postprint

12 downloads 111 Views 263KB Size Report
UPDATED 22 AUGUST, 2013. To appear in: Oxford Handbook of Perceptual Organization. Oxford University Press. Edited by Johan Wagemans. 1. Introduction.
The  temporal  organization  of  perception   A.  Holcombe  

  UPDATED  22  AUGUST,  2013  

To  appear  in:   Oxford  Handbook  of  Perceptual  Organization   Oxford  University  Press   Edited  by  Johan  Wagemans  

   

1.  Introduction   Visual   perception   textbooks   and   handbooks   customarily   do   not   include   sections   devoted   to   the   topic   of   time   perception   (the   exception   is   van   de   Grind,   Grusser,   &   Lunkenheimer,   1973).   But   that   may   soon   change,   with   this   chapter   a   sign   of   the   times.   In   journals,   the   literature   on   temporal   factors   has   grown   very   rapidly,  and  reviews  in  journals  of  time  perception  have  proliferated  (Vroomen  &  Keetels,  2010;  Holcombe,   2009;   Wittmann,   2011;   Eagleman,   2010;   Grondin,   2010;   Nishida   &   Johnston,   2010;   Spence   &   Parise,   2010).   In  an  attempt  to  restrict  this  review  to  fundamental  issues,  only  simple  judgments  of  temporal  order  will  be   considered.  The  rapidly  growing  literature  on  duration  judgments  will  not  be  discussed.     Interpreting  experimental  results  requires  assumptions.  For  temporal  experience,  it   is  tempting  to  think  of   experience   as   forming   a   single   timeline,   with   all   sensations   mapped   to   points   or  segments   of   that   timeline.   This   assumption   is   often   implicit   in   the   literature,   together   with   another   assumption   to   allow   for   the   experience  of  simultaneity:  that  sensations  closer  than  a  certain  interval,  the  duration  of  the  “simultaneity   window”,  are  perceived  as  simultaneous  (Meredith  et  al.,  1987).     Yet  it  is  far  from  clear  whether  experience  comprises  a  single  ordered  timeline.  This  chapter  will  question   this   assumption   and   ultimately   suggest   that   our   experience   is   frequently   the   product   of   organizational   processes   whose  purpose  is  not  to  create  an  ordered  timeline.   Rather,  simpler  grouping   and   segmentation   processes  can  be  more  important,  with  ordering  sometimes  only  a  byproduct  or  not  occurring  at  all.     Similar  issues  have  arisen  in  the  study  of  spatial  perception.  Marr  (1982)  suggested  that  the  visual  system   delivers   a   representation   of   the   ordered   3-­‐D   layout   of   all   the   objects   and   surfaces   in   a   scene.   This   is   analogous   to   the   ordered   timeline   view   of   temporal   experience.   The   evidence   from   space   suggests   that   visual  representation  may  be  more  impoverished  than  what  Marr  envisioned  (Koenderink,  Richards,  &  van   Doorn,  2012)  but  still  provides  ordered  and  metric  depth  relations  (van  Doorn  et  al.,  2011).  Whether  our   timeline  of  experience  achieves  the  analogous  level  of  organization,  a  consistent  ordering,  remains  unclear.     One   alternative   to   a   well-­‐ordered   timeline   is   that   we   sometimes   experience   objects   and   qualities   with   undefined   temporal   relationships.   That   is,   there   may   be   some   percepts   for   which   we   do   not   have   an   experience  of  before  or  after,  and  where  the  explanation  for  this  failure  is  not  simply  that  the  two  stimuli   fall   within   the   simultaneity   window.   A   possible   example   is   provided   in   the   animations   showcased   at   http://www.psych.usyd.edu.au/staff/alexh/research/colorMotionSimple  .       In   those   animations,   a   field   of   dots   alternates   between   leftward   motion   and   rightward   motion.   In   synchrony  with  the  motion  direction  alternation,  the  dots’  color  alternates  between  red  and  green.  Yet  at   alternation   rates   above   about   six   times   per   second,   one   is   unable   to   judge   the   pairing   of   motion   and   color,   for   example   whether   the   leftward   motion   is   paired   with   red   or   with   green   (Arnold,   2005;   Holcombe   &   Clifford,  2012).  Yet  this  rate  is  slow  enough  that  the  successive  colors  and  motions  should  not  fall  inside  the   same  simultaneity  window  (Wittmann,  2011).     1  

 

A  potentially  related  phenomenon  was  reported  by  William  James  in  1890.  In  Chapter  15  of  his  Principles  of   Psychology,  James  claimed  that   “When  many  impressions  follow  in  excessively  rapid  succession  in  time,  although  we  may  be  distinctly   aware  that  they  occupy  some  duration,  and  are  not  simultaneous,  we  may  be  quite  at  a  loss  to  tell  which   comes  first  and  which  last”.     Unfortunately,  James  provided  no  examples,  so  we  do  not  know  to  what  he  was  referring.  Some  detailed   descriptions  of  dissociations  of  temporal  order  judgments  and  asynchrony  judgments  have  been  provided   by   Jaśkowski   and   others   (Jaśkowski   1991;   Allan   1975),   however   these   may   be   explainable   by   decision   criterion  differences  for  the  two  tasks  of  a  few  tens  of  milliseconds.  A  temporal  order  deficit  that  seems  less   likely   to   be   explained   by   decision   criteria   differences   was   reported   by   Holcombe,   Kanwisher,   &   Treisman   (2001),  and  can  be  experienced  here:     http://www.psych.usyd.edu.au/staff/alexh/research/MOD/demo.html.   When   four   letters   are   presented   serially,   each   for   about   200   ms,   and   the   sequence   repeats,   observers   are   typically   unable   to   report   their   order.  Yet  if  the  sequence  is  presented  just  once,  the  order  of  the  items  is  easily  perceived  (for  a  possible   auditory  analogue,  see  Warren  et  al.,  1969).     What  are  the  implications  of  this  phenomenon  for  the  nature  of  temporal  experience?  It  may  mean  that   temporal   experience   is   less   organized   than   spatial   experience.   Ordering   seems   more   integral   to   our   representations  of  space,  which  benefit  from  the  retinotopic  organization  of  visual  cortices.  The  positions   of   items   on   the   retina   are   readily   available   thanks   to   this   topography   (although   determining   their   locations   in   external   space   are   another   matter,   requiring   more   mysterious   mechanisms).   This   organization   also   affords   parallel   processing   of   a   large   range   of   locations.   Orientation   and   boundary   processing   as   well   as   local   motion   processing   occur   at   many   locations   simultaneously,   providing   some   spatial   relationships   preattentively  and  continuously  (e.g.  Levi,  1996;  Forte,  Hogben,  &  Ross,  1999).  At  a  larger  scale,  perception   of   certain   global   forms   is   based   on   massively   parallel   processing   (Clifford,   Holcombe,   &   Pearson,   2004),   which  may  also  be  true  of  perceiving  the  location  of  the  centroid  of  a  large  array  (Alvarez,  2011).     Although  the  visual  brain  has  retinotopy,  it  does  not  seem  to  have  chronotopy.  That  is,  no  brain  area  seems   to  include  an  array  of  neurons  that  systematically  respond  to  different  times,  arranged  in  temporal  order.  A   possible   exception   is   neurons   selective   for   temporal   rank   order   in   movement-­‐related   areas   of   cortex   (Berdyyeva   &   Olson,   2010),   but   as   far   as   we   know   these   are   not   involved   in   time   perception.   Our   knowledge  of  the  relative  times  of  stimuli  surely  suffers  for  lack  of  a  chronotopic  representation.  Not  only   does  the  lack  of  chronotopy  suggest  the  absence  of  a  readily  available  ordered  temporal  array,  it  may  also   mean   less   parallel   processing   of   distinct   times   than   of   distinct   locations.   It   is   difficult   to   imagine   that   the   brain   gets   by   without   any   parallel   temporal   processing,   and   without   any   sort   of   temporally   structured   buffer.   Smithson   &   Mollon   (2006)   and   Smith   et   al.   (2011)   have   provided   some   evidence   for   a   temporally   structured   buffer   in   vision,   but   overall   temporal   processing   seems   less   pre-­‐organized   than   spatial   processing.     Retinotopy   (or   chronotopy)   is   not   a   full   solution   to   the   problem   of   perceiving   spatial   (or   temporal)   relationships,   even   ignoring   the   complication   of   movements   of   the   eyes   and   body.   There   are   aspects   of   spatial  perception  that  are  not  achieved  by  specialised  parallel  processing,  and  those  solutions  might  also   be  used  in  temporal  processing.     Two  recent  pieces  of  research  suggest  that  some  spatial  relationships  become  available  via  serial,  one-­‐by-­‐ one   processing,   through   shifts   of   attention   (Holcombe,   Linares   &   Vaziri-­‐Pashkam,   2011;   Franconeri   et   al.,   2011).  With  a  moving  spatial  array,  the  Holcombe  et  al.  (2011)  study  documented  an  inability  to  apprehend   the   spatial   order   of   the   items   in   the   array   when   the   items   moved   faster   than   the   speed   limit   on   attentional   tracking.   This,   together   with   a   telling   pattern   of   errors,   indicated   that   a   time-­‐consuming   shift   of   spatial   attention   was   necessary   to   determine   the   spatial   relationships   among   the   stimuli.   Converging   evidence   2  

 

