Recurrence relations for powers of q-Fibonacci ... - Universität Wien

0 downloads 0 Views 81KB Size Report
Encyclopedia of Integer Sequences [7] ) begins with. 1. 1. 1. 1. 1 .... The definition of the q − Fibonacci polynomials can be extended to all integers such that the.
Recurrence relations for powers of q-Fibonacci polynomials Johann Cigler Fakultät für Mathematik Universität Wien A-1090 Wien, Nordbergstraße 15 [email protected]

Abstract We derive some q − analogs of Euler-Cassini-type identities and of recurrence formulas for powers of Fibonacci polynomials.

1. Introduction The Fibonacci numbers Fn are defined by the recurrence relation Fn = Fn −1 + Fn −2 with initial values F0 = 0 and F1 = 1.

(1.1)

The powers Fnk , k = 1, 2,3,", satisfy the recurrence relation k +1

∑ ( −1)

⎛ j +1⎞ ⎜ ⎟ ⎝ 2 ⎠

k +1 j

j =0

Fnk− j = 0,

(1.2)

k −1

n where = k

∏F i =0 k

n −i

∏F i =1

is a so called fibonomial coefficient.

i

E.g. the squares of the Fibonacci numbers satisfy the recurrence Fn2 − 2 Fn2−1 − 2 Fn2−2 + Fn2−3 = 0.

The triangle of Fibonomial coefficients ( see A010048 or A055870 in the On-Line Encyclopedia of Integer Sequences [7] ) begins with 1 1 1 1 1 1

1 2

3 5

1 1 2 6

15

1 3

15

1 5

1

The Fibonacci polynomials Fn ( x, s ) are defined by the recurrence relation Fn ( x, s ) = xFn −1 ( x, s ) + sFn −2 ( x, s )

(1.3)

1

with initial values F0 ( x, s ) = 0 and F1 ( x, s ) = 1. The first terms of this sequence are 0,1, x, x 2 + s, x 3 + 2 sx, x 4 + 3sx 2 + s 2 ," . The powers Fnk ( x, s ) , k = 1, 2,3,", satisfy the recurrence relation k +1

∑ ( −1)

⎛ j +1⎞ ⎛ j ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2⎠

s

j =0

k +1 ( x, s ) Fnk− j ( x, s ) = 0, j

(1.4)

where the (polynomial-) fibonomial coefficients are defined by k −1

∏ n ( x, s ) = i =0k k

Fn −i ( x, s )

∏ Fi ( x, s)

.

(1.5)

i =1

E.g. for k = 2 we get the recurrence relation Fn ( x, s )2 − ( x 2 + s ) Fn −1 ( x, s ) 2 − s( x 2 + s ) Fn −2 ( x, s )2 + s 3 Fn −3 ( x, s )2 = 0.

The simplest proof of these facts depends on the Binet formula Fn ( x, s ) =

αn − β n , α −β

(1.6)

where

α=

x + x 2 + 4s x − x2 + 4s ,β = . 2 2

(1.7)

From (1.6) it is clear that Fn ( x, s ) k is a linear combination of α ( k − j ) n β jn , 0 ≤ j ≤ k . Let U

be the shift operator Uh (n ) = h (n − 1). The sequences (α ( k − j ) n β jn )

relation (1 − α k − j β jU )(α ( k − j ) n β jn ) = 0.

n ≥0

satisfy the recurrence

Since the operators 1 − α k − j β jU commute we get ⎛ n ⎞ k− j j k ⎜ ∏ (1 − α β U ) ⎟ Fn ( x, s ) = 0. ⎝ j =0 ⎠

(1.8)

As has been observed by L. Carlitz [2] we can now apply the q − binomial theorem (cf. e.g. [4]) n −1

n

∏ (1 − q x) = ∑ (−1) q j

j =0

k

k =0

⎛k ⎞ ⎜ ⎟ ⎝2⎠

⎡n ⎤ k ⎢k ⎥ x . ⎣ ⎦

(1.9)

⎡n ⎤ ⎡n ⎤ (1 − q n )(1 − q n −1 )" (1 − q n −k −1 ) denotes a q − binomial coefficient. Here ⎢ ⎥ = ⎢ ⎥ ( q) = (1 − q)(1 − q 2 )" (1 − q k ) ⎣k ⎦ ⎣k ⎦

