Reducing Large Diagonals in Kernel Matrices through Semidefinite Programming Hsiao-Mei Lu
Sumeet Gupta
Department of Bioengineering University of Illinois at Chicago
Department of Bioengineering University of Illinois at Chicago
Department of Bioengineering University of Illinois at Chicago
[email protected]
[email protected]
[email protected]
ABSTRACT
!"#$ %&'(*)+-, .0/1 2435 %67 98 :;.036=#> 84#*,91 /? A@(%2# CBD 8A'(%,EF$>G)0 > H%%-I J 8 KL/ %/M0 M8 $M %9 L N! 85@(%-# OP*)Q $'(% >ICRS%8T)A!"4*)/ >E>&) > U *) V8E/E!D.0 1;W% YXK>M > :;.0WGXC%%M$*)&-,G.0WGX7 Q>/ M-*) U22 '(? )% I J 8?0 ,P%O02% -M 2%!"# G!Z8G9B[@(%%\ D %/M> >0I
Keywords
.0/2\35 %K67 98 ].0% F)0%
KX^>M >]_\> W >]2`G%\6a%8T)0
1. INTRODUCTION
`G%^%8T)0G#A P!?LM$%1;!F1b$& >=>1 8?8 $4> '(G!c*'(M&2%!d# P = % $ 7 M)0 G >e98T)I J 8V/2a' %f#1 M8 N 5gB@T*BDh%Oi j-k llk lmn;I5Re 98 %!2/ F)0 > - M@a!58&%8T)04 U=- b,a@0*BD=48P@(%cI R[ *?!"/ % a#58U /N2 -? -hh8 >8% ) 0!"*/0? DU8 $5 *5 % E2 M *)+ 8& I J 8@(9K 9@o0'T )%h+%pY1 -KB?,& L/ 9^/ M8EU *$5
%C-,P8N/N! + %&0T)/ 9P2%bBq#2*)V2 -& +8Y!d/ IqRg M) >,-]Cf)-hE%*)q %/ ,q 01 )%D8G#2)A2 -D%O0 ,-I J 8 g01b)02) !28?@(%E8D)0 % b,h!28? /5 4) 8Nr%O0 s,Y!H/ >PT,h@(%0#@(N8?@(%%%8T) #!D8LY2/$E M8P!dE * t 0!d# g hi uTk v0kHl$j*n;I w *B'(%*]DBD8%[)M$o%-*)xaV'( %] 8a@(%%4#$ O )yy)#0T)/ %//,t8A 1; *)z>q)0 F> ]U {I I]g8V) >G-A! 8Y# O Y/ 98o>%&8 V8E|21s) > C%I `G%D# !"} %M y8 L *)y@%]?I >0I J 8~ %2 )0 %~8/)2) 9*)> WG {I67 >
))0%+W-f!Y -> % > :;6=N()o>%M$7= $ ' %*]KBD8%A* M8 2-& 2)hVxsBM)0 N7s !P E8D> '(%*-/ IQx8%'(%^8?) ;BNM)#b !LY- /0? A8U*-/% ]-8U 2- D%DYGU8%g G2 % *)aT/h2%*I J t 98 '(o2%%a*)0 9 [
8 0 !&/ M8[ M8 $M %9 L & 78G@(%Z#$ OH]2.0 M8Z @(0!g9Dil$u$n 02*)E%8T)h *)Eh8D * A!2!d/ % //PA8E@%^#$ OV +M)%Gf*)/ Y8E)0,T1 GM>Y!C8P# OIGU%M,-]8 U# >EBD h>/M-#8 $h8#%B# O+BD # 2 '( )0%
]^f!48f02% &*-/ *)q-,=@(9N#$1 OI J 8 E /AB?h'(*)-,+8f -T)/ % !U % *\@(%%Z#il*u$n{I J 8 M8=)4A#@%1 #$ OhBD8 M8f C8gM#$ OY!H84T)
