Research Article Certain Inequalities Involving ... - Semantic Scholar

6 downloads 0 Views 579KB Size Report
Aug 26, 2014 - Hindawi Publishing Corporation. e Scientific World Journal. Volume 2014, Article ID 174126, 11 pages http://dx.doi.org/10.1155/2014/174126Β ...
Hindawi Publishing Corporation ξ€ e Scientific World Journal Volume 2014, Article ID 174126, 11 pages http://dx.doi.org/10.1155/2014/174126

Research Article Certain Inequalities Involving Generalized ErdΓ©lyi-Kober Fractional π‘ž-Integral Operators Praveen Agarwal,1 Soheil Salahshour,2 Sotiris K. Ntouyas,3 and Jessada Tariboon4 1

Department of Mathematics, Anand International College of Engineering, Jaipur 303012, India Department of Computer Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 3 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece 4 Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand 2

Correspondence should be addressed to Jessada Tariboon; [email protected] Received 21 June 2014; Accepted 26 August 2014; Published 11 September 2014 Academic Editor: Junesang Choi Copyright Β© 2014 Praveen Agarwal et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. In recent years, a remarkably large number of inequalities involving the fractional π‘ž-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized ErdΒ΄elyiKober fractional π‘ž-integral operator due to GauluΒ΄e, whose special cases are shown to yield corresponding inequalities associated with Kober type fractional π‘ž-integral operators. The cases of synchronous functions as well as of functions bounded by integrable functions are considered.

for any π‘₯, 𝑦 ∈ [π‘Ž, 𝑏], then we have (see, e.g., [2, 3])

1. Introduction Let us start by considering the following functional (see [1]): 𝑇 (𝑓, 𝑔, 𝑝, π‘ž) 𝑏

= ∫ π‘ž (π‘₯) 𝑑π‘₯ ∫ 𝑝 (π‘₯) 𝑓 (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯ π‘Ž

𝑏

𝑏

π‘Ž

π‘Ž

(𝑓 (π‘₯) βˆ’ 𝑓 (𝑦)) (𝑔 (π‘₯) βˆ’ 𝑔 (𝑦)) ≀ 0,

+ ∫ 𝑝 (π‘₯) 𝑑π‘₯ ∫ π‘ž (π‘₯) 𝑓 (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯ 𝑏

𝑏

π‘Ž

π‘Ž

(1)

βˆ’ (∫ π‘ž (π‘₯) 𝑓 (π‘₯) 𝑑π‘₯) (∫ 𝑝 (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯) 𝑏

𝑏

π‘Ž

π‘Ž

βˆ’ (∫ 𝑝 (π‘₯) 𝑓 (π‘₯) 𝑑π‘₯) (∫ π‘ž (π‘₯) 𝑔 (π‘₯) 𝑑π‘₯) , where 𝑓, 𝑔 : [π‘Ž, 𝑏] β†’ R are two integrable functions on [π‘Ž, 𝑏] and 𝑝(π‘₯) and π‘ž(π‘₯) are positive integrable functions on [π‘Ž, 𝑏]. If 𝑓 and 𝑔 are synchronous on [π‘Ž, 𝑏], that is, (𝑓 (π‘₯) βˆ’ 𝑓 (𝑦)) (𝑔 (π‘₯) βˆ’ 𝑔 (𝑦)) β‰₯ 0,

(3)

The inequality in (2) is reversed if 𝑓 and 𝑔 are asynchronous on [π‘Ž, 𝑏]; that is,

𝑏

π‘Ž

𝑇 (𝑓, 𝑔, 𝑝, π‘ž) β‰₯ 0.

(2)

(4)

for any π‘₯, 𝑦 ∈ [π‘Ž, 𝑏]. If 𝑝(π‘₯) = π‘ž(π‘₯) for any π‘₯, 𝑦 ∈ [π‘Ž, 𝑏], we get the Chebyshev inequality (see [1]). Ostrowski [4] established the following generalization of the Chebyshev inequality. If 𝑓 and 𝑔 are two differentiable and synchronous functions on [π‘Ž, 𝑏] and 𝑝 is a positive integrable function on [π‘Ž, 𝑏] with |𝑓󸀠 (π‘₯)| β‰₯ π‘š and |𝑔󸀠 (π‘₯)| β‰₯ π‘Ÿ for π‘₯ ∈ [π‘Ž, 𝑏], then we have 𝑇 (𝑓, 𝑔, 𝑝) = 𝑇 (𝑓, 𝑔, 𝑝, 𝑝) β‰₯ π‘šπ‘Ÿπ‘‡ (π‘₯ βˆ’ π‘Ž, π‘₯ βˆ’ π‘Ž, 𝑝) β‰₯ 0. (5) If 𝑓 and 𝑔 are asynchronous on [π‘Ž, 𝑏], then we have 𝑇 (𝑓, 𝑔, 𝑝) ≀ π‘šπ‘Ÿπ‘‡ (π‘₯ βˆ’ π‘Ž, π‘₯ βˆ’ π‘Ž, 𝑝) ≀ 0.