2

For q =

⎡n ⎤ β we get ⎢ ⎥ = α k α ⎣k ⎦

2

− nk

n ( x, s ). k

This implies ⎛ j⎞

k

∏ (1 − α

k− j

j =0

j ⎜ ⎟ k +1 2 k +1 2 ⎛β ⎞ k j ⎛ β ⎞⎝ ⎠ ( x, s )α kjU j β U ) = ∏ (1 − ⎜ ⎟ (α U )) = ∑ ( −1) ⎜ ⎟ α j −( k +1) j j ⎝α ⎠ ⎝α ⎠ j =0 j =0

k +1

k

j

= ∑ ( −1) (αβ ) j

⎛ j⎞ ⎜ ⎟ ⎝ 2⎠

j =0

⎛ j +1⎞ ⎛ j ⎞ ⎟ ⎜ ⎟ 2 ⎠ ⎝ 2⎠

k +1 ⎜ k +1 ( x, s )U j = ∑ ( −1)⎝ j j =0

s

k +1 ( x, s )U j . j

By applying this operator to Fn ( x, s )k we get (1.4). 2. Recurrence relations for powers of q-Fibonacci polynomials

The (Carlitz-) q − Fibonacci polynomials f ( n, x, s ) are defined by f ( n, x, s ) = xf ( n − 1, x, s ) + q n −2 sf ( n − 2, x, s )

(2.1)

with initial values f (0, x, s ) = 0, f (1, x, s ) = 1 (cf. [3],[5]). The first values are 0,1, x, x 2 + qs, x 3 + ( qs + q 2 s ) x, x 4 + ( qs + q 2 s + q3s ) x 2 + q 4 s 2 ,". An explicit expression is f ( n, x , s ) =

⎡ n − 1 − k ⎤ k 2 n −1−2 k k q x s . k ⎥⎦ k ≤ n −1 ⎣

∑⎢

(2.2)

1 and then s → q n −1s we get q f ( n − k , x, q − k s ) → f ( n − k , x, q1−n s ) → f (n, x, s ).

If we change q →

This implies Remark 1 Each identity g ( x, s, q, f ( n, x, s ), f ( n − 1, x, s ), f ( n − 2, x, s ),") = 0

(2.3)

g ( x, q n −1s, q −1 , f ( n, x, s ), f ( n − 1, x, qs ), f ( n − 2, x, q 2 s ),") = 0.

(2.4)

is equivalent with

3

A special case is the well-known fact that (2.1) is equivalent with f ( n, x, s ) = xf ( n − 1, x, qs ) + qsf ( n − 2, x, q 2 s ).

(2.5)

The definition of the q − Fibonacci polynomials can be extended to all integers such that the recurrence (2.1) remains true. We then get (cf. [5]) f ( − n, x, s ) = ( −1)

n −1

q

⎛ n +1⎞ ⎜ ⎟ ⎝ 2 ⎠

f ( n, x , q − n s ) . sn

(2.6)

The main aim of this paper is the proof of the following q − analog of (1.4) which has been conjectured in [6]: Theorem 1 Define a q-analog of the fibonomial coefficients by k

k ( x , s, q ) = j

∏ f (i , x , s ) i =1

j

∏ f (i , x , q

j −i

i =1

k− j

s )∏ f (i , x , q s )

.

(2.7)

j

i =1

Then the following recurrence relation holds for all n ∈ ] : k +1

∑ ( −1)

⎛ j +1⎞ ⎛ j ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2⎠

s q

j ( j −1)(2 j −1) 6

j =0

k +1 j

( x, s, q) f ( n − j, x, q j s ) k = 0.

(2.8)

fibo( k + 1, x, s ) f ( n − j, x, s ) k = 0

(2.9)

By Remark 1 this theorem is equivalent to Corollary 1 k +1

∑ (−1)

⎛ j +1⎞ ⎛ j ⎞ ⎛ j ⎞ j ( j −1)(2 j −1) ⎜ ⎟ ⎜ ⎟ ( n −1)⎜ ⎟ − 6 ⎝ 2 ⎠ ⎝ 2⎠ ⎝ 2⎠

s q

j =0

with k

k +1 fibo( k + 1, x, s ) = ( x, q n −1s, q −1 ) = j

∏ f (i , x , q i =1

j

∏ f (i , x , q i =1

n− j

k− j

n −i

s)

s )∏ f (i , x , q

. n −i − j

(2.10)

s)

i =1

4

Since there is no q − analogue of the Binet formula we use a q − analog of an extension of the Cassini - Euler identity for the proof of Theorem 1. Let k

fac( k , x, s ) = ∏ f (i, x, s )

(2.11)

i =1

and k

fac(k , x, s, m) = ∏ f (im, x, s ).