)#@%1 K# OI J 8 G@(%K# O= 8o2E/)oBD 8 LM )M).036!"YM >0IXK , /0M %/U8$'&8*BDo848&%8T)f *o $'(G2%!"1 # @(%&8& $/M,>%M$## PBD 8 $>=)0 F> oil$u*n;I w *B'(%*]C8A a=)8 M8 C!T8^!d/ % P *)?*)/ K8C)0,0 QM> 8*'(U,-%?h2G/)%L-T)I s8 Q2%*]BNC2ND%B+*)/ % P%8T)G! )0 F>1 ?*)Af )% U0>M >ailn{I J 8# !"*/0P!?8 P%8T)+$#8G8>%M*) @(%%C L K2 '(h)% h )78U8h b,7*/0&!" !C2 Tg o8G!d*$/& %h# g/ M8 >)HI +o *)t8 A@(%4BD 8z.T3G6!df8V %F
*$ !KbB#)M%U!^>h9O0 ='/%g>%M$*)a!" 8? %($M*,Y%O02% -Q!dN * %/ )h# L1 /I J 8G%O02% -?8*BD48G%| % '(D!K8 ?%B 98T)!dD8*)/ % a!5) >Z%%-I 2. SUBPOLYNOMIAL KERNEL METHODS FOR LARGE DIAGONALS IN KERNEL MATRICES
.T/2f'( %7# M8 a$+/2%'T )z0$O0 # 8Z *&2 )9*)h^h*O0 #$C %-M ! 8?L/ %/? *$ Y0 ?/>>%L*)E-,h3C01 @+i jTk^lmn{Ix8%=/*)a!"G * \]Q.03G6ag#78 /4 h -#8 >8%) \!d*$/Y P8 $
LU`GWWGT5M)7R4?6 .0LU`GWW¡+@T8a7WGME6a >E = 0!d# ]Hu
>&j¢
M%D&> 'f9?!Z $,#F2*)M >Y)$MPBD 8 t0 #?8-,29I J 87 #D8-,02%A!"/ ) -,h84.036 *$ >&> 8 58?D85#O0 8Y $M >7#$> +29bBN% 8Y ,V &!8 M >)$M0I J 8G '$ A!"g# >P8G)MY - Y8 >8%g)0 % !d*$/G P D84 *$U)0 2/ ) L/ 9*)t 878 >8
)0 % N!d/ P %2 )A *g)0 =2/ ) 4 f8 /D I U '(fPM >h%D! /N'( % GBD 8 @T*BDE C2% hl Gl -]T%Be2 - U >)=EF2Z-,#8&.T3G6 % M)0 >EY8P)0 !d/ %
Z:5Z: !
!$#%!&
!
: ^ YY8 g!K2 '(P)0%
@(%&i $n; ! & ! ! : < h)0 > Z-I bAM % ?8?2A%'(*)8 $N8U.036aNBD 8A8 @T ) !?@(%^# O )f&2%!" Bgil$u*n{I J 7)* BD 8a8U !^>%g) >Q%T].T 98\ @(! 9?Dil$u*nZ02*)7h *?ML!d# fh*)0/ 8E)0,0 &M>!8E%TG!N8Y# OI J 89, /)aY & !1s *)7/2,0 ! \@(9c])% ! *)f : 9 L<
>\2: .0^: *< 0K: 9 2< 1< H .0K: *< 0K: 9 2< 1H M= :{O NQPRN[l$*< & ! ! :cm-< !" 8A> '(@(% : 2 7 < S.0^: *< 0K: 2< 19I w *B?1 '(9*]48 A98T)tBD *)y9 q#$ OtBD8 M9 8x#,e >%a2=2 '(o )% I R 0- *)0/7B?f8 2*)-,e.0 M8Z @(0!9hxil$u*ngo'(A8 / *)af8G/!K8& *\@& %H#Vil*$n :;j< T Y: 5G)0 > H%%-]T U8g/2,T1 @(9H *f2G )%*)a C+I 3. REDUCING LARGE DIAGONALS THROUGH SEMIDEFINITE PROGRAMMING
sA8 N % fBN02h%8T)A/ >Eh) |%-D1 0( 98E*)0/ ?84$>)0 > E8D@(%%# OI U/0?!dY/$ = 4*)7a8G/G!C.T )% XK1 >M >A:;.0WX%M =!K *401 >M >0]%gI >0IDiln{IC.0WXq)*5BD 8E8? * !N T'(%O7!"/ 9 G$'(%U8Y %T'(%Oo h!N% F)0%