from  Franconeri  et  al.  (2011)  suggests  that  shifts  of  spatial  attention  are  also  involved  in  perceiving  spatial   relationships  among  static  stimuli.  Attention  may  serve  to  select  stimuli  of  interest  for  the  limited-­‐capacity   processing  that  determines  temporal  and  spatial  relations.     Some   aspects   of   the   rich   spatial   layout   we   enjoy   are   thus   a   result   of   accumulated   representations   from   multiple   shifts   of   attention   (see   Cavanagh   et   al.,   2010   for   related   ideas).   In   this   dependence   on   serial   processing,  spatial  experience  may  be  similar  to  temporal  experience.  But  even  these  attention-­‐mediated   aspects  of  spatial  perception  seem  to  capitalize  on  the  parallel  processing  advantage  of  retinotopy.  Shifting   attention   involves   moving   from   activating   one   set   of   location-­‐labeled   neurons   to   another   set   of   location-­‐ labeled  neurons  (assuming  local  sign  has  been  set  during  the  development  of  the  organism-­‐  Lotze,  1881).   This  may  help  to  calculate  the  vector  of  the  attention  shift,  which  then  indicates  the  relative  location  of  the   two  regions.     Although   it   is   limited   by   the   absence   of   chronotopy,   temporal   processing   does   reap   some   benefits   from   retinotopy.   Thanks   to   retinotopy,   motion   detectors   can   operate   in   parallel   across   the   visual   field.   The   motion  direction  they  compute  indicates  the  temporal  order  of  stimuli.     It  has  also  been  suggested  that  retinotopy  allows  the  visual  system  to  compute  in  parallel  whether  stimuli   across   the   visual   field   change   together   (in   synchrony)   or   not.   Some   investigators   suggested   that   this   occurs   not  just  for  the  luminance  transients  known  to  engage  the  motion  system,  but  also  direction  and  contrast   changes   (Usher   &   Donnelly,   1998;   Lee   &   Blake,   1999).   Follow-­‐up   work   however   supported   alternative   explanations   (Dakin   &   Bex,   2002;   Beaudot,   2002;   Farid   &   Adelson,   2001;   Farid,   2002).   The   issue   remains   unsettled,  but  the  continued  absence  of  good  evidence  for  parallel  temporal  processing  feeds  the  suspicion   that   perception   of   relative   timing   is   serial   and   possibly   attention-­‐mediated.   Temporal   processing   may   be   restricted   to   what   can   be   processed   serially   in   the   short   interval   before   it   disappears   from   our   sensory   buffer.     In  some  ways  even  better  than  chronotopy  would  be  time-­‐stamping  of  all  stimuli  by  an  internal  clock.  The   time   stamp   might   be   provided   by   a   dedicated   internal   clock   comprising   a   pacemaker   and   counter   (Treisman,  1963;  Ivry  &  Schlerf,  2008)  or  a  neural  network  with  intrinsic  dynamics  and  an  internal  model  of   the  network  that  translates  the  network  state  into  the  current  time  (Karmarkar  &  Buonomano,  2007).  With   time-­‐stamping,   relative   timing   of   two   events   is   judged   by   simply   comparing   the   timestamps   of   the   two   events,   just   as   is   done   by   desktop   computers   with   files   on   a   hard   drive.   If   this   were   automatic   and   preattentive,   then   we   might   have   better-­‐organized   temporal   experience   than   spatial   experience.   But   there   is   little   or   no   evidence   for   extensive   time-­‐stamping.   Instead   the   system   may   rely   on   less   reliable   information,   like   the   relative   activation   of   different   stimulus   types.   Because   activation   in   cortex   and   presumably  short-­‐term  memory  typically  decreases  over  time,  the  most  active  item  is  likely  to  be  the  last   one   presented,   the   second   most   active   the   item   presented   before,   etc.   This   “recency”   scheme   is   subject   to   distortion  as  other  factors  like  attention  can  affect  which  item  is  most  active  (Reeves  &  Sperling,  1986).  The   use   of   relative   activation   might   also   be   thwarted   with   repeating   displays   that   result   in   saturation   of   the   activation  of  multiple  items.       An  earlier  paragraph  described  the  alternating-­‐motion  display  for  which  one  cannot  determine  which  color     goes  with  which  motion  direction     (http://www.psych.usyd.edu.au/staff/alexh/research/colorMotionSimple).   The   repetition   of   this   display   may   saturate   in   memory   the   activation   levels   of   the   colors   and   motions,   preventing   the   use   of   relative   activation  levels  to  pair  the  features.  Another  reason  feature  pairing  may  be  difficult  here  is  because  pairing   ordinarily  involves  using  salient  temporal  transients  to  temporally  segment  the  dynamic  scene  (Holcombe   &   Cavanagh,   2008;   Nishida   &   Johnston,   2010;   Nishida   &   Johnston,   2002).   The   unusual   uninterrupted   motion   of   the   alternating-­‐motion   display   results   in   continual   transients   that   swamp   the   transient   associated   with   the   color   change,   and   without   other   cues   to   rapidly   guide   attention   to   the   transients   of   3  

 

interest   (Holcombe   &   Cavanagh,   2008),   temporal   experience   of   the   color   and   motion   remains   poorly   organized.     Only  when  the  rate  is  slow  can  attention  select  an  individual  phase  of  the  cycle,  and  that  selection  returns   two  features,  indicating  they  occurred  at  the  same  time  (Holcombe  &  Cavanagh,  2008).  This  is  like  spatial   visual   search,   for   which   Treisman   &   Gelade   (1980)   suggested   that   attentional   mediation   is   required   to   perceive   that   a   color   and   shape   originate   from   the   same   location.   For   time,   strong   luminance   transients   serve   to   engage   the   selective   mechanism   (perhaps   attention,   or   a   “when”   pathway)   that   can   make   temporal  relations  explicit.     Thus   determination   of   temporal   order   and   simultaneity   is   best   when   just   two   punctate,   discrete   events   with  strong  transients  are  presented.  In  the  remainder  of  this  chapter  we  will  set  aside  the  segmentation   and  processing  capacity  problems  created  by  complex  scenes.  For  the  ideal  situation  of  only  two  stimuli,  we   will  examine  how  sophisticated  visual  temporal  processing  can  be.       There  is  an  important  basic  theoretical  distinction  between  the  time  a  percept  is  created  and  at  what  time   the  observer  experiences  the  event  to  have  taken  place.  The  analogous  distinction  in  spatial  perception  is   uncontroversial,   with   the   phrase   “where   an   object   is   perceived”   taken   to   mean   “where   an   object   is   perceived  to  be”  rather  than  where  in  the  brain  the  percept  is  created.  Yet  if  time  is  substituted  for  space   and  we  write  “when  an  object  is  perceived”,  this  will  be  interpreted  by  many  as  the  time  the  percept  was   created   rather   than   the   time   the   percept   refers   to.   This   is   the   issue   of   brain   time   versus   event   time— whether   the   brain   processes   events   such   that   when   a   percept   arises   is   not   identical   to   the   time   it   is   experienced  as  having  occurred  (Dennett  &  Kinsbourne  1995).     Event   time   advocates   have   affirmed   the   distinction   and   moreover   claimed   that   the   system   routinely   considers   the   time   of   sensory   signals   together   with   other   cues   to   infer   the   time   of   the   corresponding   stimuli  in  the  external  world.  But  this  conclusion  may  be  premature.       2.  Brain  time  theory  versus  event  time  theory     Conceivably,  there  is  no  distinction  between  when  an  object  is  perceived  and  the  time  that  it  is  perceived   to   refer   to.   In   other   words,   the   time   a   percept   occurs   may   be   identical   to   the   time   that   its   object   is   perceived  to  have  occurred.  This  possibility  is  referred  to  as  the  brain  time  theory  of  temporal  perception.   As  Köhler  put  it  in  1947,  “Experienced  order  in  time  is  always  structurally  identical  with  a  functional  order   in   the   sequence   of   correlated   brain   processes”   (p.62)   (Köhler’s   statement   might   also   allow   stretching   of   time  that  preserves  order,  but  we  will  put  aside  this  complication).     According   to   this   brain   time   theory,   an   event   is   perceived   as   occurring   when   the   signals   it   evokes   in   the   senses   reach   the   processes   responsible   for   consciousness.   Some   signals   may   take   longer   than   others   to   travel   from   the   receptors   to   the   processes   responsible   for   consciousness,   and   this   will   result   in   temporal   illusions,   because   there   is   no   processing   that   could   compensate   for   delays.   That   is,   signals   with   long   latencies  will  be  perceived  as  having  occurred  later  than  signals  with  short  latencies.     The   alternative   to   brain   time   theory   is   that   some   property   of   signals   other   than   when   they   arrive   affects   when  the  associated  events  are  perceived  to  have  taken  place.  The  brain  may  have  adaptive  processes  that   result  in  perceived  timing  being  closer  to  veridical  than  they  would  be  otherwise.  But  some  question  this   supposition,   among   them   Moutoussis   (2012),   writing   that   “the   idea   of   the   perception   of   the   time   of   a   percept   being   different   to   the   time   that   the   actual   percept   is   being   perceived,   seems   quite   awkward”   (Moutoussis,  2012,  p.4).     4  

 

To  other  thinkers  (e.g.  Dennett  &  Kinsbourne,  1992),  this  would  be  no  more  peculiar  than  spatial  illusions,   wherein  the  perceived  location  of  an  object  is  dissociated  from  its  retinal  location  (e.g.  Roelofs,  1935;  de   Valois   &   de   Valois,   1991).   Time   perception   may   be   as   much   a   constructive,   interpretational   process   as   is   space  perception.  But  to  date,  the  evidence  is  that  time  perception  does  not  adaptively  take  into  account   various  cues  to  correct  timing  as  comprehensively  as  spatial  perception  uses  spatial  cues.     2.1.  Event  time  theory  and  simultaneity  constancy   Event   time   refers   to   the   time   that   events   occur   in   the   environment   rather   than   the   time   that   they   are   processed  by  various  stages  of  the  brain.  Event  time  theory  is  the  idea  that  the  perceived  timing  of  events   do   not   always   correspond   to   brain   time,   but   rather   the   brain   may   effectively   label   a   percept   as   referring   to   a  time  different  from  when  the  percept  became  conscious.  This  could  result  in  the  perceived  time  of  events   being  more  accurate.  For  the  brain,  there  are  two  aspects  to  the  problem  of  recovering  event  time.     A   first   aspect   is   the   different   latencies   and   processing   times   that   re-­‐order   the   temporal   sequence   of   signals   as   they   ascend   the   neural   processing   hierarchy.   This   is   referred   to   as   the   differential   neural   latency   problem.    The  second  aspect  is  the  different  times  signals  require  to  travel  from  their  physical  sources  to   the   receptors   of   the   organism.   For   example,   the   light   emanating   from   an   object   will   arrive   at   the   eye   sooner  than  its  sound  will  arrive  at  the  ear.  This  is  the  problem  of  differential  external  latencies.     In   the   face   of   these   two   differential   latency   problems,   recovering   actual   event   time   would   be   a   major   achievement.  It  is  sometimes  claimed  that  the  brain  does  accomplish  this  feat  (Kopinska  &  Harris,  2004).   Just   as   the   visual   system   recovers   the   correct   spatial   size   of   external   objects   despite   wide   variation   in   retinal   extent   (size   constancy),   the   brain   may   also   recover   the   correct   time   of   events—“simultaneity   constancy”  (Kopinska  &  Harris,  2004).       2.2.  Brain  time  rules  the  day,  and  the  minute   At   the   very   coarse   time   frame   of   years,   days,   or   hours,   it’s   clear   that   brain   time   rules   and   simultaneity   constancy  fails.  At  night,  when  we  look  up  at  the  sky  and  see  stars,  all  the  light  we  receive  was  caused  by   events  that  took  place  years  ago.  But  our  brain  does  not  compensate  for  this  travel  time,  and  we  perceive   the   stars’   appearance   as   being   their   appearance   at   the   present,   rather   than   of   years   ago.   When   we   look   at   the   moon,   we   see   what   it   was   1.3   seconds   ago,   but   again   the   brain   does   not   compensate   for   this   lag.   Clearly  any  “simultaneity  constancy”  or  compensation  for  differential  latencies  is  only  partial  at  best.  It  is   unreasonable  to  expect  the  brain  to  know  the  distance  of  heavenly  bodies,  but  more  than  this,  absolutely   no   examples   of   evidence   for   simultaneity   constancy   on   the   scale   of   minutes   or   longer   has   ever   been   offered   (as   far   as   I   know).   On   the   scale   of   minutes,   hours,   and   days,   brain   time   rules.   At   the   finer   sub-­‐ second  timescale  however,  some  researchers  have  provided  evidence  for  event  time  recovery.     2.3.  Does  brain  time  rule  the  split-­‐second?   Some   researchers   suggest   that   the   brain   generally   does   reconstruct   event   times,   at   least   at   the   sub-­‐second   scale  (Harris  et  al.,  2010).  Eagleman  writes  that  “the  brain  can  keep  account  of  latencies”  (Eagleman,  2010).   His  theory  is  that  the  brain  waits  until  the  slowest  signals  arrive,  and  then  reconstructs  the  order  of  events,   compensating  for  the  latencies  of  their  neural  signals.     The   full   range   of   evidence   however   includes   some   conspicuous   failures   of   the   system   to   account   for   latencies,   even   at   the   subsecond   scale   and   with   good   cues   available.   These   failures   discard   the   strong   form   of   the   event   time   theory—that   latencies   are   comprehensively   accounted   for.   Following   our   discussion   of   that,   examination   of   evidence   for   successful   event   time   reconstruction   will   lead   to   rejection   of   the   other   extreme,  brain  time  theory,  so  we  will  conclude  that  partial  compensation  occurs.     2.4.  Failures  to  compensate  for  differential  neural  and  external  latencies   5  

