depth (m). (m m.s.l). NCL-3208134 local fluvial. 11. ± 0. 1.05 ±. 0.03. 10 ± 1 ...... 20.0m. 20.5m. 21.0m. 21.5m. 22.0m. 22.5m. 23.0m. 23.5m. 24.0m. 24.5m. ST.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
QUATERNARY SCIENCE REVIEWS - ONLINE SUPPLEMENTARY DATA DOI: 10.1016/j.quascirev.2015.10.015
Sedimentary architecture and chronostratigraphy of a late Quaternary incised-valley fill: a case study of the late Middle and Late Pleistocene Rhine system in the Netherlands Jan Peeters, Freek S. Busschers, Esther Stouthamer, Aleid J. Bosch, Meindert W. van den Berg, Jakob Wallinga, Alice J. Versendaal, Frans P. Bunnik, Hans Middelkoop
LUMINESCENCE DATING
The age control for this research is largely based on luminescence dating. In this supplementary information we provide information on the methods and procedures used. We focus on the samples for which results were not previously published; for additional information on the methods used for the other samples we refer to the original publications (Busschers et al., 2007; Kars et al., 2012). Sampling Samples were obtained from sediment cores obtained through mechanical coring. Sediment cores were split under subdued red-light conditions, and for each sample, 400-800 grams (ca. 10-15 cm of inner part of core) of sediment was collected from the split core and stored in opaque black plastic bags. This sample size provided sufficient material for both the dose-rate and the equivalent-dose measurements. To prevent any possible disturbances, samples were preferentially taken from homogenous intervals with clear sedimentological structures. Sampling close to bounding surfaces was avoided to prevent mixture of sediments from different sedimentary units; material adjacent to the core tube was not included in the sample to avoid contamination due to coring. Sample bags were transported to the laboratory of the Netherlands Centre for Luminescence dating (NCL) for further preparation and analysis. At the NCL laboratory, material from each of the bags is split in two parts under orange/amber safelights. One part is
prepared for dose rate analysis and the other part for equivalent dose estimation. Dose rate For dose-rate determination bulk samples were ashed for 24 hours at 500 °C, homogenized by grinding and subsequently cast in wax to ensure radon retention. The specific activities of K-40 and several radionuclides in the Uranium and Thorium decay chains were measured using a gammaspectrometer. The measured activities were attenuated for organic and water content (Aitken, 1985; Madsen et al., 2005) and converted into dose rate (Guérin et al., 2011). Complete water saturation was assumed for all samples for the full burial period; for sandy samples a water content of 20% by weight was assumed based on a porosity of about 34% (Weerts, 1996). A contribution of cosmic rays attenuated for depth was included in the total dose rate, assuming gradual burial (Prescott and Hutton, 1994). When using feldspar extracts for equivalent dose determination an additional dose rate contribution from internal K (12.5%; Huntley and Baril, 1997) and Rb (400 ppm; Huntley and Hancock, 2001) was taken into account. For those feldspar separates where we did not apply etching, a small contribution from external alpha radiation was included. Dose rates range from 0.62 to 2.28 Gy/ka for quartz separates (average 1.33 Gy/ka) and from 1.31 to 2.64 Gy/ka for K-feldspar separates (average 1.97 Gy/ka). All sample dose rates are provided in Table S.1. Equivalent dose Depending on the age of the sample, luminescence dating was applied to the quartz or
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
feldspar fraction. For 33 samples both fractions were prepared and analysed to allow a comparison of results (presented in Fig. 3 of the paper). Sample preparation To obtain purified quartz and K-feldspar separates, samples were prepared by sieving and chemical treatment. The exact grain size used varied depending on the lithology of the sample, when possible the 180 to 212 µm fraction was prepared, but in some cases finer (90-125 µm) or coarser (250-300 µm) fractions were used. Sieved samples were treated with HCl (10%) and H2O2 (30%) to remove carbonates and organic material. Heavy liquid (ρ= 2.58 g/cm3) density separation was applied to obtain the K-rich feldspar extracts (light fraction) when needed. The quartz fraction was treated with concentrated HF (40%) to dissolve remaining feldspar grains and etch the alpha-exposed outer rim of the quartz grains. Afterwards, quartz separates were washed with diluted HCl and water, and then sieved again to remove those grains that were severely affected by the HF treatment. Purity of the quartz separates was checked by monitoring the response to infrared stimulation; if needed HF etching was repeated. K-feldspar separates are obtained from the light fraction (ρ < 2.58 g/cm3); most of these were lightly etched with diluted HF (10%), but in some earlier prepared samples such etching was not applied. For each sample, small subsamples (aliquots) were prepared with a mono-layer of grains on a thin stainless-steel disc sprayed with a thin layer of silicon spray. To allow the detection of incomplete resetting and avoid increased scatter due to heterogeneous beta sources (Ballarini et al., 2006) we mounted prepared grains only on the centre 2 or 3 mm of the sample discs. Measurements were performed in Risø TL/OSLDA-15/20 readers equipped with internal 90Sr/90Y beta sources and blue (470 nm) and infrared (860 nm) LEDs (Bøtter-Jensen et al., 2003). Quartz methods For equivalent-dose determination of both quartz and feldspar fractions we used single-aliquot regenerative-dose procedures (SAR; Murray and Wintle, 2000). The exact measurement protocol
2
varied slightly between samples; important measurement parameters are outlined in Table S.1. For quartz separates, a 10 second preheat of 240 °C or 260 °C was used, in combination with a 200 °C or 220 °C cutheat. The SAR procedure included a ‘hot bleach’ at a temperature 20 °C above the preheat temperature used at the end of each SAR cycle. For part of the samples, an infrared exposure (40 s at 160 °C) was inserted prior to each OSL measurement to further reduce possible contributions of feldspar grains to the OSL signal (Wallinga et al., 2002). To optimize the contribution of the light-sensitive fast OSL component in the signal used, we applied an early background subtraction (Ballarini et al., 2007; Cunningham and Wallinga, 2010). For samples measured at an earlier stage, signal and background intervals were identical, whereas for later measurements we followed the suggestion of Cunningham and Wallinga, (2010) to take the background interval 2.5 times the signal integration interval (signal integration 0 – 0.5 s, minus normalized background between 0.5 and 1.75 s). Dose response curves were fitted with a saturating exp (−
D D0
exponential
function:
Li Ti
= LS (1 −
)). For samples where the data could not
be satisfactorily fitted with this function, an additional linear component was included: LS (1 − exp (−
D D0
Li Ti
=
)) + cD. In these equations, Li/Ti
is the sensitivity-corrected luminescence signal, Ls is the saturation level of the exponential function, D is the absorbed dose (Gy), D0 (Gy) is a shape parameter indicative of the onset of saturation, and c is a constant. Aliquots were accepted for equivalent-dose calculation if the recycling ratio was within 10% of unity. Aliquots that showed a significant IR test dose response (>20% of the (post-IR) blue response) and more than 10% depletion of the (post-IR) blue test dose response due to IR exposure were rejected to avoid bias of results due to feldspar contamination (Duller, 2003). Dose-recovery tests were performed on most samples, and indicate that a laboratory dose could be accurately determined using the adopted measurement procedures (dose recovery ratio: 1.00 ± 0.01, n=92; Fig. S.1A).
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
To determine the sample average equivalent dose the unweighted mean of single aliquot results was used, after iteratively removing single-aliquot equivalent-dose estimates removed more than 2.5 standard deviations from the sample mean as these aliquots were regarded as outliers. We prefer the unweighted mean as weighting results based on their precision may induce a bias towards low equivalent doses that plot on the steeper part of the dose response curve and are therefore on average known with better precision. If the sample mean De was greater than two times D0, the results was regarded unreliable (following Wintle and Murray, 2006) and hence not used for the chronological framework. Table S.1 indicates which data was accepted, and which rejected, and provides additional information on the reasons for rejection. Feldspar methods Equivalent doses for the K-feldspar separates were determined with SAR methods using pIRIR signals. The measurement parameters differ between samples, reflecting the development of pIRIR methods over recent years. For a few samples (n=6) a procedure was adopted with IR exposure for 100 s at 100 °C, followed by measurement of the pIRIR signal at 230 °C (pIRIR230; Kars et al., 2012). For all other samples (n=27), IR exposure for 100 s at 50 °C was followed by pIRIR measurement at 290 °C (pIRIR290; Thiel et al., 2011). The latter procedure was adopted as the signal has been shown to be stable, and hence no fading correction is needed (Thiel et al., 2011; Buylaert et al., 2012; Kars et al., 2012). For the samples where the pIRIR230 signal was used, we were not sure whether a fading correction should be applied. We therefor took a conservative approach to report the mean of the uncorrected and fading corrected equivalent dose, with the uncertainty indicating the full range from uncorrected minus 1-sigma error to the corrected plus 1-sigma error. For this reasons, reported uncertainties on these samples are much larger than for the samples measured using the pIRIR290 signal. A limited number of aliquots were measured for each sample, given the time consuming nature of these measurements in the high dose region.
3
For the K-feldspar measurements a conventional late background subtraction was used to obtain a net signal, with the background signal integrated over a period five times the initial signal integration length. Fitting of dose response curves, determining the sample equivalent dose from the single-aliquot estimates, and validity judgement followed the same procedures as outlined for quartz. The adopted methods were checked using a dose recovery experiment. For this experiment, six aliquots of each sample were bleached for at least 4 hours in a SOL2 solar simulator. The remnant dose after laboratory bleach was measured on three of the discs, whereas the other discs received a laboratory dose, which was then determined using the adopted protocol. The average remnant dose was subtracted from the equivalent doses, prior to calculating the dose-recovery ratio. The overall dose recovery ratio was 1.08 ± 0.02, n=101 (Fig. S.1B), reflecting that the adopted protocol can accurately determine a given dose.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
A.
