Redalyc.SANITIZERS EFFECT IN MANGOES BIOACTIVES AMINES ...

13 downloads 0 Views 164KB Size Report
Agrotecnologia, 32(1):196-‐202. Selma, M. V.; Ibanez, A. M.; Cantwell, M.;. Suslow, T. (2008). Reduction by gaseous ozone of Salmonella and microbial flora ...
Revista Iberoamericana de Tecnología Postcosecha ISSN: 1665-0204 [email protected] Asociación Iberoamericana de Tecnología Postcosecha, S.C. México Marques Costa, Sérgio; Rodrigues Uliana, Maíra; Almeida Monaco, Kamila; Wagner Simon, Juliana; Pace Pere Lima, Giuseppina SANITIZERS EFFECT IN MANGOES BIOACTIVES AMINES CONTENT Revista Iberoamericana de Tecnología Postcosecha, vol. 16, núm. 1, 2015, pp. 64-68 Asociación Iberoamericana de Tecnología Postcosecha, S.C. Hermosillo, México

Available in: http://www.redalyc.org/articulo.oa?id=81339864009

How to cite Complete issue More information about this article Journal's homepage in redalyc.org

Scientific Information System Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Non-profit academic project, developed under the open access initiative

Sanitizers effect in mangoes…

Costa, Sérgio Marques y cols. (2015)

SANITIZERS  EFFECT  IN  MANGOES  BIOACTIVES  AMINES  CONTENT    

 

Costa,  Sérgio  Marques1;  Uliana,  Maíra  Rodrigues  1;  Monaco,  Kamila  Almeida1;  Simon,   Juliana  Wagner1;  Lima,  Giuseppina  Pace  Pereira1*  

1

São   Paulo   State   University   (UNESP),   Botucatu   Bioscience   Institute   (IBB),   Chemistry   and   Biochemistry   Department,  Rubião  Júnior,  Botucatu,  São  Paulo,  Brazil.  CEP:  18618-­‐970.  [email protected]     Key  words:  organic  and  conventional  crops;  ozone;  chlorine.  

ABSTRACT  

This   study   aimed   to   verify   sanitizers   influence   (ozone   and   sodium   hypochlorite)   in   polyamines   content   (putrescine,   spermidine   and   spermine)   during   refrigerated   storage   and   marketing   simulation   on   organic   and   conventional  mangoes.  Mangoes  "Palmer"  organically  and  conventional  cultivated,  acquired  from  Borborema-­‐ SP   (21°37’11’’S,   49°04’25’’W   and   429   m)   and   Taquaritinga-­‐SP   (21°24’21’’S,   48°30’18’’W   and   565   m),   respectively,  both  from  Brazil,  were  used.  Fruits  were  subjected  to  following  treatments:  control  samples  (fruits   grown   in   organic   and   conventional   system,   washed   with   public   water   supply);   chlorine   sanitized   samples   (fruits   -­‐1 grown  in  organic  and  conventional  system,  submerged  in  chlorinated  water,  100  mg  L  sodium  hypochlorite  per   10   minutes);   ozonated   samples   (fruits   grown   in   organic   and   conventional   system,   submerged   in   ozonated   water,  1  ppm,  per  10  and  20  minutes).  Bioactive  amines  qualiquantification  was  performed  on  harvest  day  and   seven   days   of   cold   storage   followed   by   four   and   eight   days   of   storage   at   room   temperature   to   simulate   marketing.   In   general,   during   storage,   the   characteristics   were   not   influenced   by   sanitizers,   suggesting   that   chlorine  can  be  replaced  by  ozone  without  compromising  quality  characteristics.  

 

ACCIÓN  DE  DESINFECTANTES  EN  CONTENIDO  DE  AMINAS  BIOACTIVAS  EN  MANGOS  

  Palabras  clave:  cultivos  orgánicos  y  convencionales;  ozono;  cloro.  

