Document not found! Please try again

Regional Scale Crop Mapping Using Multi- temporal ...

5 downloads 0 Views 7MB Size Report
Apr 3, 2014 - solving. • crop area estimation. • crop yield forecasting. • environmental impact analysis. [source: FAS USDA]. Crop map. (Kyiv oblast, 2013) ...
Regional Scale Crop Mapping Using Multitemporal Satellite Imagery Nataliia Kussul1, Sergii Skakun1, Andrii Shelestov1,2, Mykola Lavreniuk3, Bogdan Yaylimov1, Olga Kussul4 1 Space

Research Institute NAS and SSA Ukraine 2 National University of Life and Environmental Sciences of Ukraine 3 Taras Shevchenko National University of Kyiv 4 National Technical University of Ukraine “KPI”

ISRSE36 May 11, 2015, Berlin, Germany

Introduction • Agriculture in Ukraine – 1st world largest sunflower producer and exporter (in 2013-2014) – 8th world largest wheat producer (in 2014) [source: FAS USDA]

• Crop mapping – important input within many problems solving • crop area estimation • crop yield forecasting • environmental impact analysis

Crop map (Kyiv oblast, 2013) ISRSE36 2015

2

Objectives • To develop crop classification methodology in Ukraine with multi-temporal optical images and multitemporal multi-polarization SAR images using a neural network ensemble

+ Multi-temporal optical images

ISRSE36 2015

Multi-temporal SAR images

Crop maps

3

Ground Observations • Along the roads surveys, 2013-2015 № 1 2 3 4 5 6 7 8 9 10 11 12 13 ISRSE36 2015

Class Artificial Winter wheat Winter rapeseed Spring crops Maize Sugar beet Sunflower Soybeans Other cereals Forest Grassland Bare land Water

2013 2014 Polygons Polygons No. % No. % 6 1.6 17 2.8 51 13.2 126 20.4 12 3.1 36 5.8 9 2.3 45 7.3 87 22.5 76 12.3 8 2.1 18 2.9 30 7.8 31 5.0 60 15.5 109 17.6 32 8.3 12 1.9 17 4.4 35 5.7 48 12.4 68 11.0 10 2.6 11 1.8 16 4.1 34 5.5

Total

386

Data randomly divided into training (50%) and testing (50%) sets

2014

Kyiv oblast (area 28,131 km2)

618 4

Restoration of Missing Data Missing

Input X1

X2

X3

Nan

X5

Nan SOM: selection of neuron winner

Missing components are taken from neuron winner

wi1

ISRSE36 2015

wi2

wi3

wi4

wi5

wi6

X1

X2

X3

Nan

X5

Nan

wl1

wl2

wl3

wl4

wl5

wl6

Only valid components are considered for finding a neuron winner

Classification Methodology • •

Ensemble of neural networks (multilayer perceptron - MLP) MLP training: minimized the crossentropy error function N

K

E ( w 1 ,..., w K )   ln p (T | w 1 ,..., w K )     t nk ln y nk

Samples randomly divided into training (50%) and testing (50%) sets



Restoration of missing data due to clouds and shadows using a selforganizing Kohonen maps (SOMs)



Inputs to classifiers

n 1 k 1

t – target output, y – MLP output





Ensemble – averaging a-posteriori probability of individual networks

– Landsat-8 (TOA or TOC) • bands 2-7

– Proba-V (TOC) • bands 1-4 + NDVI

– Sentinel-1

ISRSE36 2015

1 L l p   pi L l 1 e i

k *  arg max pke k 1, K

• • • •

bands 1-2 (VV+VH) DN -> backscatter coeff filter: Lee (5 x 5) ortho-rectification 6

Satellite Data. Landsat-8 (2013) Landsat-8 time-series (6 images)

ISRSE36 2015

16.04.13

2.05.13

18.05.13

19.06.13

5.07.13

6.08.13

A true color composition of Landsat-8 bands 4-3-2. SR reflectance values are scaled from 0 to 0.15

7

Satellite Data. Landsat-8 (2014) Landsat-8 time-series (6 images) 3.04.14

ISRSE36 2015

6.06.14

8.07.14

A true color composition of Landsat-8 bands 4-3-2. SR reflectance values are scaled from 0 to 0.15