4
B.
Figure S1. Dose recovery results for quartz OSL (A) and feldspar pIRIR (B) indicate that the adopted protocols can accurately recover a known dose. Each data point represents the dose recovery ratio of one single aliquot. Solid data points fall within the shaded area and agree with unity at the 2-σ confidence level.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
A.
1,000
—Natural OSL signal Natural —Regenerative dose (114 Gy) OSL1200ß signal
OSL (cts per 0.02 s)
900 800 700 600 500 400 300 200 100 0 0
2
4
6
8
10 12 Time (s)
14
16
18
20
B.
Figure S2. Visualisation of quartz OSL properties, showing results for a single disc of sample NCL6412189 (disc 1, sequence n13tr015e). A) OSL shine down curve; integration intervals are indicated with red and green vertical lines, for the signal and background respectively. The early background integration interval (0.8 – 1.8 s) immediately follows signal integration interval (0.0 – 0.8 s). Natural and regenerative dose OSL signals are identical in shape. B) OSL dose response curve, data fitted with an exponential (D0 = 43 ± 9 Gy) plus linear component. The natural signal is shown by the horizontal red line; projecting the signal on the measured dose-response curve yields a De of 141 ± 11 Gy (indicated by the vertical red line).
5
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
A. 200,000
—Natural PIRIR290 signal Natural 2000ß —Regenerative dose (190 Gy) PIRIR 290 signal
IRSL (cts per 0.40 s)
180,000 160,000 140,000 120,000 100,000 80,000 60,000 40,000 20,000 0 0
10 20
30 40 50 60 70 Time (s)
80 90 100
B.
Figure S3. Visualisation of feldspar PIRIR290 properties, showing results for a single disc of sample NCL6412189 (disc 15, sequence n12aj136e). A) PIRIR290 shine down curve; integration intervals are indicated with red and green vertical lines, for the signal and background, respectively. Natural and regenerative dose PIRIR290 signals are identical in shape. B) PIRIR290 dose response curve, data fitted with an exponential (D0 = 142 ± 55 Gy) plus linear component. The natural signal is shown by the horizontal red line; projecting the signal on the measured dose-response curve yields a De of 182 ± 6 Gy (indicated by the vertical red line).
6
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
7
Table S1. Luminescence dating overview NCL labcode
Sedimentary unit
Equivalent dose (Gy)
Dose rate (Gy/ka)
Age (ka)
Method
Validity
Borehole no. research core
Coordinates (X)
(Y)
Surface elevation (m m.s.l)
Sample depth (m)
Figure Reference
NCL-3208134 NCL-3208135 NCL-3208135 NCL-3208136 NCL-3208137 NCL-3208138 NCL-3208138 NCL-3208139 NCL-3208139 NCL-3208140 NCL-3208140
local fluvial local fluvial local fluvial local fluvial A4 A4 A4 shallow-marine shallow-marine shallow-marine shallow-marine
11 42 67 87 68 65 104 117 221 123 214
± ± ± ± ± ± ± ± ± ± ±
0 1 15* 5 3 3 22* 5 69* 6 51*
1.05 1.81 2.64 1.50 1.21 1.12 1.94 1.54 2.16 1.75 2.37
± ± ± ± ± ± ± ± ± ± ±
0.03 0.06 0.10 0.05 0.04 0.04 0.09 0.05 0.08 0.06 0.09
10 23 25 58 56 57 54 75 102 70 90
± ± ± ± ± ± ± ± ± ± ±
1 1 6* 4 3 3 11* 4 32* 5 22*
OSL OSL pIRIR 230 OSL OSL OSL pIRIR 230 OSL pIRIR 230 OSL pIRIR 230
Accepted Accepted Accepted Rejected Accepted Accepted Accepted Rejected Accepted Rejected Accepted
B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913 B25E0913
122780 122780 122780 122780 122780 122780 122780 122780 122780 122780 122780
487920 487920 487920 487920 487920 487920 487920 487920 487920 487920 487920
1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45
14.27 16.66 16.66 20.18 24.38 28.85 28.85 32.96 32.96 33.50 33.50
S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A
this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication
NCL-3411043 NCL-3411043 NCL-3411093 NCL-3411093
S6 S6 S6 S6
122 501 121 448
± ± ± ±
17 61 27 71
0.70 1.48 0.75 1.52
± ± ± ±
0.30 0.08 0.03 0.09
173 339 162 295
± ± ± ±
25 46 37 50
OSL pIRIR 290 OSL pIRIR 290
Rejected Rejected Rejected Rejected
B15G0211 B15G0211 B15G0211 B15G0211
169094 169094 169094 169094
528440 528440 528440 528440
-3.98 -3.98 -3.98 -3.98
41.72 41.72 44.70 44.70
S.6B S.6B S.6B S.6B
this publication this publication this publication this publication
NCL-3510067 NCL-3510067 NCL-3510068 NCL-3510068 NCL-3510069 NCL-3510069 NCL-3510070 NCL-3510070 NCL-3510071 NCL-3510071
A3 A3 A3 A3 A3 A3 A3 A3 A3 A3
56 94 138 228 160 240 122 218 158 223
± ± ± ± ± ± ± ± ± ±
5 5 13 26 11 16 5 34 10 17
0.62 1.39 1.63 2.40 1.54 2.31 1.46 2.23 1.42 2.19
± ± ± ± ± ± ± ± ± ±
0.02 0.08 0.05 0.10 0.05 0.09 0.05 0.09 0.05 0.09
90 68 85 95 104 104 83 97 112 102
± ± ± ± ± ± ± ± ± ±
8 6 9 12 8 8 4 16 8 9
OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290
Accepted Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted
B14A0090 B14A0090 B14A0090 B14A0090 B14A0090 B14A0090 B14A0090 B14A0090 B14A0090 B14A0090
109835 109835 109835 109835 109835 109835 109835 109835 109835 109835
544197 544197 544197 544197 544197 544197 544197 544197 544197 544197
1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10
14.93 14.93 25.88 25.88 28.73 28.73 31.58 31.58 31.83 31.83
S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B
this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication
NCL-3610072 NCL-3610072 NCL-3610073 NCL-3610073 NCL-3610074 NCL-3610074 NCL-3610075 NCL-3610075 NCL-3610076 NCL-3610076
local fluvial A4 shallow-marine shallow-marine shallow-marine shallow-marine glaciolacustrine glaciolacustrine glaciolacustrine glaciolacustrine
63 104 91 172 111 176 103 232 87 215
± ± ± ± ± ± ± ± ± ±
3 7 3 9 7 11 4 12 4 14
1.40 2.22 0.81 1.63 0.87 1.69 1.11 1.93 0.76 1.58
± ± ± ± ± ± ± ± ± ±
0.05 0.10 0.03 0.09 0.03 0.09 0.04 0.09 0.03 0.09
45 47 113 105 127 104 93 120 114 136
± ± ± ± ± ± ± ± ± ±
2 4 6 8 9 9 5 8 7 12
OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290
Rejected Accepted Accepted Accepted Rejected Accepted Rejected Accepted Accepted Accepted
B27A0369 B27A0369 B27A0369 B27A0369 B27A0369 B27A0369 B27A0369 B27A0369 B27A0369 B27A0369
189050 189050 189050 189050 189050 189050 189050 189050 189050 189050
499207 499207 499207 499207 499207 499207 499207 499207 499207 499207
0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
17.83 17.83 18.62 18.62 18.87 18.87 21.72 21.72 24.70 24.70
S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A S.6A
this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication
NCL-3710077 NCL-3710078 NCL-3710079 NCL-3710080 NCL-3710081
A4 shallow-marine glaciolacustrine glaciolacustrine glaciolacustrine
81 141 183 312 208
± ± ± ± ±
5 6 13 24 12
1.32 1.66 1.95 2.22 2.28
± ± ± ± ±
0.06 0.07 0.08 0.11 0.11
62 85 94 141 91
± ± ± ± ±
5 5 8 13 7
OSL OSL OSL OSL OSL
Accepted Accepted Rejected Rejected Rejected
B25E0907 B25E0907 B25E0907 B25E0907 B25E0907
122500 122500 122500 122500 122500
488590 488590 488590 488590 488590
0.35 0.35 0.35 0.35 0.35
26.80 30.57 53.22 56.31 59.57
S.6B S.6B S.6B S.6B S.6B
this publication this publication this publication this publication this publication
NCL-4111009 NCL-4111010 NCL-4111010 NCL-4111011 NCL-4111011 NCL-4111012 NCL-4111012
A2 A2 A2 A3 A3 A1 A1
125 129 232 147 221 128 218
± ± ± ± ± ± ±
10 10 11 10 8 10 9
1.38 1.21 1.98 1.50 2.27 1.18 1.95
± ± ± ± ± ± ±
0.06 0.05 0.10 0.06 0.10 0.05 0.10
91 107 117 98 97 109 112
± ± ± ± ± ± ±
8 9 8 8 6 9 7
OSL OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290
Rejected Accepted Accepted Rejected Accepted Accepted Accepted
B16D0069 B16C0043 B16C0043 B21G0547 B21G0547 B21G0547 B21G0547
190310 180460 180460 209410 209410 209410 209410
527539 526270 526270 510950 510950 510950 510950
-2.50 -3.50 -3.50 0.50 0.50 0.50 0.50
17.32 19.05 18.95 10.55 10.45 16.65 16.55
S.6B A.1 A.1 S.6B S.6B S.6B S.6B
this publication this publication this publication this publication this publication this publication this publication
NCL-4311074 NCL-4311074 NCL-4311075 NCL-4311075 NCL-4311076 NCL-4311076 NCL-4311077 NCL-4311077 NCL-4311078 NCL-4311078 NCL-4311079 NCL-4311079 NCL-4311080 NCL-4311080
A5 A5 A5 A5 A3 A3 A3 A3 A2 A2 A1 A1 S6 S6
42 71 48 121 154 230 122 243 149 241 92 249 134 233
± ± ± ± ± ± ± ± ± ± ± ± ± ±
6 13 5 20 10 11 27 12 25 12 16 18 12 12
1.11 1.88 1.52 2.29 1.02 1.79 1.56 2.33 1.31 2.08 1.35 2.12 1.13 1.90
± ± ± ± ± ± ± ± ± ± ± ± ± ±
0.04 0.09 0.05 0.10 0.03 0.09 0.05 0.10 0.04 0.09 0.05 0.09 0.04 0.09
38 38 31 53 151 129 78 104 114 116 68 117 119 122
± ± ± ± ± ± ± ± ± ± ± ± ± ±
6 7 4 9 11 9 18 7 19 8 12 10 12 8
OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 OSL pIRIR 290
Accepted Rejected Accepted Rejected Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted
B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211 B15G0211
169094 169094 169094 169094 169094 169094 169094 169094 169094 169094 169094 169094 169094 169094
528440 528440 528440 528440 528440 528440 528440 528440 528440 528440 528440 528440 528440 528440
-3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98 -3.98
8.70 8.70 12.70 12.70 18.70 18.70 25.70 25.70 26.65 26.65 30.55 30.55 34.65 34.65
S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B S.6B
this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication
NCL-6412185 NCL-6412185 NCL-6412186 NCL-6412187 NCL-6412188 NCL-6412188 NCL-6412189 NCL-6412189 NCL-6412190 NCL-6412191 NCL-6412192 NCL-6412192 NCL-6412193 NCL-6412193 NCL-6412194 NCL-6412195 NCL-6412196 NCL-6412197
A5 A5 A1 S6 A5 A5 A3 A3 A1 S6 A5 A5 A3 A3 A2 A1 A1 Mid. Pleist.