 

The   strength   of   a   sensory   signal   can   have   a   dramatic   effect   on   its   neural   latency.   The   neural   signals   evoked   by   a   high-­‐contrast   flash   reach   visual   cortex   tens   of   milliseconds   quicker   than   a   low-­‐contrast   one   (Maunsell,   Ghose  et  al.  1999;  Oram  et  al.  2002).  This  effect  is  very  consistent  and  Oram  et  al.  (2002)  reported  that  also   at  higher-­‐order  cortical  areas  such  as  STS,  stimulus  contrast  is  the  major  determinant  of  response  latency.     Successful  compensation  would  amount  to  low-­‐contrast  flashes  being  perceived  at  the  same  time  as  high-­‐ contrast  flashes.  But  if  people  are  asked   to   report   which   of   two   simultaneous   flashes   of   different   contrasts   came   first,   they   more   frequently   report   the   higher-­‐contrast   one   (Allik   &   Kreegipuu,   1999;   Alpern,   1954;   Arden  &  Weale,  1954;  Exner,  1875).  It  is  natural  to  conclude  that  high-­‐contrast  flashes  are  perceived  before   low-­‐contrast   flashes,   constituting   a   failure   of   event   time   perception.   But   that   conclusion   would   be   premature,   because   the   greater   salience   of   the   high-­‐contrast   stimulus   may   bias   decisions   regarding   temporal   order,   even   if   perception   is   unaffected   (Yarrow   et   al.,   2011;   Schneider   &   Bavelier,   2003).   Such   biases  complicate  the  interpretation  of  much  of  the  literature  on  temporal  judgments.  Fortunately,  more   convincing  evidence  comes  from  two  other  illusions  where  decisional  biases  are  unlikely  to  be  responsible   for  the  phenomenon.     The  first  of  these  illusions  was  described  by  Hess  in  1904.  Hess  and  his  subjects  viewed  two  patches,  one   directly  above  the  other  while  they  both  moved  from  left  to  right.  When  one  patch  was  dimmer  than  the   other,  it  appeared  to  lag  the  brighter  patch,  suggesting  a  difference  in  perceptual  latency.  The  spatial  size   of   the   lag   seems   to   scale   with   speed   (Wilson   &   Anstis,   1969),   consistent   with   a   constant   temporal   delay   between   two   stimuli   with   a   particular   luminance   difference.   And   the   delay   is   substantial,   around   a   few   dozen   milliseconds   per   log   unit   difference   in   luminance   (Wilson   &   Anstis,   1969;   White,   Linares,   &   Holcombe,  2008).     Eagleman   (2010)   argued   that   the   Hess   effect   displays   were   one   of   only   a   few   special   cases   where   the   brain   cannot   succeed   in   accounting   for   differential   latencies.   Eagleman   argued   that   it   was   a   very   special   case   indeed,  suggesting  that  the  Hess  effect  only  occurs    “when  one  uses  a  neutral  density  filter  over  half  the   screen   –   simply   reducing   the   contrast   of   a   single   dot   is   insufficient”.   Contrary   to   this   proposal   however,   White,   Linares   &   Holcombe   (2008)   for   example   obtained   a   Hess   effect   without   changing   the   background   luminance.  And  for  the  additional  illusions  reviewed  below,  stimuli  also  were  typically  not  presented  in  a   larger  filtered  region.     The   perceptual   correlate   of   the   intensity-­‐related   neural   delay   also   manifests   in   motion   signal   processing.   Roufs  (1963)  and  Arden  &  Weale  (1954)  presented  two  flashes  simultaneously  and  side-­‐by-­‐side  on  a  dark   background.     When   one   flash   was   brighter   than   the   other,   motion   was   perceived   from   the   brighter   flash   to   the   dimmer   flash.   Stromeyer   &   Martini   (2003)   documented   a   similar   effect   for   two   gratings   differing   in   contrast  rather  than  luminance.  Motion  was  perceived  in  the  direction  from  the  higher-­‐contrast  grating  to   the   lower-­‐contrast   grating,   consistent   with   physiological   evidence   for   latency   decreasing   with   contrast   as   well   as   with   luminance   (Shapley   &   Victor,   1978;   Benardete   &   Kaplan,   1999).   A   number   of   other   motion   illusions  are  also  consistent  with  the  effect  of  luminance  or  contrast  on  latency  (Purushothaman  et  al,  1998;   Ogmen,   Patel,   Bedell,   &   Camuz,   2004;   Lappe   &   Krekelberg,   1998;   White,   Linares,   &   Holcombe,   2008;   Kitaoka  &  Ashida,  2007).     An   apparent   concordance   of   physiological   latency   and   percepts   is   also   observed   for   stimuli   darker   than   the   background   versus   stimuli   brighter   than   the   background.   ON-­‐center   ganglion   cells   in   primate   retina   respond  ~5  ms  faster  than  OFF-­‐center  cells.  Correspondingly,   psychophysical  motion  nulling  experiments  in   humans   indicate   that   dark   dots   have   a   processing   latency   of   about   3   ms   shorter   than   bright   dots   (Del   Viva,   Gori,  &  Burr,  2006).       Together  these  illusions  indicate  that  brain  time  rules  when  it  comes  to  neural  latency  differences  caused   by   variations   in   luminance   or   contrast.   Unfortunately   we   cannot   exclude   the   possibility   that   the   brain   6  

 

engages   in   partial   compensation   for   the   latency   difference   while   consistently   falling   short   of   full   compensation.  But  the  size  of  the  effects   seem  similar  in  human  perceptual  studies  and  in  the  latency  of   physiological   responses   in   nonhuman   animals   (Maunsell   et   al.   1999;   Oram   et   al.   2002),   so   any   neural   accounting  for  latency  differences  must  be  woefully  under-­‐complete.     To   explain   these   phenomena,   defenders   of   the   event   time   hypothesis   may   argue   that   they   are   an   exception,  perhaps  because  these  luminance-­‐related  latency  differences  are  unimportant  to  the  organism.   But  this  argument  is  less  than  compelling,  as  explained  in  the  next  section.     2.5.  Compensation  in  action  but  not  perception?   Well-­‐timed  behavior  is  critical  when  playing  a  sport,  fighting,  or  hunting.  The  size  of  the  Hess  effect  in  the   photopic   range   is   roughly   8   ms   per   log   unit   of   luminance   (White,   Linares,   &   Holcombe,   2008).   Comparing   a   daylight-­‐illuminated  object  to  one  in  dark  shadow  (5  log  units  or  more),  then,  the  object  in  shadow  will  be   delayed  by  about  40  ms.  If  the  objects  were  moving  at  10  km/hr,  this  would  result  in  a  perceived  spatial   offset  of  11  cm.     Although   these   numbers   may   seem   small,   they   are   large   relative   to   the   accuracy   of   human   performance   in   hitting   a   ball   with   a   bat.   Even   amateurs   hitting   a   ball   with   a   bat   achieve   better   than   15   ms   resolution   (McLeod,   McLaughlin,   &   Nimmo-­‐Smith,   1985)   and   some   expert   cricket   batters   seem   to   have   2   ms   resolution   (McLeod   &   Jenkins,   1991).   The   size   of   the   Hess   effect   is   large   enough,   then,   to   substantially   impair   performance.   Its   existence   then   should   be   surprising   for   theorists   who   are   sanguine   about   the   general  ability  of  the  visual  system  to  compensate  for  latencies.     But   even   if   sensory   learning   does   not   compensate   for   delays   caused   by   low   luminance,   this   does   not   mean   that  sportsmen  are  condemned  to  miss  the  ball  when  the  sun  begins  to  set.  Sensorimotor  (as  opposed  to   sensory)   learning   may   save   the   day   (White,   Linares,   &   Holcombe,   2008;   Nijhawan,   2008).   Actions   like   hitting   a   ball   involve   mapping   the   timing   of   sensory   signals   onto   behavior.   Mappings   between   particular   luminances  and  particular  timings  could  perhaps  be  learned  thanks  to  the  feedback  involved  in  successful   action.  But  if  this  learning  does  not  occur  in  the  sensation→perception  mapping  (as  argued  in  this  chapter),   then  it  may  apply  only  to  the  perception→action  mapping.  That  is,  the  error  signal  may  not  propagate  to   the   deeper   (sensation   and   perception)   layers   of   the   system   because   they   are   farther   from   the   teaching   feedback.     2.6.  Evidence  for  event  time  reconstruction   As   reviewed   above,   luminance   contrast   has   a   consistent   effect   on   latencies   in   the   visual   system,   but   perception  does  not  seem  to  take  account  of  these  effects  for  reconstruction  of  event  time.  Let’s  consider   another   factor   that   consistently   affects   latencies:   the   sensory   modality   of   the   signal.   Auditory   signals   reach   cortex  quicker  than  visual  signals,  by  roughly  30  to  50  ms  (Regan,  1989;  Musacchia  &  Schroeder,  2009).       Yet   the   sight   and   sound   of   snapped   fingers   is   not   noticeably   out   of   sync.   This   apparent   discrepancy   between   perception   and   neural   latencies   has   been   cited   as   a   case   of   simultaneity   constancy   or   “active   editing”   of   time   (Eagleman,   2007;   2009;   2010).   The   sight   and   sound   of   snapped   fingers   may   indeed   be   typically   perceived   as   simultaneous.   This   does   not   however   imply   editing   of   event   time.   Rather,   the   perceived   simultaneity   may   simply   be   due   to   our   poor   acuity   for   perceiving   temporal   differences   or   to   a   broad  simultaneity  window.     Consider  the  relevant  sort  of  psychophysical  experiment.  These  reveal  that  although  in  many  cases  people   are   more   likely   to   judge   physically   simultaneous   sounds   and   flashes   as   simultaneous   than   as   having   occurred   at   different   times,   simultaneity   is   not   the   timing   most   likely   to   yield   a   percept   of   simultaneity.   Instead,  the  best  timing  for  perceptual  simultaneity  is,  for  most  participants,  to  present  the  flash  before  the   sound   (Stone   et   al,   2001),   consistent   with   sounds   being   processed   faster   than   flashes.   The   point   of   7  