#$ ]/9U!58Y I J 8&>%MK!d ! Y.0WGXe 4> '(74!"*BD dc Ufe I *I gE: e tM]Opuv>xw] o S>xw yjM0]Og zg U > y $: 6; =*l] P2 '
){gE: e A8Y2*)+ $ !Q8U)$MhY*$=tb0 #Eh2*))0 >YE!dD8 %L >7 $*x I } 8h2*))0 >]8h*)/ *) 1 s,-]2)9
)=U8& %UT)/ %42%bB=L >A2 - D**)HI sV8 &L/)0,-]HBNEBD 8+72% !",+a T'(9Oo L&!d/ % !K8&.TWGXe8DBD Z P/?*7!F 8G > @%T#$ OhU%Be# OPBD8g)0 > ?>% $>I J 84 '$ E!d8N!"h/ # ^G/M % %%M o/-?!"* M8o) >Q%T4!K8G@(% #$ O7A)/ %h8h) >C) ]2BD8 E@(% > 89B¡#$ O#2 '(P )% I J 8P/-D!Q8 /M % A *A2U -*)f-,/ >Y)0 |%-?n ~L% % '( !"/ % K P8D.TWGXQI w %]BN )%^85!d*BD >P E1 L?!d7I _H%| C 2A87 > 4@(%?# OM *)e!F 8 M > )$M0IR4/#8 |-l] 7 ) 'T )*) -|P /%?!5*O0 #$,A*-/ I_\9
CBj6 : CR2 C;G< !! !! 25?)0 F> -#$ OgBD8%:jC BC IQ_\%fcI
Gl Gl U {> M :LlaPk %%-IQ} L*]\%;g 2Ya) >5# O7BD 8+, l] g$D82 4 2 )0 >EY8{6 8f- M@V
LU`GWWGT5M)7R4?6 .0LU`GWW¡+@T8a7WGME6a >E = 0!d# ]Hu
>&jv
III
l
g
!
+g%*,-*)E8g%8T)!K.0WGXq@%2T)0
*$ a)0%1 9 2)[ x8V%'0 /a% % z [ ] ~b/ 9 xBD 8¡ .T3G6!"C
*$ \I J 8?%'/ !28?%8T)&BN % )0/ %)Aa8U!"*BD >AsBN)MY9I
6c87 - M@
4.1 Datasets
III
"!$#&%(')%%*',+.-/'102'435! 0768/9:9?
l
III
$: 6, l] APGRD|2,9 OP >T/ %% )gM,0]-%O0% '( g !"^m4/^)Yuu4#- %Y /^N/)P!" j#>%E:d!d*$/M%]28huBD 8=8 8 >8%Lh #^ - b, %h8E /&# %) !"G %F
*$
il%n{IhU&Y/L)0 L >/ 8V2%sBNV *1 %%/G)o#Q /G> '(%o8Y%O00 V'/! 8?>IKsEM)0%CGM h8?>%?)0 F> - Y8?@(%#$ OH] ?BNC))0*)E)0 % 2*)E 7il$u*n; l= a!"*/0GBD 8+'/PfB%))*)o7* 98V / )GM),Y 98A>/#!5l*&/N!\8g!"*/0 BNU8o%#2hM )0 '/U e:{= l*8Y.0WX5IU.0 &Z8&|21s)0 F> Z-491 # #/ 98>*)E #84T)
*)E@%]T84 > @(%1 %Q!d/ % V * 2Y/*)= o8Y) % !d/ % t:Ll*I J 8G #\T/h2%N!^- M@0D8/)A28 &8U>%MP@(9Q#$ O7> 'T >#8&2LG /01 M 9,-IQbG0M % Z *&2C)%% *) *,G80/>8 8U- *)0/G!K %L1;' )$ \I .0 8G/2,0 H@(%%H M8 >UZ- 4 f8 > ?@(95# O]Q8 b,+!g7 Y!g2 T x8V#2)t!d*$/ % 7 %,[%*)HIs 78 $M)
e/V8*B / MV8V%B @(%% a!d 8o2 % + *$ z)# \I by -ML*]g8 .0WX T) *)h@(95,h 98>?8D)0 F> -^ E8 > T@(%(#$ O]*85 b,G!"K%'(%,|21s) > -?# ?/ 98>*)I 4. EXPERIMENTAL RESULTS AND DISCUSSION
J 8N)Mg9^!HU/79Q INi $n L^!>N%O0 '/!N!F u¢a %/E,08L h/@(% F :{Rg_Z_Z%^8 $CB%?