45 72 227 251 44 97 136 193 205 242 40 96 122 223 392 248 216 461
± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
2 5 7 15 3 18 10 11 15 11 2 11 8 8 17 16 16 17
1.09 1.85 1.93 1.81 0.97 1.74 1.62 2.40 1.89 1.82 1.03 1.81 1.09 1.98 2.48 2.05 1.73 1.67
± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
0.05 0.09 0.10 0.09 0.04 0.09 0.08 0.11 0.10 0.10 0.05 0.09 0.05 0.11 0.11 0.10 0.10 0.09
42 39 118 139 45 55 84 81 109 132 39 53 112 112 158 121 125 276
± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±
3 3 7 11 4 11 7 6 10 9 3 7 9 7 10 10 12 18
OSL pIRIR 290 pIRIR 290 pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 pIRIR 290 pIRIR 290 OSL pIRIR 290 OSL pIRIR 290 pIRIR 290 pIRIR 290 pIRIR 290 pIRIR 290
Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Rejected Accepted Accepted Rejected Accepted Accepted Rejected
B15G0212 B15G0212 B15G0212 B15G0212 B15G0213 B15G0213 B15G0213 B15G0213 B15G0213 B15G0213 B15G0214 B15G0214 B15G0214 B15G0214 B15G0214 B15G0214 B15G0214 B15G0214
163007 163007 163007 163007 162994 162994 162994 162994 162994 162994 162996 162996 162996 162996 162996 162996 162996 162996
525550 525550 525550 525550 528494 528494 528494 528494 528494 528494 531917 531917 531917 531917 531917 531917 531917 531917
-5.38 -5.38 -5.38 -5.38 -5.00 -5.00 -5.00 -5.00 -5.00 -5.00 -4.96 -4.96 -4.96 -4.96 -4.96 -4.96 -4.96 -4.96
11.75 11.75 25.75 32.50 11.60 11.60 17.70 17.70 24.75 31.75 10.70 10.70 15.65 15.65 20.75 24.70 27.70 33.70
A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3 A.3
this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication this publication
NCL-6312180 NCL-6312181 NCL-6312182 NCL-6312183 NCL-6312184
local fluvial M1 M1 A1 A1
76 265 231 211 700
± ± ± ± ±
3 22 9 12 32
1.76 2.38 2.11 1.31 1.66
± ± ± ± ±
0.09 0.10 0.10 0.08 0.09
43 112 109 161 421
± ± ± ± ±
3 11 6 14 29
pIRIR 290 pIRIR 290 pIRIR 290 pIRIR 290 pIRIR 290
Accepted Accepted Accepted Accepted Rejected
B15F1501 B15F1501 B15F1501 B15F1501 B15F1501
175986 175986 175986 175986 175986
537656 537656 537656 537656 537656
-3.62 -3.62 -3.62 -3.62 -3.62
8.90 11.50 15.55 20.41 21.55
A.2 A.2 A.2 A.2 A.2
this publication this publication this publication this publication this publication
NCL-3108014 NCL-3108014 NCL-3108015 NCL-3108015
A3 A3 A3 A3
131 243 127 165
± ± ± ±
11 108* 18 68*
0.99 1.95 1.13 1.81
± ± ± ±
0.05 0.10 0.06 0.10
133 125 113 91
± ± ± ±
13 56* 17 38*
OSL pIRIR 230 OSL pIRIR 230
Accepted Accepted Accepted Accepted
B16A1292 B16A1292 B16A1292 B16A1292
181789 181789 181789 181789
537618 537618 537618 537618
0.04 0.04 0.04 0.04
14.90 14.90 12.60 12.60
S.1 in S.1 in S.1 in S.1 in
Kars et al. (2012) Kars et al. (2012) Kars et al. (2012) Kars et al. (2012)
NCL-1104001 NCL-1104002 NCL-1104003 NCL-1104004 NCL-1104005 NCL-1104006 NCL-1104007 NCL-1104008 NCL-1104009 NCL-1104010 NCL-1104011 NCL-1104012 NCL-1104013 NCL-1104014
local fluvial local fluvial local fluvial local fluvial local fluvial A5 A5 A5 A5 A2 A1 local fluvial A5 A5
18 29 30 48 51 49 42 45 51 203 194 18 86 111
± ± ± ± ± ± ± ± ± ± ± ± ± ±
1 1 1 2 2 3 3 2 3 12 8 1 5 6
1.29 1.37 1.32 2.03 1.58 1.11 0.96 1.06 1.14 1.81 1.76 1.24 1.61 1.69
± ± ± ± ± ± ± ± ± ± ± ± ± ±
0.05 0.05 0.05 0.20 0.06 0.04 0.04 0.05 0.05 0.07 0.07 0.05 0.06 0.06
14 21 23 24 32 44 44 43 45 112 111 15 53 66
± ± ± ± ± ± ± ± ± ± ± ± ± ±
1 1 1 3 2 3 3 3 3 8 6 1 4 4
OSL OSL OSL OSL OSL OSL OSL OSL OSL OSL OSL OSL OSL OSL
N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B27H0282 B33E0313 B33E0313 B33E0313
210605 210605 210605 210605 210605 210605 210605 210605 210605 210605 210605 202610 202610 202610
477650 477650 477650 477650 477650 477650 477650 477650 477650 477650 477650 474355 474355 474355
5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.70 5.10 5.10 5.10
1.35 1.75 2.75 3.75 4.85 5.87 6.85 7.85 8.45 10.93 14.90 1.33 8.07 8.37
5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in 5 in
Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007) Busschers et al. (2007)
For equivalent doses and ages denoted with ‘*’, results are the mean for fading corrected and non-fading corrected results. Uncertainties indicate the range from uncorrected minus 1-sigma error to corrected plus 1-sigma error. Coordinates are in Dutch RD system. Additional information on the luminescence dating results is available online in the http://www.Lumid.nl database.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
8
Table S1. Luminescence dating overview - continued NCL labcode
Quartz IR-Wash
Signal integration
DRC fit
NCL-3208134 NCL-3208135 NCL-3208135 NCL-3208136 NCL-3208137 NCL-3208138 NCL-3208138 NCL-3208139 NCL-3208139 NCL-3208140 NCL-3208140
NO NO
EBG Ratio 1:1 EBG Ratio 1:1
EXP EXP
NO
EBG Ratio 1:1
EXP
NCL-3411043 NCL-3411043 NCL-3411093 NCL-3411093
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
NCL-3510067 NCL-3510067 NCL-3510068 NCL-3510068 NCL-3510069 NCL-3510069 NCL-3510070 NCL-3510070 NCL-3510071 NCL-3510071
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
1.05 ± 0.22
Dose recovery Feldspar DRC fit
EBG Ratio 1:1 EBG Ratio 1:1 EBG Ratio 1:1
EXP EXP EXP
1.10 ± 0.02 1.03 ± 0.04 1.06 ± 0.06
NO
EBG Ratio 1:1
EXP
0.99 ± 0.01
EBG Ratio 1:2.5
EXP+Lin
1.21 ± 0.03
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
1.06 ± 0.04
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
0.98 ± 0.14
EXP+Lin
EBG Ratio 1:2.5
EXP
1.00 ± 0.04
40s @ 160C
EBG Ratio 1:2.5
EXP
0.99 ± 0.07
40s @ 160C
EBG Ratio 1:2.5
EXP
1.00 ± 0.02
40s @ 160C
EBG Ratio 1:2.5
EXP
1.08 ± 0.09
40s @ 160C
EBG Ratio 1:2.5
EXP
0.91 ± 0.00
NCL-3710077 NCL-3710078 NCL-3710079 NCL-3710080 NCL-3710081
40s @ 160C 40s @ 160C 40s @ 160C 40s @ 160C 40s @ 160C
EBG Ratio 1:2.5 EBG Ratio 1:2.5 EBG Ratio 1:2.5 EBG Ratio 1:2.5 EBG Ratio 1:2.5
EXP+LIN EXP+LIN EXP+LIN EXP+LIN EXP+LIN
1.31 1.18 0.88 1.02 0.93
NCL-4111009 NCL-4111010 NCL-4111010 NCL-4111011 NCL-4111011 NCL-4111012 NCL-4111012
40s @ 160C 40s @ 160C
EBG Ratio 1:2.5 EBG Ratio 1:2.5
EXP EXP
1.00 ± 0.06 0.90 ± 0.11
NCL-4311074 NCL-4311074 NCL-4311075 NCL-4311075 NCL-4311076 NCL-4311076 NCL-4311077 NCL-4311077 NCL-4311078 NCL-4311078 NCL-4311079 NCL-4311079 NCL-4311080 NCL-4311080
± ± ± ± ±
nd
EXP
nd
EXP+LIN
0.99
±
0.18
EXP+LIN
1.06
±
0.10
EXP+LIN
0.74
±
0.03
EXP+LIN
1.82
±
0.96
EXP+LIN
0.90
±
0.02
EXP+LIN
0.79
±
0.14
40s @ 160C
EBG Ratio 1:2.5
EXP
1.06 ± 0.06
40s @ 160C
EBG Ratio 1:2.5
EXP
1.03 ± 0.07
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
40s @ 160C 40s @ 160C
EBG Ratio 1:2.5 EBG Ratio 1:2.5
EXP+Lin EXP+Lin
nd
EXP+LIN
1.10
±
0.03
EXP+LIN
1.19
±
0.03
EXP+LIN
1.14
±
0.01
EXP+LIN
1.18
±
0.03
EXP+LIN
1.11
±
0.05
EXP+LIN
1.05
±
0.02
EXP+LIN