RESUMEN  

Este   estudio   tuvo   como   objetivo   verificar   la   influencia   de   los   desinfectantes   (ozono   y   hipoclorito   de   sodio)   en   el   contenido   de   poliaminas   (putrescina,   espermidina   y   espermina)   durante   el   almacenamiento   refrigerado   y   la   comercialización   de   mangos   orgánicos   y   convencionales.   Mangos   "Palmer"   cultivadas   en   sistemas   orgánicos   y   convencionales,  adquiridas  en  Borborema-­‐SP  (21°37’11’’S,  49°04’25’’W  y  429  m)  y  Taquaritinga-­‐SP  (21°24’21’’S,   48°30’18’’W  y  565  m),  respectivamente,  ambos  de  Brasil,  fueron  utilizados.  Los  frutos  fueron  sometidos  a  los   siguientes   tratamientos:   muestras   de   control   (frutos   cultivados   en   sistema   orgánico   y   convencional,   se   lava   con   agua   del   sistema   público);   muestras   desinfectadas   con   cloro   (frutos   cultivados   en   sistema   orgánico   y   -­‐1 convencional,   inmerso   en   agua   clorada,   100   mg   L   de   hipoclorito   de   sodio   durante   10   minutos);   muestras   desinfectadas  con  ozono  (frutos  cultivados  en  sistema  orgánico  y  convencional,  inmerso  en  agua  ozonizada,  1   ppm,  durante  10  y  20  minutos).  El  cualicuantificación  de  aminas  bioactivas  se  realizó  en  el  día  de  la  cosecha  y  de   los   siete   días   de   almacenamiento   en   frío   seguido   de   cuatro   y   ocho   días   de   almacenamiento   a   temperatura   ambiente  para  simular  la  comercialización.  En  general,  durante  el  almacenamiento,  las  características  no  fueron   influenciadas   por   los   desinfectantes,   en   general,   durante   el   almacenamiento,   lo   que   sugiere   que   el   cloro   puede   ser  sustituido  por  el  ozono  sin  comprometer  las  características  de  calidad.  

  INTRODUCTION   Several  authors  describe  sanitization  as  the   most   important   step   for   maintaining   fruits   and   vegetables   quality   after   harvest,   since   it   decreases   pathogenic   and   damaging   microorganism’s  rate,  with  a  resulting  increase  

64

in   shelf   life   of   these   foods   (Brackett,   1992;   Nascimento  et  al.,  2003;  Reis  et  al.,  2008).   Chlorine   as   sodium   hypochlorite   form   has   been   most   used   compound   on   giving   quality   assurance   for   water   and   food,   as   well   increasing   safety   and   shelf   life   of   vegetable   products.   However,   studies   had   shown   that  

Rev. Iber. Tecnología Postcosecha Vol 16(1):64-68

Sanitizers effect in mangoes…

this   chemical   form   can   produce   other   undesirable   by-­‐products   such   as   some   organochlorine   compounds,   trihalomethanes   (THMs)  and  they  are  toxic  and  carcinogenic  in   water,  food  or  direct  surface  contact  (Akbas  &   Ozdemir,   2008).   The   concern   about   chemical   reactions   that   lead   to   these   byproducts   formation   during   chlorine   post-­‐harvest   treatment  has  been  encouraging  international   interest   on   new   effective   techniques   development,   including   aqueous   and   gaseous   ozone  (Allende  et  al.,  2006).   Ozonated  water  can  be  used  for  equipment   and   packages   surface   disinfection,   water   sanitation,   post-­‐harvest   sanitization   of   vegetables   and   fruits,   handling   microorganisms   (Smilanick   et   al.,   2002;   Mahapatra  et  al.,  2005).  In  this  case,  aqueous   O3   has   been   used   as   a   chlorine   alternative   sanitizer,   for   fruits   and   vegetables   washing   or   cooling   water,   upgrading   microbiological   quality   by   controlling   the   pathogenic   agents   over   those   products   surfaces   (Parish   et   al.,   2003).   In   addition,   due   to   its   rapid   decomposition  to  oxygen  (O2)  and  the  fact  that   ozone   does   not   leave   residues   in   treated   products,   its   application   on   food   processing   is   permitted   by   Organic   Certification   (Selma   et   al.,  2008).   Mango  conventional  system  production  has   been  important  in  Brazil  considering  price  and   quality   competitiveness,   being   exported   to   European   and   North   American   consumers   (Leite   et   al.,   1998).   Mango   organic   system   production  is  also  viable  and  was  introduced  in   Brazil   first   inside   small   and   medium   farmer's   orchards   expecting   the   European   costumer.   Different   from   conventional   system,   mango   produced  on  organic  systems  does  not  receive   synthetic   products,   minimizing   environmental   and   health   risks   (Pinto   et   al.,   2008).   Besides   that,   organic   vegetables   have   high   concentration   of   bioactive   compounds,   due   their   involvement   in   plants   protection   processes.   Important   class   of   these   compounds,  polyamines  (PAs)  are  often  found  