 

subjective  simultaneity  is  the  relative  timing  value  at  which  both  responses  are  equally  likely  when  a  person   is  forced  to  choose  which  of  two  signals  was  presented  first.  The  non-­‐zero  point  of  subjective  simultaneity   suggests  that  the  differences  in  latency  were  not  entirely  compensated  for,  or  not  compensated  at  all.     Then   why   do   the   sight   and   sound   of   snapped   fingers   seem   in   sync?   The   perceptual   asynchrony   may  simply   not  be  large  enough  to  be  detected.  Temporal  order  discrimination  ability  is  just  too  poor  (e.g.  van  Eijk  et   al.,   2008).   Active   editing   or   reconstruction   of   event   time   need   not   be   invoked.   An   additional   factor   that   might   make   the   snapped   fingers   asynchrony   even   more   difficult   to   notice   is   the   ambiguity   in   which   moment  of  the  temporally  extended  visual  event  generated  the  sound.  It  is  not  until  the  end  of  the  fingers’   movement   that   the   finger   generates   the   snapping   sound.   If   the   brain   instead   assumes   that   the   sound   corresponds   more   to   the   beginning   of   the   movement,   this   corresponds   to   an   earlier   visual   event,   diminishing  the  difference  in  neural  latencies  between  sound  and  corresponding  sight.     While   the   auditory/visual   latency   difference   and   luminance   contrast   effects   demonstrate   failures   to   reconstruct  event  time,  they  do  not  imply  that  the  perceptual  system  never  reconstructs  event  time.  After   all,  even  the  clear  successes  of  adaptive  vision  turn  into  failures  when  certain  limits  are  exceeded.  In  the   case  of  size  constancy  for   example,  while  the  visual  system  does  an  acceptable  job,  failures  are  common   (McBeath,  Neuhoff,  &  Schiano,  1993;  Granrud  et  al,  2003).  If  an  organism  must  learn  its  own  latencies  over   its   lifespan,   we   might   end   up   with   a   patchwork   of   partial   event   time   reconstructions.   To   fully   evaluate   whether   the   brain   takes   account   of   latencies,   we   must   review   the   other   phenomena   promulgated   as   evidence  for  simultaneity  constancy.     2.6.1.  Compensation  for  auditory  distance?   Several  researchers  have  suggested  that  the  brain  compensates  for  the  effect  of  the  slow  speed  of  sound   relative  to  the  faster  speed  of  light.  Although  the  difference  in  timing  of  sound  and  sight  is  small  for  most   events,   during   storms   we   sometimes   experience   a   very   large   timing   difference.   A   distant   thunderclap   is   heard   a   few   seconds   after   the   light   from   the   physically-­‐simultaneous   lightning   bolt.   Because   we   do   not   perceive   distant   thunder   and   lightning   as   simultaneous,   clearly   our   brain   does   not   reconstruct   the   simultaneity   of   these   events.   This   is   unsurprising   even   for   advocates   of   event   time   reconstruction,   because   the  nature  of  the  event  and  its  distance  are  not  easily  perceived.  However,  for  much  closer  events,  from  a   few  centimeters  to  a  few  dozen  meters  away,  some  have  suggested  that  neural  processing  does  result  in   perceiving  an  associated  sound  and  light  as  simultaneous.     Studies   of   the   issue   have   generally   presented   a   light   and   a   sound   at   different   distances   and   different   relative   timings.   According   to   the   event   time   hypothesis,   the   point   of   subjective   simultaneity   for   the   sound   and   the   light   should   shift   with   greater   object   distance.   That   is,   for   greater   object   distances,   larger   sound   delays  should  be  considered  simultaneous.  However,  different  studies  have  yielded  very  different  results.   Keetels  &  Vroomen  (2012)  and  Vroomen  &  Keetels  (2010)  provide  good  reviews  of  the  subject  and  consider   various  explanations  for  the  discrepancy  between  those  that  favor  the  hypothesis  (Sugita  &  Suzuki,  2003;   Alais   &   Carlile,   2005;   Engel   &   Dougherty,   1971;   Kopinska   &   Harris,   2004)   and   those   that   do   not   (Arnold,   Johnston,   &   Nishida,   2005;   Heron   et   al.,   2007;   Lewald   &   Guski,   2003;   Stone   et   al.,   2001).   The   issue   is   complex,   for   example   because   negative   findings   can   be   blamed   on   the   experimenters   presenting   the   visual   and   auditory   information   in   such   a   way   that   the   observer   perceives   the   distance   to   the   sound   inaccurately.   Second,  whether  trials  with  different  times  and  distances  were  blocked  or  mixed  can  change  the  adaptation   state   of   the   observer,   and   as   this   can   shift   the   simultaneity   point   (as   described   in   a   section   below),   it   might   explain  some  of  the  findings  supporting  latency  compensation.     2.6.2.  Compensation  for  the  length  of  tactile  nerves?   Simultaneity  constancy  in  tactile  perception  would  be  more  straightforward  to  assess,  and  presumably  for   the  brain  to  implement,  than  simultaneity  constancy  in  the  audiovisual  domain.  Tactile  signals  from  the  toe   reach   the   brain   about   40   ms   after   the   signals   from   the   face   (Macefield   et   al.,   1989).   The   brain   might   8  

 

compensate   for   this   fact   of   longer   latencies   from   parts   of   the   body   farther   than   the   brain,   so   that   a   simultaneous  touch  on  toe  and  forehead  feels  simultaneous.  Whereas  audiovisual  simultaneity  constancy  is   complicated   by   the   fact   that   the   transmission   time   of   sounds   varies   with   the   distance   of   the   source,   the   latency  differences  of  tactile  stimulation  should  be  more  stable,  possibly  making  it  easier  to  learn.     Otto  Klemm,  at  the  time  a  junior  colleague  of  Wilhelm  Wundt  in  Leipzig,  published  a  series  of  studies  of  the   topic  (Klemm  1925).  Klemm  presented  tactile  stimuli  to  the  forehead,  index  finger,  and  ankle.  The  method   he  used  is  not  entirely  clear  but  he  seems  to  have  asked  participants  to  report  which  of  two  touches  was   presented  first,  while  also  giving  them  the  option  of  responding  “simultaneous”.       An   interesting   complication   he   encountered   may   be   relevant   to   whether   sensations   are   consistently   assigned  to  points  on  a  timeline  or  instead  are  represented  differently.  In  the  simple  situation  of  a  touch  on   the   head   accompanied   by   one   near   the   ankle,   Klemm   reports   (p.215):   “At   the   beginning   of   the   series   some   of  the  observers  were  helpless  even  when  fairly  large  temporal  separations  were  used...  observers  had  a  lot   of   trouble   to   judge   direct   simultaneity:   Since   the   two   tactile   impressions   did   not   go   together   [zusammengingen]   into   one   common   Gestalt   it   was   difficult   to   merge   [zusammenfassen]   them   to   simultaneity”  (translation  courtesy  of  Lars  T.  Boenke).  Fraisse  (1964)  makes  a  related  observation  that  it  is   difficult  to  combine  stimuli  of  different  modalities  and  perceive  them  as  synchronous.     Klemm  pressed  on  with  testing  his  subjects  until  they  produced  reliable  measurements  (he  did  not  report   how  much  experience  was  required).  He  determined  that  five  of  his  six  participants,  when  presented  with   simultaneous  stimulation  to  ankle  and  forehead,  tended  to  report  that  the  forehead  was  stimulated  first.   More   specifically,   in   those   five   participants   the   ankle   had   to   be   touched   23   to   30   ms   earlier   than   the   forehead  for  the  best  chance  of  perceived  simultaneity.  In  the  sixth  observer,  he  instead  found  evidence  for   simultaneity   constancy,   with   the   point   of   subjective   simultaneity   being   true   physical   simultaneity.   It   is   hard   to  know  what  to  conclude,  and  indeed  Klemm  himself  expressed  some  frustration.  Klemm  also  noted  that   even  when  participants  performed  the  temporal  task  without  a  problem,  some  continued  to  report  that,  as   described  in  the  previous  paragraph,  it  felt  artificial  to  categorize  temporal  order.     Halliday  &  Mingay  (1964)  performed  a  similar  study,  but  unfortunately  with  only  two  participants.  For  both   participants,  Halliday  &  Mingay  concluded  that  touches  of  more  distal  body  parts  (toe  vs.  index  finger,  in   their  case)  were  perceived  to  have  occurred  later.  Harrar  &  Harris  (2005)  followed  with  more  experiments   that   yielded   the   same   result,   using   temporal   order   judgments   to   infer   the   time   difference   for   subjective   simultaneity.  Quantitatively,  pooling  the  data  across  their  six  participants,  they  reported  that  the  difference   in  perceived  timing  was  approximately  that  predicted  by  the  differences  in  simple  reaction  time  to  the  body   parts  involved.  Unfortunately  they  did  not  assess  whether  some  participants  were  different  than  others,  so   we   do   not   know   if   there   was   the   significant   variation   between   participants   that   Klemm   found.   Bergenheim   et   al.   (1996)   also   investigated   the   issue,   and   like   the   others   found   evidence   that   stimulation   of   the   more   distal  body  parts  was  perceived  later  than  more  proximal  areas.  However,  Bergenheim  et  al.  suggested  that   the   discrepancy   they   found   between   foot   and   arm   (12   ms)   was   not   as   large   as   it   should   be   for   the   difference  in  conduction  latency  indicated  by  physiological  studies.     In  summary,  all  researchers  found  that  on  average,  stimulation  of  distal  areas  of  the  skin  was  perceived  as   occurring   earlier   in   time   than   stimulation   of   more   proximal   areas.   If   there   is   any   compensation   at   all,   it   appears   that   the   proportion   of   latency   difference   compensated   for   is   small,   or   the   proportion   of   people   who  compensate  for  latency  is  small.  Settling  the  issue  will  require  more  studies  of  this  topic  using  modern   physiological   methods,   larger   numbers   of   participants,   and   enough   data   per   participant   to   assess   simultaneity  constancy  in  each  participant.     To  evaluate  whether  the  times  at  which  signals  are  perceived  reflects  compensation  for  signal  processing   latencies,  we  have  reviewed  the  effects  on  perceptual  latency  of  luminance,  originating  modality,  the  speed   9  

 