0.96
±
0.05
EXP+LIN
1.08
±
0.07
EXP+LIN
1.06
±
0.05
EXP+LIN
1.18
±
0.03
nd nd nd EXP+LIN
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
EXP+LIN
40s @ 160C
EBG Ratio 1:2.5
EXP+Lin
nd
NO
EBG Ratio 1:2.5
EXP+Lin
0.98 ± 0.04
NO
EBG Ratio 1:2.5
EXP+Lin
0.96 ± 0.03
NO
EBG Ratio 1:2.5
EXP+Lin
1.07 ± 0.06
NO
EBG Ratio 1:2.5
EXP+Lin
0.92 ± 0.04
NO
EBG Ratio 1:2.5
EXP+Lin
0.86 ± 0.05
40s @ 160C 40s @ 160C
EBG 1:2.5 EBG 1:2.5
Exp+Lin Exp+Lin
nd 0.94
±
0.03
EXP+LIN
1.01
±
nd
EXP+LIN
0.99
±
nd
Accepted Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted Accepted Accepted Rejected Accepted Rejected Accepted Accepted Accepted
Rejected Accepted Accepted Rejected Accepted Accepted Accepted Accepted Rejected Accepted Rejected Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted Rejected Accepted
EXP+LIN
1.14
±
0.16
EXP+LIN EXP+LIN EXP+LIN
1.09 1.08 1.11
± ± ±
0.05 0.01 0.05
EXP+LIN
1.26
±
0.17
EXP+LIN EXP+LIN EXP+LIN
1.22 1.33 1.16
± ± ±
0.07 0.19 0.18
EXP+LIN
0.98
±
0.14
EXP+LIN EXP+LIN EXP+LIN EXP+LIN EXP+LIN
1.02 1.08 1.11 1.16 0.98
± ± ± ± ±
0.07 0.00 0.13 0.04 0.00
Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Accepted Rejected Accepted Accepted Rejected Accepted Accepted Rejected
EXP+LIN EXP+LIN EXP+LIN EXP+LIN EXP+LIN
0.99 1.05 1.03 1.12 1.23
± ± ± ± ±
0.02 0.14 0.07 0.02 0.17
Accepted Accepted Accepted Accepted Rejected
EXP
0.98
±
0.01
EXP
0.98
±
0.01
1.04 ± 0.04 1.04 ± 0.04
Rejected Rejected Rejected Rejected
Accepted Accepted Rejected Rejected Rejected
0.08 0.10 0.15 0.07 0.04
NCL-6312180 NCL-6312181 NCL-6312182 NCL-6312183 NCL-6312184
NCL-1104001 NCL-1104002 NCL-1104003 NCL-1104004 NCL-1104005 NCL-1104006 NCL-1104007 NCL-1104008 NCL-1104009 NCL-1104010 NCL-1104011 NCL-1104012 NCL-1104013 NCL-1104014
nd
EXP
EXP+LIN 40s @ 160C
NCL-3108014 NCL-3108014 NCL-3108015 NCL-3108015
EXP
0.96 ± 0.09
NCL-3610072 NCL-3610072 NCL-3610073 NCL-3610073 NCL-3610074 NCL-3610074 NCL-3610075 NCL-3610075 NCL-3610076 NCL-3610076
NCL-6412185 NCL-6412185 NCL-6412186 NCL-6412187 NCL-6412188 NCL-6412188 NCL-6412189 NCL-6412189 NCL-6412190 NCL-6412191 NCL-6412192 NCL-6412192 NCL-6412193 NCL-6412193 NCL-6412194 NCL-6412195 NCL-6412196 NCL-6412197
nd
1.02 ± 0.08
40s @ 160C
EBG Ratio 1:2.5
EXP
Validity
Accepted Accepted Accepted Rejected Accepted Accepted Accepted Rejected Accepted Rejected Accepted
0.92 ± 0.02 1.00 ± 0.05
NO NO NO
40s @ 160C
Dose recovery
Accepted Accepted Accepted Accepted N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Comment regarding validity
Judged questionable based on inconsistency with results above and below
De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably De far above 2*D0 threshold; OSL signal too close to saturation to date De close to 2*D0 threshold; validity of pIRIR signals in this range is uncertain De far above 2*D0 threshold with many aliquots returing natural OSL signals above laboratory saturation level; OSL signal too close to saturation to d De close to 2*D0 threshold; validity of pIRIR signals in this range is uncertain
De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably Large spread in single-aliquot De results; overdispersion 41%
Rejecteded based on inconsistency with pIRIR results, in combination with De above 100 Gy Rejecteded based on inconsistency with pIRIR results, in combination with De above 100 Gy
De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably De above 2*D0 threshold; OSL signal too close to saturation to date reliably
De above 2*D0 threshold; OSL signal too close to saturation to date reliably
Rejecteded based on inconsistency with OSL result; likely affected by poor bleaching Rejecteded based on inconsistency with OSL result; likely affected by poor bleaching De above 2*D0 threshold; OSL signal too close to saturation to date reliably De far above 2*D0 threshold with many aliquots returing natural OSL signals above laboratory saturation level; OSL signal too close to saturation to d De above 2*D0 threshold; OSL signal too close to saturation to date reliably De far above 2*D0 threshold with many aliquots returing natural OSL signals above laboratory saturation level; OSL signal too close to saturation to d De far above 2*D0 threshold with many aliquots returing natural OSL signals above laboratory saturation level; OSL signal too close to saturation to d
Rejecteded based on inconsistency with OSL result; likely affected by poor bleaching
De above 2*D0 threshold; pIRIR signal too close to saturation to date reliably
De above 2*D0 threshold; pIRIR signal too close to saturation to date reliably
De above 2*D0 threshold; pIRIR signal too close to saturation to date reliably
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
9
PALAEOBIOLOGICAL ANALYSES
Table S2. Overview with all new acquired and archived research cores and their associated analyses and references. Borehole no. research core
Coordinates (X)
Coordinates (Y)
Elevation Lenght Analysis (m m.s.l.) (m)
Reference
Author(s)
Year
Transect A B27A0369
189050
499207
0.15
40.0
PALY OSL pIRIR
TNO-034-UT-2010-01576/B this publication this publication
Kloos Peeters et al. Peeters et al.
2010 -
Transect B B16A1292
181789
537618
0.04
25.0
B16C0043
180460
526270
-3.50
66.0
PALY OSL + pIRIR OSL pIRIR
TNO-060-UT-2011-00698/B QG 12, 74-86 this publication this publication
Bunnik Kars et al. Peeters et al. Peeters et al.
2011 2012 -
Transect C B15F1501
175986
537656
-3.62
25.0
B15H0056 B15H0057 B20F0067 B20F0175
176000 175480 174950 174640
536000 532040 523180 521840
-3.50 -4.00 -4.30 -4.70
20.0 23.5 22.8 22.6
PALY DIAT pIRIR PALY PALY DIAT PALY DIAT
this publication this publication this publication this publication this publication RGD Diatom Lab. report 490 this publication RGD Diatom Lab. report 603
Peeters et al. Peeters et al. Peeters et al. Peeters et al. Peeters et al. De Wolf Peeters et al. De Wolf
1987 1996
Transect D B15G0214
162996
531917
-4.96
36.0
B15G0213
162994
528494
-5.00
36.0
B15G0212
163007
525550
-5.38
35.0
B20E0063
162000
523000
-5.00
50.0
PALY OSL + pIRIR PALY OSL + pIRIR PALY OSL + pIRIR PALY
this publication this publication this publication this publication this publication this publication RGD Paleobotany Lab. 385
Peeters et al. Peeters et al. Peeters et al. Peeters et al. Peeters et al. Peeters et al. De Jong
1964
Transect E B20B0010
155300
521800
-3.90
50.0
PALY
RGD Paleobotany Lab. 381
De Jong
1964
Transect F B14G0973 B25E0913
128553 122780
529557 487920
-2.43 1.45
35.0 78.8
PALY PALY + DIAT OSL + pIRIR U-Th
TNO-060-UT-2011-00696/B NJG 79 (2/3), 161-196 this publication NJG 79 (2/3), 161-196
Bunnik Van Leeuwen et al. Peeters et al. Van Leeuwen et al.
