
C1TPP
FeC1TPP
CuC1TPP
MnC1TPP
C4TPP
FeC4TPP
MnC4TPP
ZnC4TPP
Target
Δλ
ΔI
Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane Benzene Toluene Hexane
8 9 -8 -8 10 12 -10 8 7 9 11 8 --10 ---9 8 --
0.062 0.134 -0.502 -0.462 0.145 0.222 -0.139 0.199 0.030 0.078 0.215 0.039 0.038 0.094 0.096 0.188 0.127 0.083 0.073 0.054 0.095
K11 (1/M) 2.1 6.3 -1.0 -2.5 150 9.8 -10 5.1 120 2.0 0.9 1.7 17 26 13 1.0 7.1 7.3 0.7 5.5 8.0
Binding Isotherm Δ11 Peak Δ11 Trough (A/M) (A/M) 1,250 2,580 522 586 --3,500 2,540 --5,240 1,340 20,860 398 594 1,440 --19,030 18,680 178,000 12,180 3,210 2,650 65,910 42,770 76,130 43,500 107,600 32,550 -53,420 -25,380 -30,450 -132,400 -38,060 -22,720 60,900 43,500 27,680 12,690 -19,030
Sensors 2011, 11
4
4 dV/dlog(D) (cm /g)
A. N2 Sorption Isotherms 3
200
3
N2 Adsorbed (cm /g STP)
Figure S1. Structural characterization. Panel A, nitrogen sorption isotherms (DEB shifted by +240 and TM1 shifted by +250). Panel B, pore size distributions. Panel C, XRD spectra. (DEB–blue, TM1–red, Ph1–black, PhE1–green).
0.0
0.2 0.4 0.6 0.8 Relative Pressure (P/P 0 )
3 2 1 0
1.0
B. Pore Diameter Distributions
0
50
100 150 200 Pore Diameter ( )
250
300
Figure S2. BTEX binding capacity. Shown here is the amount of each BTEX component bound by the sorbents (200 mg). BTEX (209 mg—equal volumes benzene, toluene, ethylbenzene, and xylene) binding was evaluated in vapor phase.
Target Bound (mg)
30 DEB BP2 B100
0
30
60
BTEX Bound (mg)
90
20
10
0
zene
Ben
ene Tolu
ene Xyl
e
nzen ylbe h t E
Sensors 2011, 11
5
Figure S3. Dependence on concentration of the interaction between metalloporphyrins and targets in solution (benzene–red, toluene–green, hexane–blue).
Absorbance
Absorbance
C1TPP
0.08
0.04
FeC1TPP
0.08
0.04
0.00
0.00 0.00
0.04
0.08
0.12
0.16
0.00
0.04
0.08
0.16
0.12
0.16
0.12
0.16
0.08
0.04
0.04
0.00
0.00 0.00
0.04
0.08
0.12
0.16
0.00
0.04
0.08 [Target] (M)
[Target] (M)
Absorbance
C4TPP
Absorbance
0.12
CuC1TPP
MnC1TPP
Absorbance
Absorbance
0.12
0.08 [Target] (M)
[Target] (M)
0.08
0.04
0.12
FeC4TPP
0.08 0.04
0.00 0.00
0.00
0.04
0.08 [Target] (M)
0.12
0.16
0.00
0.04
0.08 [Target] (M)
Sensors 2011, 11
6
2E4
0E0
-2E4
Fluorescence Intensity
FeC 1TPP + Hexane
6E4
FeC 1TPP + Benzene
4E4 2E4 0E0 -2E4
-4E4 350
450
650 750 Wavelength (nm)
Component Value
150
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
-4E4 350
850
2.5
450
650 750 Wavelength (nm)
150
Component Value
Fluorescence Intensity
Figure S4. Interaction of FeC1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics and the dependence of RGB image color values on target concentration for the interaction of targets with FeC1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.
850
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
Sensors 2011, 11
7
6E4
1E5
Fluorescence Intensity
C1TPP + Benzene
4E4 2E4 0E0 -2E4 -4E4 -6E4 650 750 Wavelength (nm)
C1TPP + Toluene
0E0
-1E5
-2E5 350
450
650 750 Wavelength (nm)
0E0 -5E4 -1E5 350
850
Fluorescence Intensity
450
1E5
850
3E5
450
650 750 Wavelength (nm)
850
C1TPP
2E5 2E5 1E5
Benzene Hexane Toluene
5E4 0E0
0
2
4
6 8 Target (mg)
Component Value
150
10
12
14
RGB Values
100
50
0
0.0
0.5
1.0
1.5
2.0
2.5
Benzene (g/g sorbent) 150
Component Value
Fluorescence Intensity
-8E4 350
C1TPP + Hexane
5E4
RGB Values
100
50
150
Component Value
Fluorescence Intensity
Figure S5. Interaction of C1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.