(2.12)

i =1

Then the following theorem holds: Theorem 2 For all n ∈ ] and m, A ∈ `

det ( f ( n + mi − Aj, x, q s ) Aj

)

⎛ k +1⎞ ⎛ k +1⎞ ⎟( n − k A ) + ⎜ ⎟( A + m ) 2 ⎠ ⎝ 3 ⎠

⎜ ⎛k ⎞ = ∏ ⎜ ⎟( − s ) ⎝ j =0 ⎝ j ⎠ k

k k i , j =0 2

q

⎛ k +1⎞⎛ n ⎞ ⎛ k +1⎞ ⎛ k +1⎞ m ( km − 2) ⎛ k +1⎞ ⎛ A ⎞ ⎛ k +1⎞ A (3k + 2) −⎜ ⎜ ⎟⎜ ⎟ + ⎜ ⎟mn + ⎜ ⎟ ⎟ ⎜ ⎟−⎜ ⎟ 4 4 ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎠ ⎝ 2⎠ ⎝ 3 ⎠

k −1

∏ fac(k − j, x, q j =0

mj + n

(2.13)

k −1

s, m )∏ fac( k − j, x, q Aj s, A). j =0

First we prove the special case k = 1: Lemma 1 For all n ∈ ] and m, A ∈ ` ⎛ f ( n, x, s ) det ⎜ ⎝ f ( n + m, x , s )

⎛n⎞ ⎛ A⎞

⎜ ⎟−⎜ ⎟ f ( n − A, x, q A s ) ⎞ n −A ⎝ 2 ⎠ ⎝ 2 ⎠ = − ( s ) q f (A, x, s ) f (m, x, q n s ). (2.14) ⎟ f ( n + m − A, x, q A s ) ⎠

Various versions of this lemma are well known (cf. [1] and [5]). Since f ( n + m, x, s ) = xf ( n + m − 1, x, s ) + q n + m −2 sf ( n + m − 2, x, s ) and f ( n + m − A, x, q A s ) = xf ( n + m − 1 − A, x, q A s ) + q n +m −2 sf ( n + m − 2 − A, x, q A s ) we see that ⎛ f ( n, x , s ) f ( n − A, x, q A s ) ⎞ g ( m ) := det ⎜ ⎟ A ⎝ f ( n + m, x, s ) f ( n + m − A, x, q s ) ⎠ satisfies g ( m ) = xg ( m − 1) + q m + n −2 sg ( m − 2) and g (0) = 0. Therefore g ( m) = cf ( m, x, q n s ) for some constant c. To compute c we set m = −n. This gives g ( −n ) = f ( n, x, s ) f ( − A, x, q A s ) = cf ( −n, x, q n s ) or A −1

f ( n, x, s )( −1) q and therefore g (m) = ( − s)

n −A

q

⎛ A +1⎞ 2 ⎜ ⎟−A −A ⎝ 2 ⎠

⎛n⎞ ⎛A⎞ ⎜ ⎟ −⎜ ⎟ ⎝ 2⎠ ⎝2⎠

s f ( A, x, s ) = cf ( −n, x, q s ) = c( −1) n

f ( A, x, s ) f ( m, x, q n s ) = ( − s ) n −A q

n −1

q

( n − A )( A + n −1) 2

⎛ n +1⎞ 2 ⎜ ⎟−n −n ⎝ 2 ⎠

s f ( n, x , s )

f ( A, x, s ) f ( m, x, q n s ). 5

As a special case we get Corollary 2

For each k ∈ ` there is a representation of f ( n − k , x, q k s ) as a linear combination of f ( n, x, s ) and f ( n − 1, x, qs ) : 1 f ( n − k , x, q k s ) = (2.15) ( f (k − 1, x, qs ) f (n, x, s) − f (k , x, s ) f (n − 1, x, qs) ) v(k ) with ⎛k ⎞ ⎜ ⎟ ⎝ 2 ⎠ k −1

v ( k ) = ( −1) q s . k

(2.16)

Proof of Theorem 2

Using (2.15) we get det ( f ( n + mi − Aj, x, q Aj s ) k )

k i , j =0

(

= det ( v ( Aj ) −1 ( f ( Aj − 1, x, qs ) f ( n + mi, x, s ) − f ( Aj, x, s ) f ( n + mi − 1, x, qs ) ) ) = ( −1)

⎛ k +1⎞ k A⎜ ⎟ ⎝ 2 ⎠

1 s

= ( −1)

⎛ k +1⎞ k A⎜ ⎟ ⎝ 2 ⎠

s

⎛ kA ⎞ ⎞ ⎛ k +1⎞ ⎛ ⎛ A ⎞ ⎛ 2 A ⎞ ( k A − 2)⎜ ⎟ ⎜ ⎜ ⎟ + ⎜ ⎟ +"⎜ 2 ⎟ ⎟k ⎝ ⎠⎠ ⎝ 2 ⎠ ⎝ ⎝ 2⎠ ⎝ 2 ⎠

)

k k i , j =0

(

det ( a j f ( n + mi, x, s ) + b j f ( n + mi − 1, x, qs ) )