2011 2000 2000
Figure S.6 B25E0907
122500
488590
0.35
64.9
B14A0090
109835
544197
1.10
34.0
B16D0069
190310
527539
-2.50
70.5
B21G0547
209410
510950
0.50
20.2
B15G0211
169094
528440
-3.98
52.0
OSL PALY + DIAT OSL pIRIR PALY + DIAT OSL pIRIR OSL pIRIR PALY OSL + pIRIR
this publication TNO-034-UT-2010-02015-A this publication this publication TNO-034-UT-2010-00977-A this publication this publication this publication this publication 034-060-UT-2011-00697/B this publication
Peeters et al. Bunnik and Cremer Peeters et al. Peeters et al. Cremer et al. Peeters et al. Peeters et al. Peeters et al. Peeters et al. Bunnik Peeters et al.
2010 2010 2011 -
IJssel basin transect B27H0282 210605 B33E0313 202610
477650 474355
5.70 5.10
32.0 20.4
OSL + PALY OSL
QSR 26, 3216-3248 QSR 26, 3216-3248
Busschers et al. Busschers et al.
2007 2007
PALY = Pollen analysis; DIAT = Diatom analysis; OSL = Optically Stimulated Luminescence; pIRIR = post-InfraRed InfraRed Stimulated Luminescence. Coordinates in Dutch RD system. Additional information on the palaeobiological data and reports is available online at http://www.dinoloket.nl.
Figure S4A. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15F1501. 21.0m
20.5m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
15.0m
14.5m
14.0m
13.5m
13.0m
12.5m
12.0m
11.5m
11.0m
10.5m
9.0m
9.5m
8.00
8.0m
8.5m
7.51
STAQUA_5Herbs
STAQUA_6Heathland
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_1Prequartair
STAQUA_2Treesdry
Pollen sum
7.5m
7.0m
6.5m
6.0m
5.5m
5.0m
10.0m
Depth
x: 175986 y: 537656 z: -3.62m
B15F1501
100
20.66
20.78
20.90
20.98
20.66
20.78
20.90
20.98
19.34
18.23
18.98 19.04
17.97
18.23
17.97
18.80 18.83
17.71
17.71
18.58 18.60
17.43
17.43
18.40
17.21
17.21
16.85
15.33
16.30
14.94
15.33
14.94
15.97
14.57
14.57
14.15
13.87
13.54
13.18
12.30
11.80
11.18
10.42
10.89
10.71
10.16
10.42
9.86
10.16
9.47
9.86
9.47
7.25
5.35
Samples Prequartair
Sciadopitys . Tasmanites . Trilete sporen Abies . Acer . Carpinus . Carpinus 3p Corylus .
Trees dry
Fagus . Hedera . Hippophae . Ilex . Lonicera . Quercus .
Taxus . Tilia . Ulmus . Viscum . STAQUA_3Treeswet
Alnus . Frangula alnus Fraxinus . Myrica . Betula .
Picea .
Trees indifferent
Pinus .
Salix . Anthemis Type Anthoceros . Apiaceae . Armeria Type Artemisia . Asteraceae Liguliflorae Asteraceae Tubuliflorae Brassicaceae . Caryophyllaceae . Chenopodiaceae . Cirsium type Cyperaceae .
Herbs
Rutten Gemaalweg B15F1501
Filipendula . Galium . Helianthemum . Lycopodium clavatum Mentha . Plantago lanceolata Plantago maritima type Poaceae .
Poaceae >40 µ Polygonum bistorta Polygonum persicaria type Polypodium . Ranunculus acris type
Rosaceae . Sanguisorba minor Selaginella selaginoides Succisa . Thalictrum . Valeriana officinalis Calluna . Heathland
Empetrum . Ericales . Drosera spec. Dryopteris type
Local taxa
Equisetum . Ophioglossum vulgatum Osmunda . Sphagnum . Thelipteris Type Alisma . Azolla massulae Azolla/Salvinia fragm. Botryococcus .
Ceratophyllum spines Cladium sp. Eu-Rumex . Menyanthes trifoliata Myriophyllum verticilatum Nuphar . Nymph. -slijmcel-
Aquatics taxa
Nymph. -sterhaar-
Nymphaea alba Pediastrum .
Non-pollen taxa
LS
E1
E2
E3
E4
E5
E6
W
PAZ
19.34
18.98 19.04
18.40
18.80 18.83
18.58 18.60
16.30
16.85
15.97
14.15
13.54
13.87
13.18
12.30
11.80
10.71
11.18
10.89
8.00
7.51
7.25
5.35
Geological Survey of the Netherlands
Riccia . Sparganium type Spirogyra . Stratiotes . Trapa natans . Typha latifolia Dinoflagellaten . Diporotheca . Filinia . Foraminifera .
Samples
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
10
Figure S4B. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15G0212. Depth
x: 163007 y: 525550 z: -5.38m
24.5m
24.0m
23.5m
23.0m
22.5m
22.0m
21.5m
21.0m
20.5m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
15.0m
14.5m
14.0m
B15G0212
STAQUA_6Heathland
STAQUA_5Herbs
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_2Treesdry
STAQUA_1Prequartair
Pollen sum
21.45
21.60
21.76
21.93
22.06
22.26
22.47
21.60
21.76
21.93
22.06
22.26
22.47
23.30
21.29
21.45
20.67
20.67
21.29
20.47
20.47
20.87
20.31
20.31
19.71
19.28
18.75
18.35
17.78
17.35
16.80
16.35
15.39
15.39
15.77
15.10
14.87
14.87
15.10
14.67
14.67
Samples Prequartair
Classopollis . Liquidambar . Nyssa . OUDE TRILETE SPOREN Sciadopitys . Symplocos . T. spec. Tasmanites . Trilete sporen Abies . Acer . Carpinus .
% of STAQUA_Pollensom (75mm=100%)
Carpinus 3p Carya . Corylus .
Trees dry
Fagus . Hedera . Hippophae . Ilex . Juglans . Juniperus type
Quercus .
Taxus . Taxus cf. . Tilia . Ulmus .
STAQUA_3Treeswet Trees indifferent
% of STAQUA_Pollensom (75mm=100%) % of STAQUA_Pollensom (75mm=100%)
Lake IJssel B15G0212
Viburnum opulus Viscum . Alnus .
Fraxinus . Myrica . Betula . Picea .
Picea omorika type Pinus .
% of STAQUA_Pollensom (75mm=100%)
Salix . Tsuga . Althaea officinalis Anthemis . Apiaceae . Artemisia . Asteraceae Liguliflorae Asteraceae Tubuliflorae Brassicaceae . Caryophyllaceae .
Chenopodiaceae . Comp.Liguliflorae . Cyperaceae .
Herbs
Euphorbia palustris Filipendula . Galium . Gramineae . Lycopodium clavatum Lythrum . Plantago lanceolata Poaceae . Poaceae >40 µ Polygonum persicaria Polypodium . Pteridium . Ranunculus acris type Rosaceae . Rumex acetosa/acetosella Thalictrum . Calluna . Empetrum . Ericales . Dryopteris type
Local taxa
Equisetum . Ophioglossum vulgatum Osmunda . Sphagnum .
Aquatics taxa
% of STAQUA_Pollensom (75mm=100%)
Azolla/Salvinia fragm. Botryococcus . Butomus . Ceratophyllum spines Cladium sp. Eu-Rumex . Mougeotia . Myriophyllum verticilatum Nuphar . Nymph. -slijmcelNymph. -sterhaar-
Non-pollen taxa
E2
E3
E4a
E4b
E5
PAZ
23.30
20.87
19.71
19.28
18.75
18.35
17.78
17.35
16.80
16.35
15.77
Samples
Geological Survey of the Netherlands
Nymphaea alba Pediastrum . Potamogeton . Salvinia . Sparganium . Sparganium type Spirogyra . Typha latifolia Dinoflagellaten .
Diporotheca . Foraminifera .
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
11
Figure S4C. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15G0213. Depth
x: 162994 y: 528494 z: -5.00m
22.0m
21.8m
21.6m
21.4m
21.2m
21.0m
20.8m
20.6m
20.4m
B15G0213
STAQUA_6Heathland
STAQUA_5Herbs
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_2Treesdry
STAQUA_1Prequartair
Pollen sum
21.94
21.76
21.62
21.54
21.31
21.14
20.94
20.73
20.43
Samples % of STAQUA_Pollensom (75mm=100%)
Classopollis . OUDE TRILETE SPOREN Tasmanites . Trilete sporen Acer . Carpinus . Carpinus 3p Corylus .
Trees dry
Hedera . Hippophae . Humulus type Juniperus type Quercus .
Tilia . Ulmus . Alnus . Fraxinus .
% of STAQUA_Pollensom (75mm=100%)
Trees indifferent
% of STAQUA_Pollensom (75mm=100%)
Lake IJssel B15G0213
Myrica . Betula . Picea . Pinus .
Salix . Tsuga . Apiaceae . Artemisia . Asteraceae Liguliflorae Asteraceae Tubuliflorae Brassicaceae . Caryophyllaceae . Chenopodiaceae . Cyperaceae .