%*)Y/58/>8 8=%1;0- >eLI J 8 = ~b % '(V f) % 1 D8DbB&s,2%C!Q/@ I J 8gM &!H8g*'(%M> |21s) > Q-D8 g!) >K%T4!^8 4@(%# OA!K8%G)$MY gn 0Kl J=:c J PY2 -I
LU`GWWGT5M)7R4?6 .0LU`GWW¡+@T8a7WGME6a >E = 0!d# ]Hu
>&j\J
J 8h>%M *$ q2%!"# Y!Nq.T3G6 U -*) -,a8hM)0%1;|+ M%%)oM%%- *) BD 8f8U@(%& I J 8 #2'/%?! U ) g A8 Lg }z@%#: : K < 9OH5: V_^V Y a!U8f|21 ) > %%-K'%C8^!H8?) > %%-]( 1 2 ) >A#8h@(%%Q# U!58Y *]H8&/1 2,0 c]H)=8h.0WGXQI J 8&M$ G&8*BDV,f!d 8h# BD8 98 >%M*)V>-T) %/G!dG8E% bB@(%I J 8GM$ U 2) >E8&.0WGXe%81 T)P$Yh/ M8V$>%G!"&RgZ Ah2hE )=BD 8V8h! 8G/2,0 H%8T)I w *BN%'(%*]8UM g!dU28 %8T)DP2/048g!dU/\I J 8 5/C *2D%O0 *)5!d*BDIN.0 D4!8 |21s)0 F> 0-ZNQ8#l!d5Rg Ah2h ](K8*BD CR }Q >/Al]8P/2,0 FQ29M + %/, 8 ?8%|% %4!^ % >E8'/?!dD8G%%-I J 89%!d]8 h/E eV/LMT N*)/ % !g8 ) |%% ?2%sBN%E8D) >2 )Y|21s) > - a8P/2,0 H@(%%\#$ O#!"U8 g)ME%h:c }Q >/0&u / )0G!^8&)0 F> K%%-I J 8 U 4BD8T,A8GM$1 # ^# h# Y8D.0WGXV@(%#$ K!dC8N )$M%*IhR4U!dhU/H]Z %E5-$E>G8 l]-8*BD | C | }Q >/Pl]8D/2,0 %8T) *7D8 *'(U8GY %| %4)0 % 2*)72'I
C
= J(j$m-j = ¢-l$jm n ¢Tl$j m= ¢m( n v(j0l= (¢jj ]l (uv l jv0l*v
= vjTl$¢ l (uv = ¢jj l jvTl*v =m j(*¢ J = ¢jj-l = ¢jj-ll(¢j l*jv
C Y
)
C
l n (u n v n m-¢
= u l = u = m
m= ¢m l%m(n l (¢nu \j J l%m(nv = v = u l = m
j$ms ¢u¢Tl j= j*j J l%m(=v nv &v J
= m-¢ = m( = m( l
!"#$&% '(%*)+$,*#.-0/1$23)*46578$,93*#.: 70); : -0/$.4)2*)*4o%O02% -I#b)) a8#)M7R4Z Ah2h] 80G)$MY%DBD 87) |%-D G%'(4B%G>%1 9M*)I J 8 $ ] l= M!d*$/^BD 8'/CUBN%4))*) * M8y /V )eM )0,e 98t>/#!hj0]Gl*j0] )Aujh/?!Z8%g!d/%NBN%U8#%Nh2gM) '/G t:{n *l$%^BN BD88f 7'? %**)HI J 8a*)0 9 >VM$ !F 8.TWGX^1l&T) *)V@%G$E >8-, *BN9G8 8g!58&/2,0 QI J 8 %/0h#,f 98> !2BD/?8?M%%A x!"C8g.0WGXK1l? *]-BD8%?8 '/ SB?? O)aPlP)0/ >&89O29 %T*I
5. CONCLUSIONS
0lvn l l$j*J= jj¢ l$*j J= jj¢ mms ¢ m(n (¢$m lm= l* j=m ¢u¢-ljn jj\J
J 8 g2%g8 g -T)/ *)=E9B .TWGX^1;*)a98T)f!" 8K*)/ % P!>N) > --Z P@(%(#$ % >9M*)!" 0'- (@(%!d/ % I J 8C2%!"1 # g!\802)f%8T)BND *,#L)f
LU`GWWGT5M)7R4?6 .0LU`GWW¡+@T8a7WGME6a >E = 0!d# ]Hu
>P
L /[!.03G6 J l 4 RgZAh2hI
b*,)*4 pN70,705*$* )370 W ` PR. @ W j E U W p -4 I @ W j E+i W i W % i W s W ` ndD W s E+i W j