Costa, Sérgio Marques y cols. (2015)

in  foods,  although  PAs  ingestion  are  known  for   years   as   an   important   factor   for   human's   health,   however   PAs   data   in   food   are   limited   (Kalac  &  Krausova,  2005).   The  aim  of  this  work  was  to  verify  sanitizing   influence  on  polyamine  content  during  storage   of  organic  and  conventional  mango.     MATERIAL  E  METHODS   Plant   material:   "Palmer"   Mangoes   organically   and   conventional   cultivated,   acquired   from   Borborema–SP   (21°37’11’’S,   49°04’25’’W   and   429   m)   and   Taquaritinga–SP   (21°24’21’’S,   48°30’18’’W   and   565   m),   respectively,  were  used.     Sanitizations:  Control  samples:  fruits  grown   in   organic   and   conventional   system,   washed   with   public   water   supply;   Chlorine   sanitized   samples:   fruits   grown   in   organic   and   conventional   system,   submerged   in   chlorinated   water   (100   mg   L-­‐1   sodium   hypochlorite)   for   10   minutes;   Ozonated   samples:   fruits   grown   in   organic   and   conventional   system,   submerged   in   ozonated   water  (1  ppm)  for  10  and  20  minutes.     Subsequently   fruits   were   drained   on   towel   paper  and  stored  at  15±1°C  and  85±5%  RH,  per   seven   days.   After   cold   storage   mangoes   were   left   at   room   temperature   per   four   to   seven   days  to  simulate  marketing.     Polyamines   by   thin-­‐layer   chromatography   (TLC):   Free   PAs   were   analyzed   according   to   method   proposed   by   Flores   e   Galston   (1982),   with  modifications  (Lima  et  al.,  2006).  Free  PAs   contents   were   expressed   as   μg   g−1   fresh   weight.     Experimental   design   and   statistical   analysis:   Experimental   design   was   factorial   8   X   3   (sanitizations   X   marketing   simulation),   with   three   replications,   where   2   fruits   represented   each   replication.   The   results   were   evaluated   by   Scott-­‐Knott   test   (p≤0,05)   via   R   software   (R   Development  Core  Team,  2011).  

Rev. Iber. Tecnología Postcosecha Vol 16(1):64-68

65

Sanitizers effect in mangoes…

RESULTS  AND  DISCUSSION   PAs   putrescine,   spermidine   and   spermine   contents  are  displayed  on  Table  1.   Putrescine   levels   found   in   fruits   grown   on   organic  system  were  higher  than  conventional.   Lima  et  al.  (2008)  reported  PAs  levels  in  a  large   number   of   vegetables   acquired   from   organic   and   conventional   farmers   and   they   observe   that   organic   system   induces   increasing   putrescine  levels  in  most  vegetables  analyzed.   Sanitizers   response   in   organic   fruits   with   this   diamine   levels   reduction   were   observed,   suggesting  ripening  acceleration  with  shelf  life   consequent   reduction,   this   effect   was   stronger   in   ozonated   fruits   which   had   the   largest   reductions   of   putrescine.   It   was   also   noted   decrease   of   these   contents   in   storage,   remarkably   in   fruits   refrigerated   per   seven   days   and   subjected   to   marketing   simulation   per   four   days.   Also   it   was   possible   to   reduce   these   levels   during   storage   markedly   in   fruit   refrigerated   for   seven   days   and   subjected   to   simulated   marketing   for   4   days.   Pas   and   ethylene   exhibit   antagonistic   performance   during  fruit  ripening  (Pandey  et  al.,  2000),  PAs   low   concentrations   are   correlated   with   ethylene   high   levels   (Kusano   et   al.,   2007),   which  is  related  to  fruit  senescence.   Spermidine  was  higher  in  conventional  and   washed   with   water   (control   sample)   fruits.   Chlorine   and   ozone   had   major   effect   on   this   triamine,   reducing   their   levels   when   compared   to   control,   which,   separately,   would   be   a   positive  factor,  whereas  in  ripe  fruits  (ethylene   peak)   PAs   levels   exhibit   its   minimum   value   (Harpaz-­‐Saad  et  al.,  2012).   Lower   spermidine   levels   were   observed   in   conventional   fruits,   as   occurred   with   putrescine.   There   is   a   relationship   between   PAs   synthesis   and   ethylene   biosynthesis   inhibition,   where   high   PAs   levels   might   be   responsible  for  quality  but  high  levels  may  also   be   associated   with   senescence   (Harpaz-­‐Saad   et  al.,  2012).   Spermine   highest   concentrations   found   in   conventional   fruits   may   indicate   larger   66