of  sound,  and  the  length  of  tactile  fibers.  The  support  in  the  literature  for  adaptive  compensation  in  these   instances  ranges  from  none  to  mixed.       Yet   one   class   of   studies   provides   strong   evidence   for   limited   compensation.   These   are   the   studies   of   adaptation  to  asynchrony.  The  phenomenon  involved  suggests  a  path  to  understanding  the  imperfect  and   limited  processing  that  can  compensate  for  differential  latency.     3.  Inter-­‐sensory  adaptation  to  take  account  of  latency  differences     Fujisaki,   Shimojo,   Kashino,   &   Nishida   (2004)   repeatedly   exposed   participants   to   a   particular   asynchrony   between   auditory   and   visual   information,   and   found   consistent   effects   on   the   point   of   subjective   simultaneity.   In   one   condition,   a   tone   pip   was   followed   235   ms   later   by  a   flashed   ring.   After   about   3   min   of   repeated  exposure  to  that  sequence,  participants  made  temporal  order  judgments  to  a  range  of  temporal   offsets,  which  revealed  that  the  point  of  subjective  simultaneity  had  shifted  by  an  average  of  22  ms.  The   shift  was  in  the  direction  appropriate  to  compensate  for  the  235-­‐ms  offset  between  sight  and  sound.  Other   studies   have   proven   this   result   to   be   robust   (Vroomen   et   al.,   2004;   Hanson,   Heron,   &   Whitaker,   2008;   Harrar   &   Harris,   2008;   Di   Luca,   Machulla,   &   Ernst,   2009;   Roach   et   al.,   2010),   and   a   similar   phenomenon   has   been  observed  for  other  modality  pairings  (Di  Luca,  Machulla,  &  Ernst,  2009).  Compensation  for  a  particular   asynchrony   has   also   been   observed   for   the   temporal   delay   between   actions   and   their   sensory   consequences  (Cunningham,  Billock,  &  Tsou,  2001;  Stetson  et  al.,  2006),  and  these  shifts  do  not  seem  to  be   caused  by  shifting  the  physical  time  of  stimulus-­‐evoked  neural  signals  (Roach,  Heron,  Whitaker,  &  McGraw,   2010).       Not  only  do  these  results  constitute  evidence  for  event  time  reconstruction  rather  than  reliance  on  brain   time,   but   also   they   indicate   how   latency   differences   might   be   known,   through   learning.   The   function   of   these   shifts   may   stem   from   the   statistics   of   the   natural   environment,   where   the   distribution   of   the   relative   timing  of  stimulation  by  external  events  is  likely  to  be  centered  on  or  near  zero  (simultaneity).  Processes  for   compensation  of  consistent  departures  from  this  average  may  therefore  cause  the  adaptation  effects.     These  adaptation  effects  are  analogous  to  aftereffects  for  other  aspects  of  perception  such  as  motion  and   orientation.   Accordingly,   to   explain   these   effects   researchers   typically   invoke   similar   neural   mechanisms   as   those   that   have   been   proposed   to   explain   traditional   adaptation   effects.   Specifically,   a   typical   suggestion   is   that   neurons   in   the   brain   are   selective   for   the   adapted   feature,   and   that   adaptation   of   these   neurons   causes   the   aftereffect.   In   the   case   of   the   intersensory   timing   shifts,   both   Roach   et   al.   (2010)   and   Cai,   Stetson,   &   Eagleman   (2012)   suggest   that   the   responsible   neurons   are   multimodal   neurons   tuned   to   different  asynchronies  between  the  modalities.  In  the  cat,  there  are  indeed  multimodal  neurons  that  prefer   different  asynchronies  (Meredith  et  al.  1987)  and  these  also  appear  to  exist  in  rhesus  monkeys  (Wallace,   Wilkinson,   &   Stein,   1996)   and   perhaps   humans.   The   relative   timing   perceived   may   reflect   the   differing   activity   of   these   neurons.   Adaptation   shifts   this   activity   difference   in   a   manner   that   compensates   for   the   asynchrony  (Roach  et  al.,  2009;  Cai,  Stetson  &  Eagleman,  2012).     3.1.  Timing-­‐selective  neurons  vs.  criterion  shifts  and  expectations   The   explanation   of   asynchrony   aftereffects   in   terms   of   a   population   of   neurons   tuned   to   various   asynchronies   is   appealing.   But   other   possible   explanations   should   be   considered,   especially   because   one   recent  result  is  difficult  to  explain  in  the  standard  way.     An   adaptation   effect   reported   by   Roseboom   &   Arnold   (2011)   amounts   to   a   shift   in   perceived   audiovisual   timing  that  is  specific  to  the  visual  stimulus  used.  Participants  in  the  experiment  saw  video  clips  of  a  male   and  a  female  actor  on  different  trials,  all  saying  the  syllable  “ba”.  In  one  condition  the  auditory  signal  of  the   male  actor  was  always  presented  300  ms  before  the  video,  whereas  the  auditory  signal  of  the  female  actor   was  always  presented  300  ms  after  the  video.  In  other  words,  participants  adapted  to  opposite  A-­‐V  timing   10  

 

shifts   for   the   male   speaker   and   for   the   female   speaker.   After   fifty   presentations   of   these   stimuli,   participants  were  tested  to  determine  what  timing  relationship  they  considered  simultaneous.     For   the   test   phase,   participants   were   shown   the   videos   with   a   range   of   relative   timings   between   the   auditory   and   visual   component,   and   each   time   asked   to   judge   whether   the   sound   and   the   video   were   simultaneous.   It   turned   out   that   the   point   of   subjective   simultaneity   had   shifted   by   a   few   dozen   milliseconds   in   the   direction   of   compensation   for   the   adapted   asynchrony,   but   this   was   in   different   directions   for   the   male   actor   and   the   female   actor.   The   temporal   shift   maintained   this   association   with   the   actor   even   though   the   locations   of   the   two   actors   were   switched   during   test,   meaning   that   the   timing   shift   was  contingent  more  on  the  actor  than  on  the  location  the  actor  was  presented  in  during  the  adaptation   phase.     Unlike   the   experiments   involving   a   simple,   single   auditory-­‐visual   timing   offset,   these   results   cannot   be   explained   by   the   adaptation   of   a   population   of   multimodal   neurons   tuned   to   various   auditory-­‐visual   timings.   The   contingency   on   the   actor   requires   additional   processes.   One   might   extend   the   logic   of   explaining   simple   asynchrony   adaptation   with   multimodal   neurons   by   positing   neurons   that   are   jointly   selective  for  actor  and  audio-­‐visual  timing.  But  this  might  lead  to  a  combinatorial  explosion  of  neurons,  as   the   contingency   on   “actor”   is   unlikely   to   be   the   only   possible   contingency.   A   range   of   neurons   would   be   needed  for  each  kind  of  contingency.  A  process  with  more  flexibility  should  be  considered.       The   processing   that   shifts   decision   criteria   may   fit   the   bill   of   a   suitably   flexible   process   that   can   accommodate   different   contingencies.   In   signal   detection   theory,   the   criterion   is   a   threshold   level   of   the   internal  signal  that  the  observer  uses  to  decide  which  response  to  make.  In  the  context  of  a  simultaneity   judgment   the   relevant   signal   may   be   something   like   the   difference   in   the   internal   timing   of   the   auditory   response   and   the   visual   response.   This   signal   is   assumed   to   have   a   Gaussian   distribution.   As   the   timing   difference   is   signed   (indicating   whether   auditory   was   before   versus   after   visual),   two   criteria   may   be   involved,   one   for   the   positive   side   of   the   distribution   (discriminating   simultaneous   from   auditory   after   visual)  and  one  for  the  negative  side  (discriminating  simultaneous  from  visual  after  auditory).  See  Yarrow  et   al.  (2011)  for  discussion.     Shifts  of  these  decision  criteria  result  in  shifts  in  points  of  subjective  simultaneity.  Repeated  exposure  to  a   particular  asynchrony  might  cause  the  brain  to  shift  the  decision  criteria  in  the  direction  of  compensation.   This  criterion  shift  account  is  quite  different  from  those  involving  adaptation  of  a  population  of  asynchrony-­‐ tuned   neurons   (Roach   et   al.,   2009;   Cai,   Stetson,   &   Eagleman,   2012).   Among   psychophysicists,   criterion   shifts  are  often  considered  uninteresting.  The  notion  seems  to  be  that  a  criterion  shift  is  more  likely  to  be   caused   by   observers   taking   a   different   attitude   towards   their   percepts   rather   than   perception   itself   changing.  In  contrast,  the  asynchrony-­‐tuned  neuron  account  is  firmly  a  theory  of  change  of  percepts,  from   a  shift  in  underlying  neural  populations.  Fortunately  there  is  some  hope  of  distinguishing  these  accounts  by   experiment,  although  this  has  not  yet  been  done.  The  asynchrony-­‐tuned  neuron  code  account  appears  to   predict  that  sensitivity  will  change,  not  just  criterion.     The   evidence   in   the   literature   so   far   appears   consistent   with   a   shift   in   criteria   (Fujisaki   et   al.,   2004;   Vroomen   et   al.,   2004;   Yarrow   et   al.,   2011;   Hanson,   Heron,   &   Whitaker,   2008).   Certainly,   no   one   has   demonstrated  that  their  result  could  not  be  explained  by  a  shift  in  criteria  or  greater  variability  in  criteria   (Roach  et  al.,  2010;  Yarrow  et  al.,  2011).     But  one  should  not  dismiss  lack  of  evidence  for  sensitivity  change  as  implying  that  percepts  did  not  change.   As   Michael   Morgan   and   colleagues   have   pointed   out,   even   some   indisputably   perceptual   effects,   like   the   motion   aftereffect,   may   be   caused   by   criterion   shifts   (or   “subtractive   adaptation”)   rather   than   sensitivity   changes   (Morgan,   Chubb,   &   Solomon   2011;   Morgan   &   Glennerster,   1991;   Morgan,   Hole,   &   Glennerster,   1990).   11  

 

  Thus  an  aftereffect  that  manifests  only  as  a  criterion  shift  is  not  necessarily  non-­‐perceptual.  To  get  a  fuller   view   of   what   needs   to   be   explained,   future   investigations   should   document   the   scope   of   contingencies   adapted   to.   Perhaps,   given   an   appropriate   task   and   stimulus   exposure   protocol,   timing   shifts   could   be   accomplished   for   completely   arbitrary   stimulus   pairings,   with   one   pair   of   criteria   for   pictures   of   Jennifer   Aniston,   another   for   pictures   of   pink   koalas,   and   another   for   a   person   whose   face   you   didn’t   encounter   until   the   experiment   began.   For   the   brain   to   accomplish   such   a   feat,   some   process   has   to   store   these   criteria   and   trot   them   out   for   the   appropriate   tasks   and   stimuli.   This   topic   is   rarely   discussed   in   the   adaptation  literature,  but  raises  interesting  issues  that  may  be  widespread  in  the  study  of  human  cognition   and  learning.     While  the  Roseboom  &  Arnold  (2011)  result  may  herald  an  explosion  of  contingent  timing  shifts,  this  may   be   restricted   to   situations   of   high   temporal   uncertainty   regarding   the   time   of   sensory   signals.   For   rather   than   using   a   simple   tone   and   flash   as   had   been   used   in   previous   studies,   Roseboom   &   Arnold   (2011)   presented  extended,  time-­‐varying  video  and  auditory  stimuli.  The  video  clip  involved  facial  movements  of   the   actor   that   extended   over   what   appears   to   be   (from   the   supplementary   clip   provided   in   the   paper)   several  hundred  milliseconds,  and  the  duration  of  the  auditory  syllable  signal  was  probably  also  at  least  a   few   hundred   milliseconds.   Both   were   complex   stimuli   with   multiple   features   occurring   over   their   time-­‐ course,  with  differing  durations  and  without  unambiguous  discrete  onsets  and  offsets.  In  such  a  situation,   to  determine  whether  the  stimuli  were  simultaneous,  one  must  identify  which  stimulus  features  should  go   together.   The   adaptation   process   may   then   be   one   of   associating   particular   features   of   the   extended   video   signal   that   occur   at   certain   times   with   particular   features   of   the   auditory   train.   This   might   be   the   explanation   of   the   results   -­‐   after   repeated   experience   hearing   a   particular   part   of   the   auditory   train   presented   simultaneously   with   a   particular   lip   movement,   one   may   learn   that   is   the   way   that   particular   speaker   talks.   Deviations   from   that   learned   timing   for   simultaneity   are   then   perceived,   correctly,   as   temporally  shifted  from  that  speaker’s  usual  timing.  This  may  thus  be  a  criterion  shift,  and  one  that  does   not  generalize  to  cases  where  the  auditory-­‐visual  matching  is  unambiguous.       This  interpretation  that  the  contingent  asynchrony  adaptation  found  by  Roseboom  &  Arnold  (2011)  will  not   generalize  to  unambiguous  audio-­‐visual  correspondence  situations  gets  some  support  from  the  results  of   Heron   et   al.   (2012).   Like   Roseboom   &   Arnold   (2011),   Heron   et   al.   (2012)   tested   whether   intersensory   asynchrony  adaptation  could  be  contingent  on  the  identity  of  the  stimulus.  Instead  of  using  different  actors   paired  with  their  respective  voices,  they  used  high  spatial  frequency  gratings  with  high-­‐pitched  tones  and   low  spatial  frequency  gratings  with  low-­‐pitched  tones.  Other  researchers  have  shown  that  observers  tend   to  spontaneously  associate  these  values  (Evans  &  Treisman,  2010;  Gallace  &  Spence,  2006;  Spence,  2011),   suggesting   they   are   not   entirely   unnatural   associations.   Yet   unlike   Roseboom   &   Arnold   (2011),   these   authors   found   that   the   asynchrony   adaptation   did   not   “stick”   to   the   identity   of   the   stimulus,   but   was   instead   tied   to   the   spatial   location.   Thus   they   demonstrated   adaptation   to   opposite   asynchronies   (visual   before  auditory  and  visual  after  auditory)  tied  to  distinct  locations.  This  is  compatible  with  mediation  by  a   brain  area  like  the  superior  colliculus  that  is  retinotopically  organized  and  has  neurons  tuned  to  audiovisual   asynchronies.   The   accounts   based   on   a   population   of   neurons   tuned   to   various   asynchronies   therefore   remains  viable.     We   have   considered   whether   the   brain   sets   the   perceived   timing   of   sensory   signals   to   compensate   for   learned   or   imputed   sensory   latencies.   In   a   limited   way   it   does,   but   the   scope   of   the   phenomenon   and   nature  of  the  underlying  processing  remains  obscure.       4.  Grouping  and  Gestalts     12  