)

k k

(2.17)

i , j =0

q

⎛ k +1⎞ − ( k A − 2)⎜ ⎟ ⎝ 2 ⎠

q



k 2 ( k +1) A (2 k A + A −3) 12

(

det ( a j f ( n + mi, x, s ) + b j f ( n + mi − 1, x, qs ) )

)

k k i , j =0

with a j = f (Aj − 1, x, qs ), b j = − f (Aj, x, s ). Since the determinant is multilinear and alternating we get

(

det ( a j f ( n + mi, x, s ) + b j f ( n + mi − 1, x, qs ) )

)

k k i , j =0 k

⎛ k ⎛k ⎞ h k −h ⎞ = det ⎜ ∑ ⎜ ⎟ ( a j f ( n + mi, x, s ) ) ( b j f ( n + mi − 1, x, qs ) ) ⎟ ⎝ h =0 ⎝ h ⎠ ⎠i , j =0

( (

k k −π ( j ) π ( j) ⎛k ⎞ = ∏ ⎜ ⎟∑ det ( a j f ( n + mi, x, s ) ) ( b j f ( n + mi − 1, x, qs ) ) j =0 ⎝ j ⎠ π k k −π ( j ) π ( j) ⎛k ⎞ = ∏ ⎜ ⎟∑ det ( a j f ( n + mi, x, s ) ) ( b j f ( n + mi − 1, x, qs ) ) j =0 ⎝ j ⎠ π

) )

(

)

k k ⎛k ⎞ π ( j) k −π ( j ) = ∏ ⎜ ⎟∑∏ aπj ( j )bkj −π ( j ) det ( f ( n + mi, x, s ) ) ( f ( n + mi − 1, x, qs ) ) j =0 ⎝ j ⎠ π j =0 k k ⎛k ⎞ j k− j = ∏ ⎜ ⎟∑ sgn(π )∏ aπj ( j )bkj −π ( j ) det ( f ( n + mi, x, s ) ) ( f ( n + mi − 1, x, qs ) ) j =0 ⎝ j ⎠ π j =0

(

k ⎛k ⎞ = ∏ ⎜ ⎟ det ( aij bik − j ) det j =0 ⎝ j ⎠

)

(( f (n + mi, x, s)) ( f (n + mi − 1, x, qs)) ) . j

k− j

6

Now we need Lemma 2

For m ∈ `

D (n, m, s, k ) = det ( f ( n + mi, x, s ) j f ( n + mi − 1, x, qs ) k − j ) = ( −1)

⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ ⎜ ⎟n + ⎜ ⎟m ⎜ ⎟( n −1) + ⎜ ⎟m 2 3 2 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ 3 ⎠

s

k −1

∏ fac(k − j, x, q

mj + n

q

⎞ ⎛ k +1⎞ 2 ⎛ k +1⎞⎛ n ⎞ ⎛ k +1⎞⎛ ⎛ m ⎞ ⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎜ ⎟ + mn ⎟ + ⎜ ⎟m ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠⎝ ⎝ 2 ⎠ ⎠ ⎝ 4 ⎠

(2.18)

s, m ).

j =0

Proof

Using formula f ( n + mi, x, s ) = xf ( n + mi − 1, x, qs ) + qsf ( n + mi − 2, x, q 2 s ) we get as above D ( n , m, s , k ) = ( − s )

⎛ k +1⎞ n⎜ ⎟ ⎝ 2 ⎠

q

⎛ k +1⎞⎛ n +1⎞ ⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠

D (0, m, q n s, k ).

(2.19)

For D ( n , m, s , k ) =

(

det f ( n + mi − 1, x, qs ) k − j ( xf ( n + mi − 1, x, qs ) + qsf ( n + mi − 2, x, q 2 s ) )

(

= det f ( n + mi − 1, x, qs ) k − j ( qsf ( n + mi − 2, x, q 2 s ) ) = ( qs )

⎛ k +1⎞ ⎜ ⎟ ⎝ 2 ⎠

= (− s)

j

)

det ( f ( n + mi − 2, x, q s ) f ( n + mi − 1, x, qs )

⎛ k +1⎞ n⎜ ⎟ ⎝ 2 ⎠

2

q

⎛ k +1⎞⎛ n +1⎞ ⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠

j

k− j

) = ( −qs)

⎛ k +1⎞ ⎜ ⎟ ⎝ 2 ⎠

j

)

D ( n − 1, m, qs, k )

D (0, m, q n s, k ).