(6)

2

The Scientific World Journal

If 𝑓 and 𝑔 are two differentiable functions on [π‘Ž, 𝑏] with |𝑓󸀠 (π‘₯)| ≀ 𝑀 and |𝑔󸀠 (π‘₯)| ≀ 𝑅 for π‘₯ ∈ [π‘Ž, 𝑏] and 𝑝 is a positive integrable function on [π‘Ž, 𝑏], then we have 󡄨 󡄨󡄨 󡄨󡄨𝑇 (𝑓, 𝑔, 𝑝)󡄨󡄨󡄨 ≀ 𝑀𝑅𝑇 (π‘₯ βˆ’ π‘Ž, π‘₯ βˆ’ π‘Ž, 𝑝) ≀ 0.

(7)

Here, it is worth mentioning that the functional (1) has attracted many researchers’ attention mainly due to diverse applications in numerical quadrature, transform theory, probability, and statistical problems. Among those applications, the functional (1) has also been employed to yield a number of integral inequalities (see, e.g., [5–11]). The study of the fractional integral and fractional π‘žintegral inequalities has been of great importance due to the fundamental role in the theory of differential equations. In recent years, a number of researchers have done deep study, that is, the properties, applications, and different extensions of various fractional π‘ž-integral operators (see, e.g., [12–16]). The purpose of this paper is to find π‘ž-calculus analogs of some classical integral inequalities. In particular, we will find π‘ž-generalizations of the Chebyshev integral inequalities by using the generalized ErdΒ΄elyi-Kober fractional π‘ž-integral operator introduced by GaluΒ΄e [17]. The main objective of this paper is to present some new fractional π‘ž-integral inequalities involving the generalized ErdΒ΄elyi-Kober fractional π‘ž-integral operator. We consider the case of synchronous functions as well as the case of functions bounded by integrable functions. Some of the known and new results are as follows, as special cases of our main findings. We emphasize that the results derived in this paper are more generalized results rather than similar published results because we established all results by using the generalized ErdΒ΄elyi-Kober fractional π‘žintegral operator. Our results are general in character and give some contributions to the theory π‘ž-integral inequalities and fractional calculus.

1, (𝑛 = 0) { { π‘›βˆ’1 (π‘Ž; π‘ž)𝑛 := { {∏ (1 βˆ’ π‘Žπ‘žπ‘˜ ) , (𝑛 ∈ N) , { π‘˜=0

1 (1 βˆ’ π‘Žπ‘žβˆ’1 ) (1 βˆ’ π‘Žπ‘žβˆ’2 ) β‹… β‹… β‹… (1 βˆ’ π‘Žπ‘žβˆ’π‘› )

(9)

(𝑛 ∈ N0 ) . We also write

π‘˜=0

(𝑛 ∈ Z) ,

(π‘Žπ‘žπ‘› ; π‘ž)∞

󡄨 󡄨 (π‘Ž, π‘ž ∈ C; σ΅„¨σ΅„¨σ΅„¨π‘žσ΅„¨σ΅„¨σ΅„¨ < 1) .

(10)

(11)

which can be extended to 𝑛 = 𝛼 ∈ C as follows: (π‘Ž; π‘ž)𝛼 =

(π‘Ž; π‘ž)∞

(π‘Žπ‘žπ›Ό ; π‘ž)∞

󡄨 󡄨 (𝛼 ∈ C; σ΅„¨σ΅„¨σ΅„¨π‘žσ΅„¨σ΅„¨σ΅„¨ < 1) ,

(12)

where the principal value of π‘žπ›Ό is taken. We begin by noting that F. J. Jackson was the first to develop π‘ž-calculus in a systematic way. For 0 < π‘ž < 1, the π‘ž-derivative of a continuous function 𝑓 on [0, 𝑏] is defined by π·π‘ž 𝑓 (𝑑) :=

π‘‘π‘ž π‘‘π‘ž 𝑑

𝑓 (𝑑) =

𝑓 (𝑑) βˆ’ 𝑓 (π‘žπ‘‘) , (1 βˆ’ π‘ž) 𝑑

𝑑 ∈ (0, 𝑏] ,

(13)

and π·π‘ž 𝑓(0) = lim𝑑 β†’ 0 π·π‘ž 𝑓(𝑑). It is noted that lim π·π‘ž 𝑓 (𝑑) =

π‘žβ†’1

𝑑 𝑓 (𝑑) , 𝑑𝑑

(14)

if 𝑓(𝑑) is differentiable. The function 𝐹(𝑑) is a π‘ž-antiderivative of 𝑓(𝑑) if π·π‘ž 𝐹(𝑑) = 𝑓(𝑑). It is denoted by ∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑.