100
50 RGB Values
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
2.5
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
Sensors 2011, 11
8
MnC 1TPP + Hexane
1E4 0E0 -1E4 -2E4
MnC 1TPP + Toluene
0E0 -5E3 -1E4
-3E4 -4E4 350
450
650 750 Wavelength (nm)
-2E4 350
850
MnC 1TPP + Benzene
2E4 0E0 -2E4
450
650 750 Wavelength (nm)
4E4
2E4
0E0
350
450
650 750 Wavelength (nm)
850
MnC1TPP
6E4
Benzene Hexane
-4E4 850
0
2
4
6 8 Target (mg)
Component Value
150
10
12
14
RGB Values
100
50
0
0.0
0.5
1.0
1.5
2.0
2.5
Benzene (g/g sorbent) RGB Values
100
50
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
2.5
150
Component Value
150
Component Value
Fluorescence Intensity
5E3
Fluorescence Intensity
Fluorescence Intensity
2E4
Fluorescence Intensity
Figure S6. Interaction of MnC1TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with MnC1TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated by peak fitting the excitation difference spectra.
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
Sensors 2011, 11
9
C4TPP + Toluene
6E4 4E4 2E4 0E0
Fluorescence Intensity
8E4
-2E4 -4E4 350
450
650 750 Wavelength (nm)
2E4 2E4 2E4 1E4
Toluene
8E3 4E3
850
C4TPP
0
4
8 Target (mg)
Component Value
150
12
RGB Values
100
50
0
0.0
0.5
1.0
1.5
2.0
2.5
Benzene (g/g sorbent) RGB Values
100
50
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
2.5
150
Component Value
150
Component Value
Fluorescence Intensity
Figure S7. Interaction of C4TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with C4TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences generated based on the emission difference spectra.
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
Sensors 2011, 11
10
Fluorescence Intensity
Figure S8. Interaction of FeC4TPP-embedded B100 with targets. Shown here are the changes in fluorescence characteristics, simulated images generated based on average RGB values, and the dependence of RGB image color values on target concentration for the interaction of targets with FeC4TPP-embedded B100. Changes in fluorescence intensity versus concentration are based on peak/trough differences from emission difference spectra.
4E4 2E4 0E0
450
650 750 Wavelength (nm)
2E4
0E0
FeC 4TPP + Benzene
2E4 1E4 0E0 -1E4 350
450
650
750
350
850
Fluorescence Intensity
350
650 750 Wavelength (nm)
Benzene Hexane Toluene
4E4
2E4
0
2
4
6 8 Target (mg)
Component Value
150
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
2.5
10
12
RGB Values
100
50
0 150
850
FeC 4TPP
6E4
0E0
850
450
Wavelength (nm)
Component Value
Fluorescence Intensity
FeC 4TPP + Toluene
-2E4
-2E4
0.0
0.5
1.0
1.5
2.0
2.5
Benzene (g/g sorbent) RGB Values
150
Component Value
Fluorescence Intensity
FeC 4TPP + Hexane
100
50
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
14
Sensors 2011, 11
11
Figure S9. Interaction of MnC4TPP-embedded B100 with targets. Shown here are simulated images generated based on average RGB values for FeC1TPP-embedded B100 following exposure to varying target concentrations and the dependence of RGB image color values on target concentration for the interaction of the targets with MnC4TPP-embedded B100. No changes in fluorescence were observed upon exposure of MnC4TPP-embedded B100 to the targets.