Finally we expand D (0, m, s, k ) with respect to the first column and get D (0, m, s, k ) = det ( f (mi, x, s ) j f ( mi − 1, x, qs ) k − j ) 2 k −2 f ( m, x , s ) f ( m − 1, x , qs ) " ⎛ f ( m, x , s ) f ( m − 1, x, qs ) k −1 ⎜ k −1 2 k −2 f (2 m, x , s ) f (2m − 1, x , qs ) f (2m, x , s ) f (2m − 1, x , qs ) " = f ( −1, x, qs ) k det ⎜ ⎜ " " " ⎜ k −1 2 k −2 f ( km, x , s ) f ( km − 1, x , qs ) ⎝ f ( km, x, s ) f ( km − 1, x, qs ) k = f ( −1, x, qs ) f ( m, x, s ) f (2m, x, s )" f ( km, x, s ) D ( m, m, s, k − 1). Thus we have

⎞ ⎟ f (2m, x , s ) ⎟ ⎟ " k ⎟ f ( km, x , s ) ⎠ f ( m, x , s )

D (0, m, s, k ) = f ( −1, x, qs ) k f (m, x, s ) f (2m, x, s )" f (km, x, s ) D ( m, m, s, k − 1).

k

k

(2.20)

7

For k = 1 we get from (2.14) that ⎛n⎞ ⎜ ⎟ n −1 ⎝ 2 ⎠

D ( n, m, s,1) = ( −1) s q n

f ( m, x, q n s ).

Therefore Lemma 2 is true for k = 1. The general case follows by using (2.19) and (2.20) D ( n , m, s , k ) = ( − s ) = (−s) ( −1)

⎛ k +1⎞ n⎜ ⎟ ⎝ 2 ⎠

q

⎛k ⎞ ⎛k ⎞ ⎜ ⎟ m + ⎜ ⎟m ⎝ 2⎠ ⎝ 3⎠

⎛ k +1⎞ n⎜ ⎟ ⎝ 2 ⎠

⎛ k +1⎞⎛ n +1⎞ ⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠

n

(q s)

q

⎛ k +1⎞⎛ n +1⎞ ⎜ ⎟⎜ ⎟ ⎝ 2 ⎠⎝ 2 ⎠

( q n s ) − k f ( m, x, q n s ) f (2m, x, q n s )" f ( km, x, q n s ) D ( m, m, q n s, k − 1)

( q n s ) − k f ( m, x, q n s ) f (2m, x, q n s )" f ( km, x, q n s )

⎛k ⎞ ⎛k ⎞ ⎜ ⎟( m −1) + ⎜ ⎟m ⎝ 2⎠ ⎝ 3⎠

q

⎛ k ⎞⎛ m ⎞ ⎛ k ⎞⎛ ⎛ m ⎞ 2 ⎞ ⎛ k ⎞ 2 ⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎜ ⎟ + m ⎟ + ⎜ ⎟m k − 2 ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠⎝ ⎝ 2 ⎠ ⎠ ⎝ 4⎠

∏ fac(k − j − 1, x, q

mj + m + n

s, m )

j =0

= ( −1)

⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ n⎜ ⎟+ ⎜ ⎟ m ( n −1)⎜ ⎟+⎜ ⎟m ⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎠ ⎝ 3 ⎠

s

q

⎛ k +1⎞⎛ n ⎞ ⎛ k +1⎞ ⎛ k +1⎞⎛ ⎛ m ⎞ ⎞ ⎛ k +1⎞ 2 ⎜ ⎟⎜ ⎟ + nm ⎜ ⎟+⎜ ⎟⎜ ⎜ ⎟ ⎟ + ⎜ ⎟m k −1 ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠⎝ ⎝ 2 ⎠ ⎠ ⎝ 4 ⎠

∏ fac(k − j, x, q

mj + n

s, m).

j =0

A special case is Lemma 3

(

D (0, A, s, k ) = det ( aij bik − j ) = det f ( Ai − 1, x, qs ) j ( − f ( Ai, x, s ) ) = ( −1)

⎛ k +1⎞ ⎜ ⎟A ⎝ 3 ⎠

s

⎛ k +1⎞ ⎛ k +1⎞ −⎜ ⎟+⎜ ⎟A ⎝ 2 ⎠ ⎝ 3 ⎠

k −1

∏ fac(k − j, x, q

Aj

q

)

k− j k i , j =0

⎛ k +1⎞⎛ A ⎞ ⎛ k +1⎞ 2 ⎜ ⎟⎜ ⎟ + ⎜ ⎟A ⎝ 3 ⎠⎝ 2 ⎠ ⎝ 4 ⎠

(2.21)

s, A).

j =0

With the use of these lemmas we get det ( f ( n + mi − Aj, x, q Aj s ) k ) = ( −1) = ( −1) = ( −1)