(15)

The Jackson integral of 𝑓(𝑑) is thus defined, formally, by ∞

∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑 := (1 βˆ’ π‘ž) π‘‘βˆ‘ π‘žπ‘— 𝑓 (π‘žπ‘— 𝑑) , 𝑗=0

(16)

which can be easily generalized as follows: ∞

(17)

Suppose that 0 < π‘Ž < 𝑏. The definite π‘ž-integral is defined as follows: 𝑏

∞

0

𝑗=0

∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑 := (1 βˆ’ π‘ž) 𝑏 βˆ‘π‘žπ‘— 𝑓 (π‘žπ‘— 𝑏) ,

(8)

where π‘Ž, π‘ž ∈ C and it is assumed that π‘Ž =ΜΈ π‘žβˆ’π‘š (π‘š ∈ N0 ). The π‘ž-shifted factorial for negative subscript is defined by

∞

(π‘Ž; π‘ž)∞

𝑗=0

In the sequel, we required the following well-known results to establish our main results in the present paper. The π‘ž-shifted factorial (π‘Ž; π‘ž)𝑛 is defined by

(π‘Ž; π‘ž)∞ := ∏ (1 βˆ’ π‘Žπ‘žπ‘˜ )

(π‘Ž; π‘ž)𝑛 =

∫ 𝑓 (𝑑) π‘‘π‘ž 𝑔 (𝑑) = βˆ‘π‘“ (π‘žπ‘— 𝑑) (𝑔 (π‘žπ‘— 𝑑) βˆ’ 𝑔 (π‘žπ‘—+1 𝑑)) .

2. Preliminaries

(π‘Ž; π‘ž)βˆ’π‘› :=

It follows from (8), (9), and (10) that

𝑏

𝑏

π‘Ž

π‘Ž

0

0

∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑 = ∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑 βˆ’ ∫ 𝑓 (𝑑) π‘‘π‘ž 𝑑.

(18)

(19)

A more general version of (18) is given by 𝑏

∞

0

𝑗=0

∫ 𝑓 (𝑑) π‘‘π‘ž 𝑔 (𝑑) = βˆ‘π‘“ (π‘žπ‘— 𝑏) (𝑔 (π‘žπ‘— 𝑏) βˆ’ 𝑔 (π‘žπ‘—+1 𝑏)) . (20) The classical Gamma function Ξ“(𝑧) (see, e.g., [18, Section 1.1]) was found by Euler while he was trying to extend the factorial 𝑛! = Ξ“(𝑛 + 1)(𝑛 ∈ N0 ) to real numbers. The π‘žfactorial function [𝑛]π‘ž ! (𝑛 ∈ N0 ) of 𝑛! defined by [𝑛]π‘ž ! := {

1, if 𝑛 = 0, [𝑛]π‘ž [𝑛 βˆ’ 1]π‘ž β‹… β‹… β‹… [2]π‘ž [1]π‘ž , if 𝑛 ∈ N,

(21)

The Scientific World Journal

3 On the same way each term in the series of Kober π‘žintegral operator (27) is also nonnegative and thus

can be rewritten as follows: βˆ’π‘›

∞

(1 βˆ’ π‘ž) ∏

(1 βˆ’ π‘ž

π‘˜=0 (1 βˆ’

π‘˜+1

)

(π‘ž; π‘ž)∞

=

π‘žπ‘˜+1+𝑛 )

βˆ’π‘›

(π‘žπ‘›+1 ; π‘ž)∞

(1 βˆ’ π‘ž)

:= Ξ“π‘ž (𝑛 + 1)

(0 < π‘ž < 1) .

Replacing 𝑛 by π‘Ž βˆ’ 1 in (22), Jackson [19] defined the π‘žGamma function Ξ“π‘ž (π‘Ž) by Ξ“π‘ž (π‘Ž) :=

(π‘ž; π‘ž)∞

1βˆ’π‘Ž

(π‘žπ‘Ž ; π‘ž)∞

(1 βˆ’ π‘ž)

(0 < π‘ž < 1) .

(23)

The π‘ž-analogue of (𝑑 βˆ’ π‘Ž)𝑛 is defined by the polynomial 1, (𝑛 = 0) (𝑑 βˆ’ π‘Ž)(𝑛) := { (𝑑 βˆ’ π‘Ž) (𝑑 βˆ’ π‘žπ‘Ž) β‹… β‹… β‹… (𝑑 βˆ’ π‘žπ‘›βˆ’1 π‘Ž) , (𝑛 ∈ N) , π‘Ž = 𝑑 ( ; π‘ž) 𝑑 𝑛 𝑛

(𝑛 ∈ N0 ) . (24)

More generally, if 𝛾 ∈ R, then ∞

1 βˆ’ (π‘Ž/𝑑) π‘ž , 𝛾+π‘˜ 1 π‘˜=0 βˆ’ (π‘Ž/𝑑) π‘ž

for all πœ‡ > 0 and πœ‚ ∈ C.