Costa, Sérgio Marques y cols. (2015)

juvenility   of   these   fruits.   Although   fruits   have   the   same   physiological   age,   during   the   experiment,   it   was   visible   and   clear   that   the   conventional  fruits  were  healthier.   In   this   work,   spermidine   and   spermine   values   were   higher   than   putrescine   at   early   stages   of   fruit   development   on   both   cropping   systems,   corroborating   data   found   by   Malik   and   Singh   (2004).   Studies   with   “Murcot”   (Nathan   et   al.,   1984)   showed   increased   PAs   concentrations   during   ripening,   suggesting   that   PAs   variation   is   not   only   between   species,   but   also   at   different   ripening   stages,   and   it   can   also   be   observed   in   this   study.   Variations   in   the   endogenous   PAs   levels   can   be   observed   during   ripening   although   these   changes   are   also   due   to   cultivar   type   (Bouchereau   et   al.,   1999;   Zuzunaga   et   al.,   2001).   Generally,   PAs   levels   decrease   during   normal   fruit   ripening   followed   by   ethylene   production,   as   noted   in   avocados   (Winer   &   Apelbaum,   1986)   and   pears  (Toumadje  &  Richardson,  1988).     CONCLUSIONS   Mangoes   grown   in   organic   system   had   lower   shelf   life,   this   fact   can   be   attributed   to   worst   harvest   conditions   observed   in   the   organic   farm   studied.   While   mangoes   cultivated   in   conventional   system   receive   treatments   to   remove   field   heat,   the   organic   was  let  on  the  sun  after  harvest.   In   general,   during   storage,   characteristics   were   not   influenced   by   sanitizers,   suggesting   that   chlorine   can   be   replaced   by   ozone   without  compromising  quality  characteristics.     REFERENCES   Akbas,   M.   Y.;   Ozdemir,   M.   (2008)   Application   of   gaseous   ozone   to   control   populations   of   Escherichia   coli,   Bacillus   cereus   and   Bacillus   cereus   spores   in   dried   figs.   Food   microbiology,  25(2):386-­‐391.   Allende,   A.;   Marin,   A.;   Buendia,   B.;   Tomas-­‐ Barberan,   F.;   Gil,   M.   I.   (2007).   Impact   of   combined   postharvest   treatments   (UV-­‐C   light,   gaseous   O3,   superatmospheric   O2  