⎛ k +1⎞ k A⎜ ⎟ ⎝ 2 ⎠

⎛ k +1⎞ k A⎜ ⎟ ⎝ 2 ⎠

⎛ k +1⎞ k A⎜ ⎟ ⎝ 2 ⎠

s s

s

⎛ k +1⎞ − ( k A − 2)⎜ ⎟ ⎝ 2 ⎠

⎛ k +1⎞ − ( k A − 2)⎜ ⎟ ⎝ 2 ⎠

⎛ k +1⎞ − ( k A − 2)⎜ ⎟ ⎝ 2 ⎠

k −1

∏ fac(k − j, x, q

mj + n

q q

q

k i , j =0



k 2 ( k +1) A (2 k A + A − 3) 12



k ( k +1) A (2 k A + A − 3) 12



2

k ( k +1) A (2 k A + A − 3) 12 2

s, m)( −1)

⎛ k +1⎞ ⎜ ⎟A ⎝ 3 ⎠

s

(

det ( a j f (n + mi, x, s ) + b j f ( n + mi − 1, x, qs ) ) k

⎛k ⎞

j =0

⎝ ⎠

)

k k i , j =0

∏ ⎜ j ⎟D(n, m, s, k ) D(0, A, s, k ) ⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ ⎛ k +1⎞ ⎟n + ⎜ ⎟m ⎜ ⎟( n −1) + ⎜ ⎟m 2 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎠ ⎝ 3 ⎠

⎜ ⎛k ⎞ ⎝ − ( 1) ∏ ⎜ j⎟ j =0 ⎝ ⎠ k

⎛ k +1⎞ ⎛ k +1⎞ −⎜ ⎟+⎜ ⎟A ⎝ 2 ⎠ ⎝ 3 ⎠

q

s

q

⎞ ⎛ k +1⎞ 2 ⎛ k +1⎞⎛ n ⎞ ⎛ k +1⎞⎛ ⎛ m ⎞ ⎜ ⎟⎜ ⎟ + ⎜ ⎟⎜ ⎜ ⎟ + mn ⎟ + ⎜ ⎟m ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠⎝ ⎝ 2 ⎠ ⎠ ⎝ 4 ⎠

⎛ k +1⎞⎛ A ⎞ ⎛ k +1⎞ 2 ⎜ ⎟⎜ ⎟ + ⎜ ⎟A ⎝ 3 ⎠⎝ 2 ⎠ ⎝ 4 ⎠

j =0

k −1

∏ fac(k − j, x, q

Aj

s, A )

j =0

8

⎛ k +1⎞ ⎛ k +1⎞ ⎟( n − k A ) + ⎜ ⎟( A + m ) 2 ⎠ ⎝ 3 ⎠

⎜ ⎛k ⎞ = ∏ ⎜ ⎟( − s ) ⎝ j =0 ⎝ j ⎠ k

k −1

∏ j =0

2

q

⎛ k +1⎞⎛ n ⎞ ⎛ k +1⎞ ⎛ k +1⎞ m ( km − 2) ⎛ k +1⎞ ⎛ A ⎞ ⎛ k +1⎞ A (3k + 2) −⎜ ⎜ ⎟⎜ ⎟ + ⎜ ⎟mn + ⎜ ⎟ ⎟ ⎜ ⎟−⎜ ⎟ 4 4 ⎝ 2 ⎠⎝ 2 ⎠ ⎝ 3 ⎠ ⎝ 3 ⎠ ⎝ 2 ⎠ ⎝ 2⎠ ⎝ 3 ⎠

k −1

fac( k − j, x, q mj + n s, m)∏ fac(k − j, x, q Aj s, A). j =0

Thus Theorem 2 is proved. We will also need some modifications of these results. Let d ( n, m, s, k , j ) = det ( f ( n + m(i + [i ≥ j ]), x, s ) j f ( n + m(i + [i ≥ j ]) − 1, x, qs ) k − j ) ,

(2.22)

where [ P ] denotes the Iverson symbol, i.e. [ P ] = 1 if property P is true and [ P ] = 0 else. Then d (n, m, s, k ,0) = D(n + m, m, s, k ). (2.23) From (2.18) we get d (0, m, s, k ,0) = ( −1)

⎛ k +1⎞ ⎛ k +1⎞ ⎜ ⎟m ⎜ ⎟m −k ⎝ 2 ⎠ ⎝ 2 ⎠

s

q

km (( km + m + k −3) 4

fac( k , x, q m s, m )d (0, m, q m s, k − 1,0). (2.24)

Furthermore we get in the same way as above for j > 0 ⎛k ⎞

d (0, m, s, k , j ) = s

−k

⎛ k ⎞⎛ m +1⎞ ⎟ 2 ⎠

m⎜ ⎟ ⎜ ⎟⎜ fac( k + 1, x, s, m ) ( − s ) ⎝ 2 ⎠ q ⎝ 2 ⎠⎝ f ( jm, x, s )

d (0, m, q m s, k − 1, j − 1).