 

Auditory  stimuli  can  have  a  powerful  effect  on  temporal  aspects  of  visual  perception.  A  single  flash  looks   like   two   if   two   sounds   are   presented   within   about   100   ms   of   the   time   of   the   flash   (Shams,   Kamitani,   &   Shimojo,   2000;   2002).   Sounds   also   shift   the   perceived   timing   of   flashes,   in   a   manner   suggesting   strong   perceptual  integration  (Morein-­‐Zamir  et  al.,  2003;  Freeman  &  Driver,  2008;  Kafaligonul  &  Stoner,  2010).  But   these   shifts   in   perceived   timing   are   not   necessarily   consequences   of   processing   that   evolved   to   extract   event  time.  That  is,  although  they  may  mean  that  the  brain  time  theory  is  wrong,  this  does  not  mean  that   the  event  time  theory  is  right.  Instead  of  the  brain  being  bent  on  recovering  the  time  of  sensory  events  and   achieving   simultaneity   constancy,   perceived   timing   may   instead   be   a   secondary   effect   of   grouping   and   integration.   Evolutionary   selection   pressure   may   primarily   have   driven   the   brain   towards   organising   ambiguous  stimuli  into  the  most  likely  groupings,  without  special  consideration  for  timing.     A   striking   auditory   illusion   discovered   a   century   ago   supports   this   theory   that   the   brain   prioritises   grouping   over   correct   timing.   Benussi   in   1913   reported   that   simple   punctate   sound   sequences   result   in   consistent   illusions   of   temporal   order   (Sinico   1999;   Albertazzi   1999).   In   a   demonstration   available   online   (http://i-­‐ perception.perceptionweb.com/journal/I/volume/3/article/i0490sas),   Koenderink   et   al.   (2012)   present   one   example:   a   sequence   comprising   a   low   tone,   a   high   tone,   and   a   noise   burst.   When   the   noise   burst   is   presented  as  the  middle  sound,  so  that  the  tones  are  not  neighboring  each  other  temporally,  perceptually   one  hears  the  tones  as  grouped  together  and  the  noise  occurring  afterwards.  This  likely  occurs  because  the   tones  form  a  good  gestalt,  and  the  noise  is  segmented  away  from  them.  A  similar  phenomenon   with  more   complex   stimuli   was   reported   by   Ladefoged   &   Broadbent   (1960),   who   presented   participants   with   a   recording  of  a  sentence,  such  as  "John  that  was  the  boy  that  had  a  top".  A  click  sound  was  superimposed   on   one   of   the   words   in   the   sentence.   Participants   had   difficulty   determining   when   the   click   was   presented,   and  tended  to  report  the  click  as  occurring  at  the  time  of  an  earlier  word  then  it  actually  was.  Further  work   (Fodor  &  Bever,  1965;  Garrett,  Bever,  &  Fodor,  1966)  indicated  that  clicks  are  subjectively  attracted  toward   clause  boundaries.  In  sum,  the  click  is  perceived  to  have  occurred  at  a  completely  different  time  than  it  was   presented,   and   presumably   a   time   quite   different   from   when   it   was   processed.   The   shifting   of   the   time   perceived  may  be  a  byproduct  of  processes  driven  primarily  by  the  need  for  auditory  comprehension  and   source   identification   (see   also   Spence,   this   volume).   This   is   very   different   from   the   view   of   event   time   theorists,  who  assume  the  goal  of  perceiving  the  correct  time  of  events  is  the  primary  factor  determining   perceived   timing.     UPDATE   AFTER   PUBLICATION:   AFTER   WRITING   THIS,   I   FOUND   LATER   PAPERS   THAT   REPORTED   EVIDENCE   THIS   WAS   ALL   DUE   TO   RESPONSE   BIAS,   SO   THE   POINT   OF   THIS   PARAGRAPH   RESTS   LARGELY  ON  BENUSSI’S  EFFECT     Brain  time  theory  is  wrong,   but  so  is  the  strong  form  of  event  time  theory.  Instead,  the  brain’s  priority  may   be   grouping   sensory   signals   originating   with   a   comment   event   together.   But   this   does   not   exclude   the   existence   of   adaptation   and   criterion   shift   phenomena   that   on   average   push   perceived   timing   towards   veridicality.       5.  Summary     We   do   not   yet   know   whether   perception   consistently   represents   event   sequences   as   a   timeline,   in   the   way   that   in   the   spatial   domain   we   have   a   strong   sense   of   the   layout   of   a   scene.   It   may   be   that   temporal   experience  is  more  impoverished.       When  several  to  many  stimuli  are  presented  rather  than  just  a  few,  this  may  leave  most  of  the  temporal   relations   unavailable,   or   reliant   on   erratic   cues   like   relative   strength   of   the   items   in   short-­‐term   memory   (Reeves  &  Sperling,  1986).  When  just  two  stimuli  accompanied  by  strong  transients  are  presented,  they  are   more  likely  to  engage  attention  and  also  to  result  in  a  clear  percept  of  temporal  order  (Fujisaki  &  Nishida,   2007).       13  

 

Extracting  certain  spatial  relationships  also  seems  to  require  attentional  mediation  (Holcombe,  Linares,  &   Vaziri-­‐Pashkam,   2011;   Franconeri   et   al.,   2012).   But   aspects   of   spatial   perception   take   advantage   of   the   brain’s   topographic   arrays   to   process   information   in   parallel,   whereas   the   visual   brain   may   lack   a   chronotopic  bank  of  processors.     In  recent  years  much  literature  has  focused  on  deciding  between  the  event  time  reconstruction  theory  and   brain  time  theory.  But  the  reality  may  be  a  modest  amount  of  event  time  reconstruction  that  emerges  from   a  recalibration  process  that  shifts  crossmodal  simultaneity  points  after  prolonged  exposure  to  asynchrony.   Operating  in  parallel  with  recalibration  may  be  organizational  processes  that  create  temporal  illusions  as  a   byproduct  of  Gestalt  grouping  (Benussi,  1913;  Ladefoged  &  Broadbent,  1960).       In   evolutionary   history,   success   at   event   reconstruction   has   likely   been   a   factor   in   selecting   the   winning   organisms  over  the  extinct  losers.  But  segmenting  events  and  identifying  them  may  have  been  both  more   important  for  the  organism  and  more  feasible  than  determining  exact  event  timing.  When  absolute  timing   is   critical,   learning   of   sensorimotor   mappings   may   be   used   for   correct   timing   of   behaviour   rather   than   changes  to  perception.         6.  Acknowledgments     I  thank  Lars  T.  Boenke,  Colin  Clifford,  and  Paolo  Martini  for  discussions,  and  Lars  T.  Boenke,  Alex  L.  White,   and  Daniel  Linares  for  comments  on  an  earlier  version  of  the  manuscript.  I  thank  Alex  L.  White  for  the  point   that  in  snapping  one’s  fingers,  it  is  not  obvious  which  part  of  the  visual  sequence  generated  the  sound.  Lars   T.  Boenke  translated  Klemm  (1925)  from  German  into  English.  The  writing  of  this  chapter  was  supported  by   ARC  grants  DP110100432  and  FT0990767.    

14  

 

7.  References     Alais,  D.,  &  Carlile,  S.  (2005).  Synchronizing  to  real  events:  Subjective  audiovisual  alignment  scales  with   perceived  auditory  depth  and  speed  of  sound.  Proceedings  of  the  National  Academy  of  Sciences  of  the   United  States  of  America,  102(6),  2244-­‐2247.   Albertazzi,  L.  (1999).  The  time  of  presentess.  A  chapter  in  positivistic  and  descriptive  psychology.   Axiomathes,  49–73.   Allan,  L.  G.  (1975).  The  relationship  between  judgments  of  successiveness  and  judgments  of  order.   Perception  &  Psychophysics,  18:  29–36.   Allik,  J  and  Kreegipuu,  K.  (1998).  Multiple  visual  latency.  Psychological  Science,  9,  135-­‐138.   Alpern  M.  (1954)  The  relation  of  visual  latency  to  intensity.  A.M.A.  Archives.  of  Ophthamology,  51,  369-­‐374.   Alvarez,  G.A.  (2011).  Representing  multiple  objects  as  an  ensemble  enhances  visual  cognition.  Trends  in   Cognitive  Sciences,  15(3),  122–131.  doi:10.1016/j.tics.2011.01.003   Arden,  G.B.,  &  Weale,  R.A.  (1954).  Variations  of  the  latent  period  of  vision.  Proceedings  of  the  Royal  Society   of  London  B,  142,  258–267.   Arnold,  D.  H.  (2005).  Perceptual  pairing  of  colour  and  motion.  Vision  Research,  45(24),  3015–3026.   Arstila,  V.  (2012).  Why  the  Transitivity  of  Perceptual  Simultaneity  Should  be  Taken  Seriously.  Frontiers  in   integrative  neuroscience,  6(January),  3.  doi:10.3389/fnint.2012.00003   Benardete,  E.  A.,  &  Kaplan,  E.  (1999).  The  dynamics  of  primate  M  retinal  ganglion  cells.  Visual  Neuroscience,   16,  355–368.   Benussi,  V.  (1913).  Psychologie  der  Zeitauffassung.  Winter:  Heidelberg.   Berdyyeva,  T.  K.,  &  Olson,  C.  R.  (2010).  Rank  signals  in  four  areas  of  macaque  frontal  cortex  during  selection   of  actions  and  objects  in  serial  order.  Journal  of  Neurophysiology,  104(1),  141–159.   Bergenheim,  M.,  Johansson,  H.,  Granlund,  B.,  &  Pedersen,  J.  (1996).  Experimental  evidence  for  a  sensory   synchronization  of  sensory  information  to  conscious  experience.  In  S.  R.  Hameroff,  A.  W.  Kaszniak,  &  A.  C.   Scott  (eds.),  Towards  a  Science  of  Consciousness:  The  First  Tucson  Discussions  and  Debates  (301–310).   Cambridge,  MA:  MIT  Press.   Blake,  R.,  &  Sekuler,  R.  (2006).  Perception  -­‐  5th  edition.  McGraw-­‐Hill:  New  York.   Bouvier,  S.,  &  Treisman,  A.  (2010).  Visual  feature  binding  requires  reentry.  Psychological  science,  21(2),   200-­‐4.  doi:10.1177/0956797609357858.   Cai,  M.,  Stetson,  C.,  &  Eagleman,  D.  M.  (2012).  A  Neural  Model  for  Temporal  Order  Judgments  and  Their   Active  Recalibration:  A  Common  Mechanism  for  Space  and  Time?  Frontiers  in  Psychology,  3(November),  1– 11.  doi:10.3389/fpsyg.2012.00470   Cavanagh,  P.,  Hunt,  A.  R.,  Afraz,  A.,  &  Rolfs,  M.  (2010).  Visual  stability  based  on  remapping  of  attention   pointers.  Trends  in  Cognitive  Sciences,  14(4),  147–153.  doi:10.1016/j.tics.2010.01.007   Crespi,  S.,  Biagi,  L.,  d'Avossa,  G.,  Burr,  D.  C.,  Tosetti,  M.  &  Morrone,  M.  C.  (2011).  Spatiotopic  Coding  of   BOLD  Signal  in  Human  Visual  Cortex  Depends  on  Spatial  Attention,  PLoS  One,  7  (6),  e21661.   Cunningham,  D.  W.,  Billock,  V.  A.,  and  Tsou,  B.  H.  (2001).  Sensorimotor  adaptation  to  violations  of  temporal   contiguity.  Psychological  Science  12,  532-­‐5.   De  Valois,  R.  L.,  &  De  Valois,  K.  K.  (1991).  Vernier  acuity  with  stationary  moving  Gabors.  Vision  Research,   31(9),  1619–1626.   Del  Viva,  M.  M.,  Gori,  M.,  &  Burr,  D.  C.  (2006).  Powerful  motion  illusion  caused  by  temporal  asymmetries  in   ON  and  OFF  visual  pathways.  Journal  of  Neurophysiology,  95(6),  3928-­‐32.  doi:10.1152/jn.01335.2005   Dennett,  D.,  &  Kinsbourne,  M.  (1995).  Time  and  the  Observer :  the  Where  and  When  of  Consciousness  in   the  Brain.  Behavioral  and  Brain  Sciences,  15(1992),  1–35.   Di  Luca,  M.,  Machulla,  T.  K.,  &  Ernst,  M.  O.  (2009).  Recalibration  of  multisensory  simultaneity:  cross-­‐modal   transfer  coincides  with  a  change  in  perceptual  latency.  Journal  of  Vision,  9,  7-­‐16.   Eagleman,  DM  (2011).  Incognito:  The  Hidden  Life  of  the  Brain.  Canongate  Books.   Eagleman,  DM  (2010).  The  strange  mapping  between  the  timing  of  neural  signals  and  perception.  In  Issues   of  Space  and  Time  in  Perception  and  Action,  R.  Nijhawan  (Ed).  Cambridge  University  Press.   15  