Rev. Iber. Tecnología Postcosecha Vol 16(1):64-68

Sanitizers effect in mangoes…

and   high   CO2)   on   health   promoting   compounds  and  shelf-­‐life  of  strawberries.   Postharvest  Biol.  Technol.  46:201–211.   Bouchereau,   A.;   Aziz,   A.;   Larher,   F.;   Martin-­‐ Tanguy,   J.   (1999).   Polyamines   and   environmental   challenges:   recent   development.   Plant   Science,   140(2):103-­‐ 125.   Brackett,  R.  E.  (1992)  Shelf  stability  and  safety   of   fresh   produce   as   influenced   by   sanitation   and   desinfection.   Journal   Food   Protection,  Connecticut,  55:808-­‐814.     Flores,  H.  E.;  Galston.  A.  W.  (1982)  Analysis  of   polyamines   in   higher   plants   by   high   performance   liquid   cromatography.   Plant   Physiology,  69:701-­‐706.   Harpaz-­‐Saad,   S.;   Yoon,   G.   M.;   Mattoo,   A.   K.;   Kieber,  J.  J.  (2012).  The  formation  of  ACC   and  competition  between  polyamines  and   ethylene  for  SAM.  Ann  Plant  Rev  44:53-­‐81   Kalac,   P.;   Krausová,   P.   A.   (2005)   A   review   of   dietary   polyamines:   Formation,   implications   for   growth   and   health   and   occurrence   in   foods.   Food   Chemistry,   90(1):219-­‐230.   Kusano,   T.;   Yamaguchi,   K.;   Berberich,   T.;   Takahashi,   Y.   (2007).   Advances   in   polyamine   research   in   2007.   Journal   of   plant  research,  120(3):345-­‐350.   Leite,  L.  A.  S.;  Pessoa,  P.  F.  A.;  Albuquerque,  J.   A.;  Silva,  P.  C.  G.  O  (1998)  Agronegócio  da   manga   no   Nordeste.   In:   Castro,   A.   M.   G.   et   al.   Cadeias   produtivas   e   sistemas   naturais   –   prospecção   tecnológica.   Brasília:  Embrapa-­‐SPI,  389-­‐439.     Lima,   G.   P.   P.;   Rocha,   S.   A.   D.;   Takaki,   M.;   Ramos,   P.   R.   R.   (2006).   Polyamines   contents   in   some   foods   from   Brazilian   population   basic   diet.   Ciência   Rural,   36(4):1294-­‐1298.   Lima,  G.P.P.;  Rocha,  S;  Takaki,  M;  Ramos,  P.  R.   R.;   Ono,   E.   O.   (2008)   Comparison   of   polyamine,  phenol  and  flavonoid  contents   in   plants   grown   under   conventional   and   organic   methods.   Int   J   Food   Sci   Techn,   43:1838–1843.  

Costa, Sérgio Marques y cols. (2015)

Malik,  A.  U.;  Singh,  Z.  (2004).  Endogenous  free   polyamines   of   mangos   in   relation   to   development  and  ripening.  Journal  of  the   American   Society   for   Horticultural   Science,  129(3):280-­‐286.   Nathan,   R.;   Altaman,   A.;   Monselise,   S.P.   (1984)   Changes   in   activity   of   polyamine   biosynthetic   enzymes   and   polyamines   contents   in   developing   fruit   tissues   of   'Murcott'   madarin.   Scientia   Hort,   22:359-­‐ 364.   Nascimento,  M.  S.;  Silva,  N.;  Catanozi,  M.  P.  L.   M.   (2003)   Emprego   de   Sanitizantes   na   Desinfecção   de   Vegetais.   Revista   Higiene   Alimentar,  17,  42-­‐46.   Pandey,  S.;  Ranade,  S.  A.;  Nagar,  P.  K.;  Kumar,   N.   (2000).   Role   of   polyamines   and   ethylene   as   modulators   of   plant   senescence.   Journal   of   biosciences,   25(3):291-­‐299.   Parish,   M.   E.;   Beuchat,   L.   R.;   Suslow,   T.   V.;   Harris,   L.   J.;   Garrett,   E.   H.;   Farber,J.   N.;     Busta,   F.   F.   (2003)   Methods   to   reduce/eliminate   pathogens   from   fresh   and   fresh-­‐cut   produce.   Compr.   Rev.   Food   Sci.  Food  Safety,  2(Suppl.):161–173.   Pinto,   P.   A.   C.;   Choudhury,   M.   M.;   Lins,   J.   A.;   Homma,   S.;   PINTO,   A.   C.   C.;   Silva,   C.   P.;   Oliveira,   R.   S.   (2008)   Qualidade   pós-­‐ colheita   de   frutos   de   mangueira   (Mangifera   indica   L.)   var.   'Tommy   Atkins'   sob   sistema   orgânico   no   submédio   São   Francisco  (Br).  Recursos  Rurais  1(4):5-­‐12   R   Development   Core   Team   (2011).   R:   A   language   and   environment   for   statistical   computing.   R   Foundation   for   Statistical   Computing,   Vienna,   Austria.   ISBN   3-­‐ 900051-­‐07-­‐0.  http://www.R-­‐project.org/.   Reis,  K.  C.;  Siqueira,  H.  H.;  Alves,  A.  P.;  Silva,  J.   D.;   Lima,   L.   C.   O.   (2008)   Efeito   de   diferentes   sanificantes   sobre   a   qualidade   de   morango   cv.   Oso   grande.   Ciência   e   Agrotecnologia,  32(1):196-­‐202.   Selma,   M.   V.;   Ibanez,   A.   M.;   Cantwell,   M.;   Suslow,   T.   (2008).   Reduction   by   gaseous   ozone   of   Salmonella   and   microbial   flora  