8

Satellite Data. Landsat-8 (2014) Landsat-8 time-series (6 images) 10.09.14

ISRSE36 2015

12.10.14

28.10.14

A true color composition of Landsat-8 bands 4-3-2. SR reflectance values are scaled from 0 to 0.15

9

Satellite Data. Proba-V (2014) Proba-V time-series (7 images) 05.04.14

ISRSE36 2015

18.04.14

25.05.14

10

Satellite Data. Proba-V (2014) Proba-V time-series (7 images (and 15.09.14)) 30.06.14

ISRSE36 2015

1.08.14

6.09.14

11

Satellite Data. Sentinel-1 (2015) Sentinel-1 time-series (3 images) 18.03.15

ISRSE36 2015

30.03.15

11.04.15

12

Crop Maps 2013 Landsat-8

Probability 1

Comparison to official statistics 0 № 2 3 5 6 7 8

ISRSE36 2015

Class Winter wheat Winter rapeseed Maize Sugar beet Sunflower Soybeans

Official statistics, x 1000, ha

Landsat-8, Relative x 1000, ha error, %

187.3

184.5

-1.5

46.7

59.9

28.3

291.7 15.5 108.2 145.9

342.4 11.2 117.6 168.5

17.4 -27.9 8.7 15.5

OA = 85.3% 13

Crop Maps 2014 Landsat-8

ISRSE36 2015

OA = 88.1%

Proba-V

OA = 90.3%

14

Crop Maps 2015 (early-season) Landsat-8

Sentinel-1

Kyiv oblast (area 28,131 km2) ISRSE36 2015

Zhytomyr oblast (area 29,832 km2)

OA = 80.7%

OA = 65.7%

15

Comparison experiment Joint Experiment of Crop Assessment and Monitoring (JECAM) under FP7 Grant “Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM” (SIGMA)

ISRSE36 2015

16

Conclusions • Method of restoring data allows using time series methodology for classification large territories • Ensemble of neural networks allows classify multitemporal SAR images and multi-temporal optical images from different satellites

• The proposed approach is compared to: – existing classifiers in Google Earth Engine – cropland mapping approaches over five JECAM sites

and is applied for classification: – whole territory of Ukraine (1990, 2000, 2010) – Kyiv oblast (2013-2015) and Zhytomyr oblast (2015) ISRSE36 2015

• The obtained map is also comparison to official statistics

17

References

ISRSE36 2015



Efficiency Assessment of Multitemporal C-Band Radarsat-2 Intensity and Landsat-8 Surface Reflectance Satellite Imagery for Crop Classification in Ukraine S.Skakun, N.Kussul, A.Y. Shelestov, M.Lavreniuk, O. Kussul IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. - 2015. - DOI: 10.1109/JSTARS.2015.2454297.



Regional scale crop mapping using multi-temporal satellite imagery N. Kussul, S. Skakun, A. Shelestov, M. Lavreniuk, B. Yailymov, O. Kussul International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. – 2015. - P. 45-52.



Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine A. Kolotii, N. Kussul, A. Shelestov, S. Skakun, B. Yailymov, R. Basarab, M. Lavreniuk, T. Oliinyk, V. Ostapenko International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. – 2015. - P. 39-44. 18

References

ISRSE36 2015



Analysis of Applicability of Neural Networks for Classification of Satellite Data S.V. Skakun, E.V. Nasuro, A.N. Lavrenyuk, and O.M. Kussul J. Autom. Inf. Sci., vol. 39, no. 3, pp. 37-50, 2007.



Reconstruction of Missing Data in Time-Series of Optical Satellite Images Using Self-Organizing Kohonen Maps S. Skakun, and R. Basarab J. Autom. Inf. Sci., vol. 46, no. 12, pp. 19–26, 2015.



The use of satellite SAR imagery to crop classification in Ukraine within JECAM project N. Kussul, S. Skakun, A. Shelestov, and O. Kussul in: IGARSS 2014, 13-18 July 2014, pp. 1497–1500, 2014.

19

Thank you!

ISRSE36 2015

20

Suggest Documents