Herbs
Ephedra distachya type Filipendula . Lythrum . Papaver rhoeas type Plantago lanceolata Plantago maritima type Poaceae .
Local taxa
% of STAQUA_Pollensom (75mm=100%)
Poaceae >40 µ Pteridium . Ranunculus acris type Rumex acetosa/acetosella Selaginella selaginoides Thalictrum . Calluna . Ericales . Dryopteris type
% of STAQUA_Pollensom (75mm=100%)
Equisetum . Ophioglossum vulgatum Osmunda . Sphagnum . Azolla/Salvinia fragm.
Aquatics taxa
Botryococcus . Ceratophyllum spines Mougeotia . Nuphar . Nymph. -slijmcelNymphaea alba Pediastrum . Potamogeton . Riccia . Sparganium type
Geological Survey of the Netherlands
Spirogyra . Dinoflagellaten .
E2
E3
E4a
PAZ
21.94
21.76
21.62
21.54
21.31
21.14
20.94
20.73
20.43
Samples
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
12
Figure S4D. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15G0214. Depth
22.0m
21.5m
21.0m
20.5m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
x: 162996 y: 531917 z: -4.96m
B15G0214
STAQUA_6Heathland
STAQUA_5Herbs
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_2Treesdry
STAQUA_1Prequartair
Pollen sum
21.64
21.93
21.64
21.93
20.86
21.37
20.59
20.31 20.36 20.40
20.86
20.21
20.31 20.36 20.40
20.59
19.97
19.70
19.70
20.21
19.45
19.45
19.97
19.24
19.24
18.31
18.31
18.96
17.98
17.98
18.76
17.70
17.70
18.96
17.48
17.48
18.76
17.30
17.30
18.56
17.13
17.13
Samples Prequartair
% of STAQUA_Pollensom (75mm=100%)
Classopollis . Leiotriletes . Liquidambar . Nyssa . OUDE TRILETE SPOREN Sciadopitys . Sequoia type T. spec. T. villensis T.Megaexactus bruhlensis T.Pseudocingulum . Tasmanites .
% of STAQUA_Pollensom (75mm=100%)
Taxodium type Trilete sporen Abies . Acer . Celtis . Corylus .
Trees dry
Fagus . Hedera . Hippophae . Humulus type Ilex . Juniperus type Quercus .
Taxus . Tilia . Ulmus . STAQUA_3Treeswet
Alnus .
Cupressaceae . Fraxinus .
% of STAQUA_Pollensom (75mm=100%)
Trees indifferent
% of STAQUA_Pollensom (75mm=100%)
Lake IJssel B15G0214
Myrica . Solanum dulcamara Betula . Picea . Pinus .
Salix . Tsuga . Anthoceros . Apiaceae . Artemisia . Brassicaceae . Caryophyllaceae . Chenopodiaceae . Cyperaceae .
Herbs
Filipendula . Galium . Helianthemum . Lythrum . Mentha . Plantago lanceolata Poaceae .
Local taxa
% of STAQUA_Pollensom (75mm=100%)
Poaceae >40 µ Polypodium . Pteridium . Ranunculus acris type Rosaceae . Rumex acetosa/acetosella Selaginella selaginoides Thalictrum . Calluna . Empetrum . Ericales . Dryopteris type
Equisetum . Ophioglossum vulgatum Osmunda . Sphagnum .
% of STAQUA_Pollensom (75mm=100%)
Azolla/Salvinia fragm.
Aquatics taxa
Botryococcus . Ceratophyllum sp. spines Cladium Menyanthes trifoliata Mougeotia . Myriophyllum spicatum Myriophyllum verticilatum Nuphar . Nymph. -slijmcel-
Non-pollen taxa
E2
E3
E4a
E4b
PAZ
21.37
18.56
Samples
Geological Survey of the Netherlands
Nymph. -sterhaarNymphaea alba Pediastrum .
Potamogeton . Riccia . Sparganium type Spirogyra . Typha latifolia Dinoflagellaten .
Diporotheca .
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
13
Figure S4E. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15H0056. Depth
x: 176000 y: 536000 z: -3.50m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
15.0m
14.5m
14.0m
13.0m
13.5m
12.5m
12.0m
11.5m
11.0m
10.5m
10.0m
9.5m
9.0m
8.5m
7.5m
8.0m
7.0m
6.5m
5.5m
6.0m
5.0m
4.5m
4.0m
B15H0056
STAQUA_6Heathland
STAQUA_5Herbs
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_2Treesdry
STAQUA_1Prequartair
Pollen sum
100
19.67
19.85
19.67
% of STAQUA_Pollensom (75mm=100%)
19.85
19.18 19.27 19.31
18.10 18.20 18.30 18.40 18.50 18.60 18.70 18.75 18.80 18.90 19.00
17.80
17.50
17.20
16.90
16.60
16.30
15.75 15.80 15.90 16.00
7.90
7.60
7.30
7.00
6.70
6.40
6.10 6.20
4.88
4.37
Samples Prequartair
% of STAQUA_Pollensom (75mm=100%)
Cerebropollenites . Classopollis . Mes.Con.Vesiculates . OUDE coniferen OUDE TRILETE SPOREN Parthenocissus . Sequoia-T. . T. villensis T.Megaexactus bruhlensis Taxodium-T. . Trilete sporen Trudopollis . Abies . Acer . Carpinus . Carya . Corylus .
Trees dry
Eucommia . Fagus . Hedera . Hippophae . Humulus . Quercus .
Taxus .
Tilia . Ulmus .
STAQUA_3Treeswet
% of STAQUA_Pollensom (75mm=100%)
Viburnum . Alnus .
Trees indifferent
% of STAQUA_Pollensom (75mm=100%)
Cupressaceae . Fraxinus . Myricaceae . Vitis . Betula .
Juniperus . Picea . Pinus .
B15H0056
Pinus hapl.t.(cathaya) Salix .
% of STAQUA_Pollensom (75mm=100%)
Tsuga . Artemisia . Botrychium . Caryophyllaceae . Cerealia . Chenopodiaceae . Comp.Liguliflorae . Comp.Tubuliflorae . CRUCIFERAE . Cyperaceae .
Filipendula . Gentiana pneumonanthe-t. Gramineae .
Herbs
Gramineae >40 µm Helianthemum spec. Jasione . Lycopodium SPEC. Lythrum . Plantago spec. Polygonum spec. Polypodium . Potentilla-T. . Pteridium .
Heathland
Ranunculus . Rosaceae . Rubiaceae . Rumex . Selaginella selaginoides Thalictrum . Umbelliferae . Urtica spec. Bruckenthalia . Calluna . Ericales varia Dryopteris thelypteris-t.
Local taxa % of STAQUA_Pollensom (75mm=100%)
Equisetum . Ophioglossum . Osmunda . Sphagnum . Alisma . Azolla filicul.massulae Azolla/Salvinia fragm. Botryococcus .
Menyanthes . Mougeotia . Myriophyllum alterniflorum Myriophyllum spicatum Myriophyllum verticilatum Nuphar . Nymphaea . Pediastrum .
Aquatics taxa Non-pollen taxa
% of STAQUA_Pollensom (75mm=100%)
Varia
E2
E3
E4a
E4b
PAZ
19.18 19.27 19.31
17.80
18.10 18.20 18.30 18.40 18.50 18.60 18.70 18.75 18.80 18.90 19.00
17.20
17.50
16.90
16.30
16.60
15.75 15.80 15.90 16.00
7.90
7.60
7.00
7.30
6.70
6.40
6.10 6.20
4.88
4.37
Samples
Geological Survey of the Netherlands
Potamogeton . Salvinia . Spirogyra . Sterharen van nymphaea Typha latifolia Typhaceae . Zygnemataceae . Dinoflagellaten . Hystrichosphaeridae .
Tilletia . Varia .
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
14
Figure S4F. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B15H0057. 23.0m
22.5m
21.5m
22.0m
21.0m
20.5m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
14.5m
15.0m
13.5m
14.0m
13.0m
12.5m
12.0m
11.5m
11.0m
10.5m
9.5m
10.0m
8.5m
9.0m
8.0m
7.5m
7.0m
6.5m
6.0m
5.5m
5.0m
x: 175480 y: 532040 z: -4.00m
STAQUA_5Herbs
STAQUA_6Heathland
STAQUA_4Treesindifferent
STAQUA_1Prequartair
STAQUA_2Treesdry
Pollen sum
STAQUA_3Treeswet
B15H0057
Depth
100
22.50
22.28
21.00
21.40 21.50
21.40 21.50
20.80
21.20
21.20
20.60
20.60
21.00
20.80
19.00
19.20 19.30 19.40 19.50 19.70 19.78 19.84
19.20 19.30 19.40 19.50 19.70 19.78 19.84
18.60
19.00
18.20
17.40
17.40
17.80
17.00
16.60
17.00
16.20
15.40
15.80
15.00
15.40
% of STAQUA_Pollensom (75mm=100%)
15.00
14.60
11.10
7.40
7.20
5.52
Samples Prequartair
% of STAQUA_Pollensom (75mm=100%)
Classopollis . Engelhardtia . Nyssa . OUDE TRILETE SPOREN Sciadopitys . Sequoia type T.Megaexactus bruhlensis T.Megaexactus exactus T.Pseudocingulum . Taxodium type Abies . Acer . Acer negundo type Buxus . Carpinus . Carya . Corylus .
Trees dry
Hedera . Hippophae . Humulus . Ilex . Pterocarya . Quercus .
Taxus .
STAQUA_3Treeswet
% of STAQUA_Pollensom (75mm=100%)
Tilia . Ulmus . Viburnum . Viscum . Alnus .
Cupressaceae . Fraxinus .