 

Eagleman  DM  (2009).  Brain  Time.  In  What’s  Next:  Dispatches  From  the  Future  of  Science,  M.  Brockman,  Ed.   Vintage  Books.     Eagleman,  DM  (2007).  10  Unsolved  Mysteries  Of  The  Brain.  Discover,  August,  1-­‐3.   van  Eijk,  R.  L.,  Kohlrausch,  A.,  Juola,  J.  F.,  &  van  de  Par,  S.  (2008).  Audiovisual  synchrony  and  temporal  order   judgments:  effects  of  experimental  method  and  stimulus  type.  Perception  &  Psychophysics,  70(6),  955–968.   Engel,  G.R.,  and  W.G.  Dougherty  (1971).  Visual–auditory  distance  constancy.  Nature  234(5327);308.   Exner,  S.  (1875).  Experimentelle  Untersuchung  der  einfachsten  psychischen  Processe.  III  Abhandlung   [Experimental  research  on  simple  physical  processes].  Pflügers  Archiv  für  die  gesammte  Physiologie  des   Menschen  und  Thiere,  11,  403–432.   Fodor,  J.  A.,  &  Bever,  T.  G.  (1965).  The  psychological  reality  of  linguistic  segments.  Journal  of  Verbal   Learning  &  Verbal  Behavior,  4,  414-­‐420.   Forte,  J.,  Hogben,  J.  H.,  &  Ross,  J.  (1999).  Spatial  limitations  of  temporal  segmentation.  Vision  Research,  39,   4052–4061.   Fraisse,  P.  (1964).  The  psychology  of  time.  London:  Eyre  and  Spottiswoode.   Franconeri,  S.,  Scimeca,  J.,  Roth,  J.,  Helseth,  S.,  &  Kahn,  L.  (2011).  Flexible  visual  processing  of  spatial   relationships.  Cognition,  122,  210–227.   Fujisaki,  W.,  &  Nishida,  S.  (2007).  Feature-­‐based  processing  of  audio-­‐visual  synchrony  perception  revealed   by  random  pulse  trains.  Vision  Research,  47(8),  1075–1093.   Garrett,  ME,  Bever,  T.G.,  &  Fodor,  J.A.  (1966).  The  active  use  of  grammar  in  speech  perception.  Perception   &  Psychophysics,  1,  30-­‐32.   García-­‐Pérez,  M.  a,  &  Alcalá-­‐Quintana,  R.  (2012).  On  the  discrepant  results  in  synchrony  judgment  and   temporal-­‐order  judgment  tasks:  a  quantitative  model.  Psychonomic  bulletin  &  review.  doi:10.3758/s13423-­‐ 012-­‐0278-­‐y.   Granrud,  CE,  Granrud,  MA,  Koc,  JC,  Peterson,  RW,  &  Wright,  SM  (2003).  Perceived  size  of  traffic  lights:  A   failure  of  size  constancy  for  objects  viewed  at  a  distance.  Journal  of  Vision,  3(9),  491   Grondin,  S.  (2010).  Timing  and  time  perception :  A  review  of  recent  behavioral  and  neuroscience  findings.   Attention,  perception  &  psychophysics,  72(3),  561–582.  doi:10.3758/APP   Halliday,  A.  &  Mingay,  R.  (1964).  On  the  resolution  of  small  time  intervals  and  the  effect  of  conduction   delays  on  the  judgement  of  simultaneity.  Quarterly  Journal  of  Experimental  Psychology,  16(1),  37-­‐41.   Harris  L  R,  Harrar  V,  Jaekl  P,  Kopinska  A  (2010)  Mechanisms  of  simultaneity  constancy.  In:  Nijhawan  R  (ed)   Space  and  time  in  perception  and  action.  Cambridge  University  Press,  Cambridge,  UK,  pp  232-­‐253.   Hanson,  J.  V.,  Heron,  J.,  &  Whitaker,  D.  (2008).  Recalibration  of  perceived  time  across  sensory  modalities.   Experimental  Brain  Research,  185,  347-­‐352.   Harrar,  V.  &  Harris,  L.  R.  (2008).  The  effect  of  exposure  to  asynchronous  audio,  visual,  and  tactile  stimulus   combinations  on  the  perception  of  simultaneity.  Experimental  Brain  Research,  186,  517-­‐524.   Heron,  J.,  Roach,  N.  W.,  Hanson,  J.  V.  M.,  McGraw,  P.  V.,  &  Whitaker,  D.  (2012).  Audiovisual  time  perception   is  spatially  specific.  Experimental  brain  research,  218(3),  477–85.  doi:10.1007/s00221-­‐012-­‐3038-­‐3   Heron,  J.,  Hanson,  J.  V.  M.  &  Whitaker,  D.  (2009).  Effect  before  cause:  supramodal  recalibration  of   sensorimotor  timing.  PLoS  ONE  4,  e7681.  (doi:10.1371/journal.pone.  0007681).   Heron,  J.,  Whitaker,  D.,  McGraw,  P.  V.,  &  Horoshenkov,  K.  V.  (2007).  Adaptation  minimizes  distance-­‐related   audiovisual  delays.  Journal  of  Vision,  7,  1–8.   Holcombe,  A.O.  &  Cavanagh,  P.  (2008).  Independent,  synchronous  access  to  color  and  motion  features.   Cognition,  107(2):552-­‐580.   Holcombe  AO,  Clifford  CW.  (2012).  Failures  to  bind  spatially  coincident  features:  comment  on  Di  Lollo.   Trends  Cogn  Sci.  16(8):402.   Holcombe,  A.O.,  Linares,  D.L.,  Vaziri-­‐Pashkam,  M.  (2011).  Perceiving  spatial  relationships  via  attentional   tracking  and  shifting.  Current  Biology  21,  1-­‐5.   Holcombe,  A.O.  (2009).    Seeing  slow  and  seeing  fast:  Two  limits  on  perception.  Trends  in  Cognitive  Science,   13(5):216-­‐21.   16  

 

Holcombe,  A.  O.,  Kanwisher,  N.,  &  Treisman,  A.  (2001).  The  midstream  order  deficit.  Perception  &   Psychophysics,  63(2),  322–9.   Jaśkowski,  P.  (1991).  Two-­‐Stage  model  for  order  discrimination.  Perception  &  Psychophysics,  50,  76-­‐82.  

17  

 