(2.25)

Proof of Theorem 1 The above argument implies that det ( f ( n + i − j, x, q j s ) k )

k +1 i , j =0

= 0.

(2.26)

If we denote by Aj the matrix obtained by crossing out the first row and the j − th column of

( f ( n + i − j, x, q s ) )

k k +1

j

i , j =0

k +1

∑ f (n − j, x, q s) ( −1) j

j =0

k

j

, we get det ( Aj ) = 0

or k +1

∑ f (n − j, x, q s) ( −1) j

j =0

k

j

det ( Aj ) det ( A0 )

= 0.

(2.27)

To compute det ( Aj ) we use the same method as in Theorem 1. We get k

(

⎛ ⎞ v( j ) k det ( Aj ) = ⎜ det ( ah ( j, s ) f ( n + i, x, s ) + bh ( j, s ) f (n + i − 1, x, qs ) ) ⎟ ⎝ v (0)v (1)" v ( k + 1) ⎠ where

)

k i ,h =0

,

9

ah ( j, s ) = f ( h − 1, x, qs ), bh ( j, s ) = − f ( h, x, s ) for h < j and ah ( j, s ) = f ( h, x, qs ), bh ( j, s ) = − f (h + 1, x, s ) for h ≥ j. Therefore det ( ah ( j, s )i bh ( j, s ) k −i ) = d (0,1, s, k , j ).

(2.28)

By (2.24) we have d (0,1, s, k ,0) = ( −1)

⎛ k +1⎞ ⎛ k ⎞ ⎛ k ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2⎠ ⎝2⎠

s q

fac(k , x, qs )d (0,1, qs, k − 1,0).

For j > 0 we get from (2.25) ⎛k ⎞

⎛k ⎞

⎜ ⎟ ⎜ ⎟ fac( k + 1, x, s ) ( − s )⎝ 2 ⎠ q⎝ 2 ⎠ d (0,1, qs, k − 1, j − 1). f ( j , x, s )

(2.29)

d (0,1, s, k , j ) fac( k + 1, x, s ) d (0,1, qs, k − 1, j − 1) = ( − s)− k . d (0,1, s, k ,0) f ( j, x, s ) fac(k , x, qs ) d (0,1, qs, k − 1,0)

(2.30)

d (0,1, s, k , j ) = s

−k

Therefore

This implies j −1

j −1

− ∑ ( k − i ) − ∑ i ( k −i ) k + 1 d (0,1, s, k , j ) d (0,1, q j s, k − j,0) = ( − s ) i =0 q i =0 ( x , s, q ) j d (0,1, s, k ,0) d (0,1, q j s, k − j, 0)

= (− s)

⎛ j⎞ − kj + ⎜ ⎟ ⎝ 2⎠

q

j −1 ⎛ j⎞ − k ⎜ ⎟+ i2 2 ⎝ ⎠ i =0



k +1 j

( x, s, q).

Therefore we get det ( Aj ) j

⎛ j⎞

⎛ j⎞

⎛ j⎞

j −1

k⎜ ⎟ − kj + ⎜ ⎟ − k ⎜ ⎟ + ∑ i ⎛ v ( j ) ⎞ d (0,1, s, k , j ) 2 j + kj kj ⎝ 2⎠ ⎝ 2⎠ = ( −1) j ⎜ = − − ( −1) ( 1) s q ( s ) q ⎝ ⎠ i =0 ⎟ det ( A0 ) ⎝ v (0) ⎠ d (0,1, s, k ,0)

= ( −1)

⎛ j +1⎞ ⎛ j ⎞ ⎜ ⎟ ⎜ ⎟ ⎝ 2 ⎠ ⎝ 2⎠

k

2

k +1 ( x , s, q ) j

j −1

∑i2 k + 1 s q i =0 ( x, s, q). j

Thus Theorem 1 is proved.

10

If we use the fact that det ( f (n + A(i − j ), x, q jA s ) k ) k +1

∑ f (n − jA, x, q

jA

s ) k ( −1) j

j =0

det ( B j ) det ( B0 )

k +1 i , j =0

= 0, we get in the same way that

= 0,

where we denote by B j the matrix obtained by crossing out the first row and the j − th column of ( f ( n + A(i − j ), x, q jA s ) k )

k +1 i , j =0

.