% of STAQUA_Pollensom (75mm=100%)
Myrica . Betula .
Juniperus .
% of STAQUA_Pollensom (75mm=100%)
Creil - B15H0057
Trees indifferent
Picea . Pinus .
Pinus hapl. Type Salix .
Tsuga . Apiaceae .
Artemisia . Asteraceae Liguliflorae Asteraceae Tubuliflorae Campanula . Caryophyllaceae . Cerealia type Chenopodiaceae . Cyperaceae .
Herbs
Ephedra distachya type Fabaceae . Filipendula . Galium . Gentiana pneumonanthe type Helianthemum . Lamiaceae . Lycopodium SPEC. Mentha . Plantago lanceolata Plantago maritima Plantago spec. Poaceae .
Heathland
Polygonum persicaria Polypodium . Potentilla type Pteridium . Ranunculus acris type Rosaceae . Rumex . Secale . Selaginella selaginoides Thalictrum . Bruckenthalia . Calluna . Ericales . Dryopteris type
Local taxa % of STAQUA_Pollensom (75mm=100%)
Equisetum . Ophioglossum vulgatum Osmunda . Sphagnum . Alisma . Botryococcus . Butomus . Menyanthes trifoliata Mougeotia . Myriophyllum alterniflorum Myriophyllum spicatum Myriophyllum verticilatum Nuphar . Nymph. -sterhaarNymphaea . Pediastrum .
Aquatics taxa Varia
E2/ E1
E3
E4a
E4b
PAZ
22.28
22.50
18.60
17.80
18.20
16.60
15.80
16.20
14.60
11.10
7.20
7.40
5.52
Samples
Geological Survey of the Netherlands
Potamogeton . Sagittaria . Salvinia . Spirogyra . Typha latifolia Typhaceae .
Zygnemataceae . Varia .
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
15
Figure S4G. Pollen percentage diagram and associated regional Pollen Assemblage Zones (PAZ) cf. Zagwijn (1961, 1996) of core B20F0175. Depth
x: 174640 y: 521840 z: -4.70m
21.5m
21.0m
20.5m
20.0m
19.5m
19.0m
18.5m
18.0m
17.5m
17.0m
16.5m
16.0m
15.5m
15.0m
14.5m
14.0m
13.5m
13.0m
12.5m
11.5m
12.0m
10.5m
11.0m
9.5m
10.0m
9.0m
8.5m
8.0m
7.5m
6.5m
7.0m
6.0m
5.5m
5.0m
4.5m
4.0m
3.5m
3.0m
2.5m
2.0m
1.5m
1.0m
0.5m
B20F0175
STAQUA_6Heathland
STAQUA_5Herbs
STAQUA_1Prequartair
STAQUA_4Treesindifferent
STAQUA_3Treeswet
STAQUA_2Treesdry
Pollen sum
100
20.20
20.40
20.60
20.80
20.60
20.80
21.30 21.40
19.80 19.87 20.00
20.20
20.40
21.00
19.60
19.80 19.87 20.00
21.30 21.40
19.40
19.40
19.60
21.00
19.20
19.20
18.80
19.00
19.00
% of STAQUA_Pollensom (75mm=100%) % of STAQUA_Pollensom (75mm=100%)
Trees indifferent
18.60
Trees dry STAQUA_3Treeswet
18.60
% of STAQUA_Pollensom (75mm=100%)
18.80
18.40
18.00
17.85
18.20
17.00 17.10 17.20 17.30 17.40 17.50
16.80
16.60
16.45
15.80
16.25
16.00
15.60
15.40
15.20
15.00
14.80
14.60
14.46
13.72
8.00
7.68 7.80
7.55
4.30 4.45 4.49 4.51 4.54 4.57 4.60
4.10
3.50
3.70 3.80 3.90
3.10
3.30
2.90
2.70
2.50
2.30
2.10
1.90
1.70
1.00
1.20 1.33 1.40 1.50
0.20
0.40
0.80
0.60
Samples Prequartair
% of STAQUA_Pollensom (75mm=100%)
Cicatricosisporites . Classopollis . Engelhardia . Liquidambar . Mes.Con.Vesiculates . OUDE coniferen
OUDE TRILETE SPOREN Platycarya . Sciadopitys . Symplocos . T.Pseudocingulum . Taxodium-T. . Trilete sporen Abies . Acer . Carpinus . Corylus .
Fagus . Hedera . Hippophae . Humulus . Ilex . Pterocarya . Quercus .
Rhamnus . Taxus . Tilia . Ulmus . Viburnum . Viscum . Alnus .
Cupressaceae . Frangula alnus Fraxinus . Myricaceae . Betula .
Juniperus . Larix . Picea . Pinus .
Pinus hapl.t.(cathaya) Salix .
% of STAQUA_Pollensom (75mm=100%)
Tsuga . Anthoceros . Artemisia .
Boraginaceae . Calystegia . Campanula . Caryophyllaceae . Chenopodiaceae .
Herbs
Tollebeek - B20F0175
Comp.Liguliflorae . Comp.Tubuliflorae . CRUCIFERAE . Cyperaceae .
Filipendula . Gentiana pneumonanthe-t. Gramineae .
Heathland
Gramineae >40 µm Helianthemum spec. Knautia . Lycopodium SPEC. Lysimachia . Lythrum . Plantago lanceolata Plantago maritima Plantago media/major Plantago spec. Polygonum aviculare Polygonum bistorta Polygonum persicaria Polygonum spec. Polypodium . Potentilla-T. . Pteridium . Ranunculus . Rosaceae . Rubiaceae . Rumex . Sanguisorba minor Sanguisorba officinalis Secale . Selaginella selaginoides Thalictrum . Umbelliferae . Urtica spec. Valeriana . Bruckenthalia . Calluna . Empetrum . Ericales varia
% of STAQUA_Pollensom (75mm=100%)
Dryopteris thelypteris-t.
Local taxa
Equisetum . Ophioglossum . Osmunda . Sphagnum .
% of STAQUA_Pollensom (75mm=100%)
Alisma . Azolla FILICUL.FRAGMENTEN Azolla filicul.massulae
Botryococcus .
Butomus . Cladium sp. Eu-Rumex . Menyanthes . Mougeotia . Myriophyllum alterniflorum Myriophyllum verticilatum Nuphar . Nymphaea .
Aquatics taxa
Nymphoides . Pediastrum .
Non-pollen taxa Varia
PAZ
HOLOCENE
18.40
17.85
18.20
18.00
16.80
16.60
17.00 17.10 17.20 17.30 17.40 17.50
16.45
16.25
16.00
15.80
15.20
15.60
15.40
14.80
15.00
14.60
14.46
13.72
8.00
7.68 7.80
7.55
4.10
4.30 4.45 4.49 4.51 4.54 4.57 4.60
3.10
3.50
3.70 3.80 3.90
2.90
3.30
2.50
2.30
2.70
2.10
1.90
1.70
1.00
1.20 1.33 1.40 1.50
0.40
0.80
0.60
0.20
Samples
Geological Survey of the Netherlands
Potamogeton . Ruppia . Sagittaria . Salvinia . Spirogyra . Sterharen van nymphaea
Typha latifolia Typhaceae .
Zygnemataceae . Dinoflagellaten . Hystrichosphaeridae . Tilletia . Varia .
HOLSTEINIAN
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
16
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015 CORE PHOTOS
Figure S5A. Photo of research core B15F1501: 0-13 metre below surface (-3.62 m below m.s.l.), see Fig. 1B for location and Fig. A.2 for sedimentary log.
17
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5B. Photo of research-core B15F1501: 13-25 metre below surface (-3.62 m below m.s.l.), see Fig. 1B for location and Fig. A.2 for sedimentary log.
18
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
19
Figure S5C. Photo of research-core B15G0212: 0-13 metre below surface (-5.38 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5D. Photo of research-core B15G0212: 13-26 metre below surface (-5.38 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
20
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5E. Photo of research-core B15G0212: 26-35 metre below surface (-5.38 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
21
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5F. Photo of research-core B15G0214: 0-13 metre below surface (-4.96 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
22
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5G. Photo of research-core B15G0214: 13-26 metre below surface (-4.96 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
23
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
Figure S5H. Photo of research-core B15G0214: 26-36 metre below surface (-4.96 m below m.s.l.), see Fig. 1B for location and Fig. A.3 for sedimentary log.
24
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
25
B20B0010
B25E0913
B14G0973
B27A0369
STAND-ALONE RESEARCH CORES
2
2
local fluvial & aeolian Hol.
-36
Unit A5 Unit A4?
Unit A5
-16
• 47±4; • 105±8; 113±6 • 104±9; E6
E2/3
LS
(glaciolacustrine) slump
E5
• 120±8;
• 136±12; 114±7
-24
-32 -34 -36
E5
-38
lagoonal
-40
-40 -42 -44
Unit S6
-44
-22
-30
-38
-42
-20
-28
A2 • 102±32; • 99±22;
-18
-26
E4
* 118±6
Unit A1
-34
LS/E1 E2/E3/E4a E5
Unit M1
-32
barrier?
-14
marine
• n/a; 56±3
• 54±11; 57±3
-28
Unit A1
depth (m below m.s.l.)
-26
-30
• n/a;
E6b/EW
-24
• 25±6; 23±1
Unit A4
-22
Unit A3
-20
-10 -12
Unit M1
-18
-8
• n/a; 10±1
E6a
-16
local fluvial
-14
-4 -6
-10 -12
-2
glaciolacustrine
-8
Holocene
Antropocene
-6
Holocene
-4
0
aeolian Hol.