  Kafaligonul,  H.,  &  Stoner,  G.  R.  (2010).  Auditory  modulation  of  visual  apparent  motion  with  short  spatial   and  temporal  intervals.  Journal  of  Vision,  10,  1–13.  doi:10.1167/10.12.31   Kitaoka,  A.,  &  Ashida,  H.  (2003).  Phenomenal  characteristics  of  the  peripheral  drift  illusion.   Vision  Research,  15,  261–262.   Keetels,  M.,  &  Vroomen,  J.  (2012).  Perception  of  Synchrony  between  the  Senses.  Frontiers  in  the  neural   basis  of  multisensory  processes  (pp.  147–178).  London:  Taylor  &  Francis.   Klemm,  O.  (1925).  Über  die  Wirksamkeit  kleinster  Zeitunterschiede  auf  dem  Gebiete  des  Tastsinns.  Archiv   fur  die  gesamte  Psychologie,  50,  205–220.   Koenderink,  J.,  Richards,  W.,  &  van  Doorn,  A.  (2012).  Space-­‐time  disarray  and  visual  awareness.  i-­‐ Perception,  3(3),  159–162.  doi:10.1068/i0490sas   Köhler,  W.  (1947).  Gestalt  psychology:  An  introduction  to  new  concepts  in  modern  psychology.  New  York:   Liveright  Publication.   Kopinska,  A.,  and  L.R.  Harris.  2004.  Simultaneity  constancy.  Perception  33(9);1049–60.   Ladefoged,  P.,  &  Broadbent,  D.  E.  (1960).  Perception  of  sequence  in  auditory  events.  Quarterly  Journal  of   Experimental  Psychology,  12(3),  162–170.   Levi,  D.  (1996).  Pattern  perception  at  high  velocities.  Current  Biology,  6(8),  1020–1024.   Lewald,  J.,  and  R.  Guski.  2004.  Auditory–visual  temporal  integration  as  a  function  of  distance:  No   compensation  for  sound-­‐transmission  time  in  human  perception.  Neuroscience  Letters  357(2);119–22.   Lotze,  H.  (1881).  Grundzüge  der  Psychologie.  Leipzig:  Dictate  aus  den  Vorlesungen.  S.  Hirzel.   Macefield,  G.,    Gandevia,  S.C.  and  Burke,  D.  (1989).  Conduction  velocities  of  muscle  and  cutaneous   afferents  in  the  upper  and  lower  limbs  of  human  subjects.  Brain  112(6);1519–32.   Malsburg  von  der,  C.  (1981).  The  correlation  theory  of  brain  function.  In     Models  of  Neural  Networks  II:  Temporal  Aspects  of  Coding  and  Information  Processing  in  Biological   Systems.  Domany,  J.L.  et  al.,  eds,  pp.  95–119,  Springer-­‐Verlag  (reprinted  in  1994).   Marr  D  (1982)  Vision.  San  Francisco,  CA:  Freeman.   Maunsell,  J.  H.,  Ghose,  G.M.,  Assad,  J.A.,  McAdams,  C.J.,  Boudreau,  C.E.  &  Noerager,  B  D  (1999).  Visual   response  latencies  of  magnocellular  and  parvocellular  LGN  neurons  in  macaque  monkeys.  Visual   Neuroscience  16(1):  1-­‐14.   McBeath,  M.  K.,  Neuhoff,  J.  G.,  &  Schiano,  D.  J.  (1993)  Familiar  Suspended  Objects  Appear  Smaller  than   Actual  Independent  of  Viewing  Distance.  Annual  Convention  of  the  American  Psychological  Society.   Chicago,  IL.   McLeod  P  and  Jenkins  S.  (1991).  Timing  accuracy  and  decision  time  in  high-­‐speed  ball  games.  International   Journal  of  Sport  Psychology  22:  279-­‐295.   McLeod,  P.,  McLaughlin,  C.  and  Nimmo-­‐Smith,  I.  (1985).  Information  encapsulation  and  automaticity   evidence  from  the  visual  control  of  finely  timed  actions.  In:  Posner,  M.I.  and  Marin,  O.S.,  Editors,  1985.   Attention  and  performance  XI,  Erlbaum,  Hillsdale,  NJ.   Morein-­‐Zamir,  S.,  S.  Soto-­‐Faraco,  and  A.  Kingstone.  (2003).  Auditory  capture  of  vision:  Examining  temporal   ventriloquism.  Cognitive  Brain  Research  17(1);154–63.   Morgan,  M.  J.,  &  Glennerster,  A.  (1991).  Efficiency  of  locating  centres  of  dot-­‐clusters  by  human  observers.   Vision  Research,  31,  2075–2083.   Morgan,  M.  J.,  Hole,  G.  J.,  &  Glennerster,  A.  (1990).  Biases  and  sensitivities  in  geometrical  illusions.  Vision   Research,  30,  1793–  1810.     Morgan,  M.  J.,  Chubb,  C.  &  Solomon,  J.  A.  (2011).  Evidence  for  a  subtractive  component  in  motion   adaptation.  Vision  Research,  51,  2312-­‐2316.   Morgan,  M.,  Dillenburger,  B.,  Raphael,  S.  &  Solomon,  J.  A.  (2012)   Observers  can  voluntarily  shift  their  psychometric  functions  without  losing  sensitivity.   Attention,  Perception  &  Psychophysics,  74,  185-­‐193.   Musacchia,  G.,  &  Schroeder,  C.  E.  (2009).  Neuronal  mechanisms,  response  dynamics  and  perceptual   functions  of  multisensory  interactions  in  auditory  cortex.  Hearing  research,  258(1-­‐2),  72–9.   doi:10.1016/j.heares.2009.06.018   18  

 

Nijhawan,  R.  (2008).  Visual  Prediction:  Psychophysics  and  neurophysiology  of  compensation  for  time   delays.  Behavioral  and  Brain  Sciences,  31,  179–239.   Nishida  S.,  Johnston  A.  (2010)  The  time  marker  account  of  cross-­‐channel  temporal  judgments.  In  Space  and   time  in  perception  and  action  (eds  NijhawanR.,  Khurana  B.),  pp.  278–300.  Cambridge,  UK:  Cambridge   University  Press.   Nishida,  S.,  &  Johnston,  A.  (2002).  Marker  correspondence,  not  processing  latency,  determines  temporal   binding  of  visual  attributes.  Current  Biology,  12(5),  359–368.   Oram,  M.  W.,  Xiao,  D.,  Dritschel,  B.,  &  Payne,  K.  R.  (2002).  The  temporal  resolution  of  neural  codes:  does   response  latency  have  a  unique  role?  Philosophical  Transactions  of  the  Royal  Society  B:  Biological  Sciences,   357(1424),  987–1001.   Reeves,  A.,  &  Sperling,  G.  (1986).  Attention  gating  in  short-­‐term  visual  memory.  Psychological  Review,   93(2),  180–206.   Regan,  D.  (1989).  Human  Brain  Electrophysiology:  Evoked  Potentials  and  Evoked  Magnetic  Fields  in  Science   and  Medicine.  New  York:  Elsevier.   Roach,  N.  W.,  Heron,  J.,  Whitaker,  D.,  &  McGraw,  P.  V.  (2010).  Asynchrony  adaptation  reveals  neural   population  code  for  audio-­‐visual  timing.  Proceedings.  Biological  sciences  /  The  Royal  Society,  (October   2010),  1314-­‐1322.  doi:10.1098/rspb.2010.1737   Roelofs,  C.  (1935).  Optische  localisation.  Archives  fur  Augenheilkunde,  109,  395–415.     Roseboom,  W.,  Nishida,  S.,  Fujisaki,  W.,  &  Arnold,  D.  H.  (2011).  Audio-­‐Visual  Speech  Timing  Sensitivity  Is   Enhanced  in  Cluttered  Conditions.  PloS  ONE,  6(4),  1-­‐8.  doi:10.1371/journal.pone.0018309.   Roufs,  J.A.J.  (1963).  Perception  lag  as  a  function  of  stimulus  luminance.  Vision  Research,  3,  81-­‐  91.   Schneider,  K.  a.,  &  Bavelier,  D.  (2003).  Components  of  visual  prior  entry.  Cognitive  Psychology,  47(4),  333-­‐ 366.   Shams,  L.,  Kamitani,  Y.,  &  Shimojo,  S.  (2002).  Visual  illusion  induced  by  sound.  Brain  Res  Cogn  Brain  Res,   14(1),  147–152.   Shams,  L.,  Kamitani,  Y.,  &  Shimojo,  S.  (2000).  Illusions.  What  you  see  is  what  you  hear.  Nature,  408(6814),   788.   Shapley,  R.  M.,  &  Victor,  J.  D.  (1978).  The  effect  of  contrast  on  the  transfer  properties  of  cat  retinal  ganglion   cells.  Journal  of  Physiology,  285,  275–298.   Shore,  D.  I.,  Spry,  E.,  &  Spence,  C.  (2002).  Confusing  the  mind  by  crossing  the  hands.   Cogn  Brain  Res  14:  153–163.   Smith,  W.  S.,  Mollon,  J.  D.,  Bhardwaj,  R.,  &  Smithson,  H.  E.  (2011).  Is  there  brief  temporal  buffering  of   successive  visual  inputs?  The  Quarterly  Journal  of  Experimental  Psychology,  64(4),  767–791.   Smithson,  H.,  &  Mollon,  J.  (2006).  Do  masks  terminate  the  icon?  Quarterly  Journal  of  Experimental   Psychology,  59(1),  150–160.   Snowden,  R.,  Thompson,  P.,  &  Troscianko,  T  (2006).  Basic  vision.  Oxford  University  Press:  Oxford.     Sinico,  M.  (1999).  Benussi  and  the  history  of  temporal  displacement.  Axiomathes,  75–93.   Spence,  C.  (2011).  Crossmodal  correspondences:  A  tutorial  review.  Attention,  Perception,  &  Psychophysics,   73,  971-­‐995.   Spence,  C.,  &  Parise,  C.  (2010).  Prior-­‐entry:  a  review.  Consciousness  and  cognition,  19(1),  364–79.   doi:10.1016/j.concog.2009.12.001   Stetson,  C.,  Cui,  X.,  Montague,  P.  R.,  and  Eagleman,  D.  M.  (2006).  Motor-­‐sensory  recalibration  leads  to  an   illusory  reversal  of  action  and  sensation.  Neuron  51,  651-­‐9.   Stone,  J.  V.,  Hunkin,  N.  M.,  Porrill,  J.,  Wood,  R.,  Keeler,  V.,  Beanland,  M.,  Port,  M.,  et  al.  (2001).  When  is   now?  Perception  of  simultaneity.  Proceedings  of  the  Royal  Society:  Biological  sciences,  268(1462),  31-­‐8.   doi:10.1098/rspb.2000.1326   Stromeyer,  C.  F.,  &  Martini,  P.  (2003).  Human  temporal  impulse  response  speeds  up  with  increased   stimulus  contrast.  Vision  research,  43(3),  285-­‐98.     Tanji  J  (2001)  Sequential  organization  of  multiple  movements:  involve-­‐  ment  of  cortical  motor  areas.   Annual  Reviews  of  Neuroscience  24:631–  651.   Uttal,  W.  R.  (1979).  Do  central  nonlinearities  exist?  Behavioral  and  Brain  Sciences  2:  286.   19  

 

Vicario,  G.  B.  (2003).  Temporal  displacement.  The  Nature  of  Time:  Geometry,  Physics,  and  Perception  (pp.   53–66).  Kluwer  Academic.   Vroomen,  J.,  &  Keetels,  M.  (2010).  Perception  of  intersensory  synchrony:  A  tutorial  review.  Attention,   Perception,  &  Psychophysics,  72(4),  871–884.  doi:10.3758/APP   Vroomen,  J.,  Keetels,  M.,  de  Gelder,  B.,  &  Bertelson,  P.  (2004).  Recalibration  of  temporal  order  perception   by  exposure  to  audio-­‐visual  asynchrony.  Brain  research.  Cognitive  Brain  Research,  22(1),  32–5.   doi:10.1016/j.cogbrainres.2004.07.003   Wackermann,  J.  (2007).  Inner  and  outer  horizons  of  time  experience.  The  Spanish  journal  of  psychology,   10(1),  20–32.   Wallace,  M.  T.,  Wilkinson,  L.  K.,  Stein,  B.  E.,  &  Wallace,  M.  T.  (2012).  Representation  and  integration  of   multiple  sensory  inputs  in  primate  superior  colliculus.  Journal  of  Neurophysiology,  76,    1246-­‐1266.   Warren,  R.  M.,  Obusek,  C.  J.,  Farmer,  R.  M.,  &  Warren,  R.  P.  (1969).  Auditory  sequence:  Confusion  of   patterns  other  than  speech  or  music.  Science,  164,  586-­‐587   Williams,  JM  &  Lit,  A  (1983).  Luminance-­‐dependent  visual  latency  for  the  Hess  effect,  the   Pulfrich  effect  and  simple  reaction  time.  Vision  Research,  23,  171-­‐179.   Wittmann,  M.  (2011).  Moments  in  Time.  Frontiers  in  Integrative  Neuroscience,  5(October),  1–9.   doi:10.3389/fnint.2011.00066.   Woodrow,  H.  (1951).  Time  perception.  In  S.S.  Stevens  (Ed.),  Handbook  of  experimental  psychology  (pp.   1224-­‐1236).  New  York:  Wiley.   Wolfe,  JM,  et  al.  (2012).  Sensation  &  Perception  -­‐  3rd  edition.  Sinauer:  Sunderland,  MA.   Yarrow,  K.,  Jahn,  N.,  Durant,  S.,  &  Arnold,  D.  H.  (2011).  Shifts  of  criteria  or  neural  timing?  The  assumptions   underlying  timing  perception  studies.  Consciousness  and  cognition,  20(4),  1518-­‐31.   doi:10.1016/j.concog.2011.07.003  

20