Here we have ( −1)

j

det ( B j ) det ( B0 )

⎛ jA ⎞

k

⎜ ⎟k ⎛ v ( jA) ⎞ d (0, A, s, k , j ) j + kjA kjA ⎝ 2 ⎠ d (0, A, s, k , j ) = ( −1) ⎜ = − ( 1) s q . ⎟ d (0, A, s, k ,0) ⎝ v (0) ⎠ d (0, A, s, k ,0) j

If we define k

k ( x, s, q, A) = j

∏ f (iA, x, s) i =1

j

∏ f (iA, x, q

( j −i ) A

i =1

k− j

s )∏ f (iA, x, q s )

(2.31)

jA

i =1

we get from (2.24) and (2.25) ⎛k ⎞

d (0, A, s, k , j ) = d (0, A, s, k ,0)

s

−k

( −1)

⎛ k ⎞⎛ A +1⎞ ⎟ 2 ⎠

A⎜ ⎟ ⎜ ⎟⎜ fac( k + 1, x, s, A) ( − s ) ⎝ 2 ⎠ q ⎝ 2 ⎠⎝ f ( jA, x, s )

⎛ k +1⎞ ⎛ k +1⎞ ⎜ ⎟A ⎜ ⎟A −k ⎝ 2 ⎠ ⎝ 2 ⎠

s

q

k A (( k A + A + k − 3) 4

d (0, A, q A s, k − 1, j − 1)

fac( k , x, q A s, A)d (0, A, q A s, k − 1, 0)

⎛A⎞

( −1) k A − k ⎜ ⎟ fac( k + 1, x, s, A) d (0, A, q A s, k − 1, j − 1) = kA q ⎝ 2 ⎠ s f ( jA, x, s ) fac( k , x, q A s, A) d (0, A, q A s, k − 1,0) = ( −1)

⎛ j⎞ ⎛ j⎞ kjA − A⎜ ⎟ A⎜ ⎟ − kjA ⎝ 2⎠ ⎝ 2⎠

s

j −1

q

⎛ A ⎞⎛ ⎛ j ⎞⎞ −⎜ ⎟⎜ kj −⎜ ⎟ ⎟ − A2 i ( k −i ) ⎝ 2 ⎠⎝ ⎝ 2⎠⎠ i =0



k +1 j

( x, s, q, A).

Therefore ( −1) j

det ( B j ) det ( B0 )

= ( −1)

⎛ j⎞ j + A⎜ ⎟ ⎝ 2⎠

(q

= ( −1)

(4 j +1) A − 3 6

⎛ jA ⎞ ⎜ ⎟k j + kjA kjA ⎝ 2 ⎠

s)

s q

⎛ j⎞ A⎜ ⎟ ⎝ 2⎠

( −1)

⎛ j⎞ kjA − A⎜ ⎟ ⎝ 2⎠

s

⎛ j⎞ A⎜ ⎟ − kjA ⎝ 2⎠

j −1

q

⎛ A ⎞⎛ ⎛ j ⎞⎞ − ⎜ ⎟⎜ kj − ⎜ ⎟ ⎟ − A2 i ( k −i ) ⎝ 2 ⎠⎝ ⎝ 2⎠⎠ i =0



k +1 ( x , s , q, A ) j

k +1 ( x, s, q, A). j

Thus we get

11

Theorem 3 For k , A ∈ ` the following recurrence relation holds: k +1

∑ ( −1)

⎛ j⎞ j + A⎜ ⎟ ⎝ 2⎠

(q

(4 j +1) A − 3 6

s)

⎛ j⎞ A⎜ ⎟ ⎝ 2⎠

k +1 j

j =0

( x, s, q, A) f (n − jA, x, q jA s ) k = 0.

(2.32)

For the special case k = 1 this reduces to f ( n, x, s ) −

f (2A, x , s ) A

f ( A, x , q s )

A ( 3 A −1)

f ( n − A, x , q s ) + ( −1) q A

A

2

s

A

f ( A, x , s ) A

f ( A, x , q s )

f ( n − 2A, x , q s ) = 0, 2A

(2.33)

which has already been proved in [6].

References

[1] G. Andrews, A. Knopfmacher, P. Paule, An infinite family of Engel expansions of Rogers-Ramanujan type, Adv. Appl. Math. 25 (2000), 2-11 [2] L. Carlitz, The characteristic polynomial of a certain matrix of binomial coefficients, Fibonacci Quarterly 3 (1965), 81-89 [3] L. Carlitz, Fibonacci notes 4: q-Fibonacci polynomials, Fibonacci Quarterly 13 (1975), 97-102 [4] J. Cigler, Elementare q-Identitäten, Séminaire Lotharingien de Combinatoire, B05a (1981) [5] J. Cigler, q-Fibonacci polynomials, Fibonacci Quarterly 41 (2003), 31-40 [6] J. Cigler, Some conjectures about q-Fibonacci polynomials, arXiv:0805.0415 [7] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences

12

Suggest Documents