0 -2
-46
-46 -48
-50
-50
E4b
-48
-52
-52
MP
-54
-54
Legend E4a
-56 -58
E1/ E2/ E3
-62
-78
-64
Medium sand (210-300 µm)
-66
Coarse sand (420-2000 µm) Gravel (>2000 µm) Mollusc concentrate
CaCO3
Diatomite
till MP
No core recovery
-68 -70 -72 -74
high
-74 -76
-62
Fine sand (63-210 µm)
none/ns
-72
LS
glaciolacustrine
-70
-60
Loam
185
-64
-68
-58
Clay
-60
-66
-56 Peat
-76 -78
Figure S6A. Compilation of research cores with their sedimentary logs, sedimentary units, biostratigraphy and luminescence ages (feldspar pIRIR: left; quartz OSL: right) for geological transects A, E and F. Luminescence dating results with validity-label ‘ok’ and ‘likely ok’ are presented only (see luminescence-dating section above), solely the sample position of datings with a lower validity-label are indicated with ‘’ for feldspar pIRIR and ‘’ for quartz OSL. ‘n/a’ indicates the absence of the respective luminescence measurement. In core B25E0913 (at a depth of 28.4 m below m.s.l. the U-Th dating of Van Leeuwen et al. (2000) is indicated with a ‘*’. Core locations are plotted in Fig. 1B and are indicated in their corresponding geological transects A, E and F.
26
B25E0907
B16D0069
B15G0211
B14A0090
B21G0547
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
2
2 4
0
0 11 13 14
-10
60
• 97±6;
• 68±6; 90±8
A3?
Holocene
-8
E6
-12
• ; 31±4
• 112±7; 109±9
-14 78
-16 -18
22 25
-20 93
Unit A4
Unit A1
• 95±12;
-22
• 129±9;
Unit A3
129
Brørup (EW IVb)
Unit A3
-22
-24
-26
• n/a; 62±16
-26
• 104±8;
-28
-28 -30
• 97±16; • 102±9;
• 116±8;
A2
-32 -34
barrier?
• 104±7;
Unit A1
depth (m below m.s.l.)
41
• n/a;
-20
-24
• ; 38±6 45
Unit A2
-18
Unit A1
105
-16
Brørup (EW IVc)
94
-6
-10
Unit A5
-14
23
E4a
46
E3
-12
Unit A2
64
7 12
local fluvial & aeolian
51
-4
local fluvial & aeolian
-8
Unit A3
Holocene
36
Unit A3/A5
Holocene
Holocene
Unit A5
-4 -6
-2
23
local fluvial & aeolian
-2
• n/a; 85±5
-30 -32
119
128
-34
• 117±10;
-36
Unit S6
-38
• 122±8;
Unit S6
-36
-38
153
-40
-40 164
-42
-42
-44
Clay -48
Diatomite
-62
No core recovery
E4a
E2 • n/a;
-52 -54
• n/a;
-56 -58
• n/a; Late Saalian
-60
-50
glaciolacustrine
Gravel (>2000 µm) Mollusc concentrate
CaCO3 none/ns
Coarse sand (420-2000 µm)
-48
high
-56
Middle Pleistocene
Fine sand (63-210 µm)
-54
-58
Middle Pleistocene ?
-50
Medium sand (210-300 µm)
-46 155
• ;
Loam
-52
• ;
lagoonal
Peat
Middle Pleistocene
-46
Legend Unit S6 ?
-44
-60 -62
202
-64
MP
206
-64
-66
-66
-68
-68
Figure S6B. Compilation of research-cores with their sedimentary logs, sedimentary units, biostratigraphy and luminescence ages (feldspar pIRIR: left; quartz OSL: right) for research cores which are not incorporated in the geological transects. Luminescence dating results with validity-label ‘ok’ and ‘likely ok’ are presented only (see luminescence-dating section above), solely the sample position of datings with a lower validity-label are indicated with ‘’ for feldspar pIRIR and ‘’ for quartz OSL. ‘n/a’ indicates the absence of the respective luminescence measurement. Core locations are plotted in Fig. 1B.
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
REFERENCES Aitken, M.J., 1985. Thermoluminescence dating. Academic Press, London. Ballarini, M., Wintle, A.G., Wallinga, J. 2006. Spatial variation of dose rate from beta sources as measured using single grains. Ancient TL 24, 1-7. Ballarini, M., Wallinga, J., Wintle, A.G., Bos, A.J.J., 2007. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements 42, 360-369. Bøtter-Jensen, L., Andersen, C.E., Duller, G.A.T., Murray, A.S., 2003. Developments in radiation, stimulation and observation facilities in luminescence measurement. Radiation Measurements 37, 535-541. Bunnik, F.P.M., Cremer, H., 2010. Pollen- en diatomeeënanalyses van de boring Amsterdam Willemsluizen (B25E0907). TNO Bouw en Ondergrond, TNO-034-UT-2010-02015-A. Utrecht, The Netherlands. Bunnik, F.P.M., 2011. Pollenanalyses van boring Middenmeer (B14G0973). TNO Earth, Environmental and Life Sciences, TNO-060UT-2011-00696/B. Utrecht, The Netherlands. Bunnik, F.P.M., 2011. Pollenanalyses van de boring Lichtmis (B21G0547). TNO Earth, Environmental and Life Sciences, 034-060UT-2011-00697/B. Utrecht, The Netherlands. Bunnik, F.P.M., 2011. Pollenanalyses van de Formatie van Boxtel uit de boring Bantega (B16A1292). TNO Earth, Environmental and Life Sciences, TNO-060-UT-2011-00698/B. Utrecht, The Netherlands. Busschers, F.S., Kasse, C., Van Balen, R.T., Vandenberghe, J., Cohen, K.M., Weerts, H.J.T., Wallinga, J., Johns, C., Cleveringa, P., Bunnik, F.P.M., 2007. Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacioisostasy. Quaternary Science Reviews 26, 32163248. Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435–451. Cremer, H., Bunnik, F.P.M., Koolmees, H., Greaves, H., 2010. Diatomeeën- en pollenanalyses van de boring Julianadorp (B14A0090). TNO Bouw en Ondergrond, TNO-034-UT-2010-00977-A. Utrecht, The Netherlands.
27
Cunningham, A.C., Wallinga, J., 2010. Selection of integration time-intervals for quartz OSL decay curves. Quaternary Geochronology 5, 657-666. De Jong, J., 1964. Pollenanalytisch onderzoek van een aantal boringen uit de omgeving van het Enkhuizerzand en het aangrenzende vaste land. Stichting Geologische Dienst, RGD Paleobotany Laboratory report 381. Haarlem, The Netherlands. De Jong, J., 1964. Palynologisch onderzoek van een aantal monsters afkomstig uit boringen van het Enkhuizerzand. Stichting Geologische Dienst, RGD Paleobotany Laboratory report 385. Haarlem, The Netherlands. De Wolf, H., 1987. Diatomeeënonderzoek van NO Polder. Rijks Geologische Dienst, RGD Diatom Laboratory report 490. Haarlem, The Netherlands. De Wolf, H., 1996. Diatomeeënonderzoek van de boring Tollebeek 20F175. Rijks Geologische Dienst, RGD Diatom Laboratory report 603. Haarlem, The Netherlands. Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161-165. Guérin, G., Mercier, N., Adamiec, G., 2011. Doserate conversion factors: update. Ancient TL 29, 5-8. Huntley, D.J., Baril, M.R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 11-13. Huntley, D.J., Hancock, R.G.V., 2001. The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL 19, 4346. Kars, R.H., Busschers, F.S., Wallinga, J., 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12, 74-86. Kloos, M., 2010. Time control on the Eemian Rhine evolution in the IJssel Valley: a biostratigraphical and environmental reconstruction. TNO Bouw en Ondergrond, TNO-034-UT-2010-01576/B. Utrecht, The Netherlands. Madsen, A.T., Murray, A.S., Andersen, T.J., Pejrup, M., Breuning-Madsen, H., 2005. Optically stimulated luminescence dating of young estuarine sediments: a comparison with 210Pb and 137Cs dating. Marine Geology 214, 251268. Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-
J. Peeters et al. / QSR - Online Suppl. Mat. / 10.1016/j.quascirev.2015.10.015
aliquot regenerative-dose protocol. Radiation Measurements 32, 57-73. Prescott, J.R., Hutton, J.T., 1994, Cosmic ray contributions to dose-rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497-500. Thiel, C. Buylaert, J.P., Murray, A.S, Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234, 23-31. Van Leeuwen, R.J.W., Beets, D.J., Bosch, J.H.A., Burger, A.W., Cleveringa, P., Van Harten, D., Waldemar Herngreen, G.F., Kruk, R.W., Langereis, C.G., Meyer, T., Pouwer R., De Wolf, H., 2000. Stratigraphy and integrated facies analysis of the Saalian and Eemian deposits in the Amsterdam-Terminal borehole, the Netherlands. Netherlands Journal of Geosciences 79, 161-196. Wallinga, J., Murray, A.S., Bøtter-Jensen, L., 2002. Measurement of the dose in quartz in the presence of feldspar contamination. Radiation Protection Dosimetry 101, 67-370. Weerts, H.J.T. 1996. Complex confining layers. Architecture and hydraulic properties of Holocene and Late Weichselian deposits in the fluvial Rhine-Meuse delta, The Netherlands. Netherlands Geographical Studies 213, 1-189. Wintle, A.G., Murray, A.S., 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41, 369–391. Zagwijn, W.H., 1961. Vegetation, climate and radiocarbon datings in the Late Pleistocene of The Netherlands, Part I: Eemian and Early Weichselian. Mededelingen Geologische Stichting 14, 15-45. Zagwijn, W.H., 1996. An analysis of Eemian climate in Western and Central Europe. Quaternary Science Reviews 15, 451-469.
28