Component Value
150
RGB Values
100
50
0
0.0
0.5
1.0
1.5
2.0
2.5
Benzene (g/g sorbent) RGB Values
100
50
0
0.0
0.5
1.0
1.5
Toluene (g/g sorbent)
2.0
2.5
150
Component Value
Component Value
150
RGB Values
100
50
0
0.0
0.5
1.0
1.5
Hexanes (g/g sorbent)
2.0
2.5
Sensors 2011, 11
12
Figure S10. Reflectance spectra. Spectra for the seven different colors used for conversion from RGB to reflectance values. For the reason of solution convergence, the algorithm ignores scaling issues when converting from spectra to RGB leading to some reflectance values greater than 1. A penalty factor is added to the cost function whenever any value of the spectrum exceeds 1. 1.5
1.0
0.5
0.0 400
500
600
700
800
700
800
Wavelength (nm) 1.5
1.0
0.5
0.0 400
500
600
Wavelength (nm)
Magenta White Cyan Yellow Red Green Blue
Sensors 2011, 11
13
Figure S11. Simulated spectra for interaction of C1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S5) using the color spectra from Figure S10. 200
200
C1TPP + Benzene
150
150 100
100
0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg
50 0
C1TPP + Toluene
400
50
500 600 Wavelength (nm)
200
0 mg 1.3 mg 2.6 mg c1 5.2 mg 10.4 mg
700
800
0
400
500 600 Wavelength (nm)
700
800
C1TPP + Hexanes
150 100
0 mg 1.0 mg 2.0 mg c1 3.9 mg 7.9 mg
50 0
400
500 600 Wavelength (nm)
700
800
Figure S12. Simulated spectra for interaction of FeC1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S4) using the color spectra from Figure S10. 200
FeC1TPP + Hexanes
150
0 mg 1.3 mg 2.6 mg fec1 5.2 mg 10.4 mg
150
100
FeC1TPP + Toluene
100 0 mg 1.0 mg 2.0 mg fec1 3.9 mg 7.9 mg
50 0
200
400
500 600 Wavelength (nm)
50
700
800
0
400
500 600 Wavelength (nm)
700
800
Sensors 2011, 11
14
Figure S13. Simulated spectra for interaction of MnC1TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S6) using the color spectra from Figure S10. 200 150 100
0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg
MnC 1TPP + Benzene
MnC 1TPP + Toluene
100 50
400
500 600 Wavelength (nm)
200
700
800
MnC 1TPP + Hexanes 0 mg 1.0 mg 2.0 mg 2.9 mg 3.9 mg 7.9 mg
150 100 50 0
0 mg 1.3 mg 2.6 mg mnc1 5.2 mg 10.4 mg
150
50 0
200
400
500 600 Wavelength (nm)
700
800
0
400
500 600 Wavelength (nm)
700
800
Sensors 2011, 11
15
Figure S14. Simulated spectra for interaction of C4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S7) using the color spectra from Figure S10. 200
0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg
150
200
C4TPP + Benzene
150
100
100
50
50
0
400
200
500 600 Wavelength (nm)
700
800
C4TPP + Hexanes
150 100
0 mg 1.0 mg 2.0 mg c4 3.9 mg 7.9 mg
50 0
400
0 mg 1.3 mg 2.6 mg c4 5.2 mg 10.4 mg
500 600 Wavelength (nm)
700
800
0
400
C4TPP + Toluene
500 600 Wavelength (nm)
700
800
Sensors 2011, 11
16
Figure S15. Simulated spectra for interaction of FeC4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S8) using the color spectra from Figure S10. 200 150 100
FeC4TPP + Benzene
0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg
FeC4TPP + Toluene
100 50
400
500
600
700
800
Wavelength (nm)
200 0 mg 1.0 mg 2.0 mg fec4 3.9 mg 7.9 mg
150
FeC4TPP + Hexanes
100 50 0
0 mg 1.3 mg 2.6 mg fec4 5.2 mg 10.4 mg
150
50 0
200
400
500 600 Wavelength (nm)
700
800
0
400
500 600 Wavelength (nm)
700
800
Sensors 2011, 11
17
Figure S16. Simulated spectra for interaction of MnC4TPP-embedded B100 (5 mg) with the targets. Shown here are reflectance spectra generated based on RGB values (Figure S9) using the color spectra from Figure S10. 200 150 100
0 mg 1.3 mg 2.6 mg 3.9 mg 5.3 mg 10.5 mg
MnC 4TPP + Benzene
MnC 4TPP + Toluene
100 50
400
500 600 Wavelength (nm)
200
700
800
MnC 4TPP + Hexanes 0 mg 1.0 mg 2.0 mg 2.9 mg 3.9 mg 7.9 mg
150 100 50 0
0 mg 1.3 mg 2.6 mg mnc4 5.2 mg 10.4 mg
150
50 0
200
400
500 600 Wavelength (nm)
700
800
0
400
500 600 Wavelength (nm)
700
800