Rev. Iber. Tecnología Postcosecha Vol 16(1):64-68

67

Sanitizers effect in mangoes…

Costa, Sérgio Marques y cols. (2015)

associated   with   fresh-­‐cut   cantaloupe.   Food  Microbiol.,  25:558–565.   Toumadje,   A.;   Richardson,   D.   G.   (1988)   Endogenous   polyamines   concentrations   during  development,  storage  and  ripening   of  pear  fruits.  Phytochem.,  27:335-­‐338.   Winer,  L.,  Apelbaum,  A.  (1986)  Involvement  of   polyamines   in   the   development   and   -­‐1

ripening   of   avocado   fruits,   J.   Plant   Physiol.,  126:223-­‐233.   Zuzunaga,   M.;   Serrano,   M.;   Martínez-­‐Romero,   D.;   Valero,   D.;   Riquelme,   F.   (2001).   Comparative   study   of   two   plum   (Prunus   salicina  Lindl.)  cultivars  during  growth  and   ripening.   Food   science   and   technology   international,  7(2):123-­‐130.    

Table   1.   Putrescine,   Spermidine   e   Spermine   (µg   g   )   in   organic   and   conventional   mangoes   treated   with   different  sanitizers  and  subjected  to  marketing  simulation.   Treatments                 Organic   H2O       Chlorine       Ozone  10       Ozone  20     Conventional   H2O     Chlorine       Ozone  10       Ozone  20       CV%     Treatments     Organic   H2O       Chlorine       Ozone  10       Ozone  20     Conventional   H2O     Chlorine       Ozone  10       Ozone  20       CV%     Treatments     Organic   H2O       Chlorine       Ozone  10       Ozone  20     Conventional   H2O     Chlorine       Ozone  10       Ozone  20       CV%    

                      19,33                     9,33                     10,59  

                           0     2,24±0,14  aA   1,48±0,24  bA   0,72±0,06  cA   0,91±0,07  cB   0,52±0,04  dA   0,58±0,06  dA   0,65±0,02  cA   0,29±0,09  eB           2,31±0,40bA   2,23±0,14bA   2,56±0,09bA   2,52±0,13bB   2,99±0,02aA   2,27±0,17bA   1,49±0,13cB   2,34±0,42bB           1,50±0,34dB   2,71±0,53cB   2,50±0,21cC   2,99±0,19cB   3,51±0,38bB   3,46±0,29bA   6,39±0,24aA   6,05±0,34aA      

-­‐1

Putrescine  (µg  g   )   Storage  (days)                  7+4       0,58±  0,19  aC     0,51±0,11  aB     0,38±0,00  aB     0,32±0,06  bC     0,24±0,02  bB     0,24±0,00  bB     0,39±0,07  aA     0,12±0,02  bB  

                 

               7+8   1,53±0,27aB   1,53±0,13aA   0,71±0,05bA   1,55±0,11aA   0,52±0,00bA   0,57±0,03bA   0,45±0,02bA   0,51±0,03bA  

               

1,08±0,06dB   1,08±0,34dB   2,67±0,27bA   3,07±0,24aA   2,07±0,06cC   2,39±0,12cA   3,34±0,26aA   2,30±0,16cB  

               

1,05±0,09cB   1,05±0,20cC   3,49±0,43aB   3,34±0,27aB   1,72±0,02bC   1,86±0,09bC   3,37±0,04aB   3,00±0,38aB  

-­‐1

Spermidine  (µg  g   )     2,37±0,16bA     2,59±0,12bA     2,43±0,09bA     2,60±0,01bB     2,49±0,07bB     1,74±0,09cB     1,38±0,15cB     4,76±0,09aA   -­‐1

Spermine  (µg  g   )     2,24±0,06eA     4,66±0,48cA     4,64±0,44cA     5,69±0,49bA     6,36±0,26aA     2,47±0,39eB     1,84±0,22eC     3,04±0,62dB  

Means   followed   by   the   same   capital   letters   (collumn)   and   the   same   low   case   letters   (row)   where   not   statistically   significant   to   Scott-­‐Knott´s   Test  (p≤0,05).    

 

68

Rev. Iber. Tecnología Postcosecha Vol 16(1):64-68