3. Inequalities Involving a Generalized ErdΓ©lyi-Kober Fractional π‘ž-Integral Operator for Synchronous Functions This section begins by presenting two inequalities involving generalized ErdΒ΄elyi-Kober π‘ž-integral operator (26) stated in Lemmas 4 and 5 below. Lemma 4. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true:

𝑑 =ΜΈ 0.

(25)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓𝑔} (𝑑)

Definition 1. Let R(𝛽), R(πœ‡) > 0 and πœ‚ ∈ C. Then a generalized ErdΒ΄elyi-Kober fractional integral πΌπ‘žπ›Ό,𝛽,πœ‚ for a real-valued continuous function 𝑓(𝑑) is defined by (see, [17]) πΌπ‘žπœ‚,πœ‡,𝛽

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

for all πœ‡, 𝛽 > 0 and πœ‚ ∈ C.

(πœ‡βˆ’1) 𝛽(πœ‚+1)βˆ’1 π›½π‘‘βˆ’π›½(πœ‚+πœ‡) 𝑑 𝛽 𝜏 𝑓 (𝜏) π‘‘π‘ž 𝜏 ∫ (𝑑 βˆ’ πœπ›½ π‘ž) Ξ“π‘ž (πœ‡) 0 πœ‡βˆ’1

= 𝛽 (1 βˆ’ π‘ž1/𝛽 ) (1 βˆ’ π‘ž)

∞

βˆ‘ π‘˜=0

(π‘žπœ‡ ; π‘ž)π‘˜ (π‘ž; π‘ž)π‘˜

π‘žπ‘˜(πœ‚+1) 𝑓 (π‘‘π‘žπ‘˜/𝛽 ) . (26)

Definition 2. A π‘ž-analogue of the Kober fractional integral operator is given by (see, [20]) πΌπ‘žπœ‚,πœ‡ {𝑓} (𝑑) : = (πΌπ‘žπœ‚,πœ‡,1 {𝑓} (𝑑)) =

π‘‘βˆ’πœ‚βˆ’πœ‡ 𝑑 (πœ‡βˆ’1) πœ‚ 𝜏 𝑓 (𝜏) π‘‘π‘ž 𝜏, ∫ (𝑑 βˆ’ πœπ‘ž) Ξ“π‘ž (πœ‡) 0

(31)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) ,

{𝑓} (𝑑) =

(30)

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓𝑔} (𝑑)

π‘˜

(𝑑 βˆ’ π‘Ž)(𝛾) := 𝑑𝛾 ∏

πΌπ‘žπœ‚,πœ‡ {𝑓} (𝑑) β‰₯ 0,

(22)

Proof. Let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞). Then, for all 𝜏, 𝜌 ∈ (0, 𝑑) with 𝑑 > 0, we have (𝑓 (𝜏) βˆ’ 𝑓 (𝜌)) (𝑔 (𝜏) βˆ’ 𝑔 (𝜌)) β‰₯ 0, or, equivalently, 𝑓(𝜏) 𝑔 (𝜏) + 𝑓 (𝜌) 𝑔 (𝜌) β‰₯ 𝑓 (𝜏) 𝑔 (𝜌) + 𝑓 (𝜌) 𝑔 (𝜏) .

(27)

(πœ‡ > 0; πœ‚ ∈ C; 0 < π‘ž < 1) .

(32)

(33)

Now, multiplying both sides of (33) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) / Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœπ›½ π‘ž)(πœ‡βˆ’1) πœπ›½(πœ‚+1)βˆ’1 𝑒(𝜏), integrating the resulting inequality with respect to 𝜏 from 0 to 𝑑, and using (26), we get

Remark 3. It is easy to see that Ξ“π‘ž (πœ‡) > 0;

(π‘žπœ‡ ; π‘ž)π‘˜ > 0,

(28)

for all πœ‡ > 0 and π‘˜ ∈ N0 . If 𝑓 : [0, ∞) β†’ [0, ∞) is a continuous function, then we conclude that, under the given conditions in (26), each term in the series of generalized ErdΒ΄elyi-Kober π‘ž-integral operator is nonnegative and thus πΌπ‘žπœ‚,πœ‡,𝛽 {𝑓} (𝑑) β‰₯ 0, for all 𝛽, πœ‡ > 0 and πœ‚ ∈ C.

(29)

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓𝑔} (𝑑) + 𝑓 (𝜌) 𝑔 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) β‰₯ 𝑔 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) + 𝑓 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) .

(34)

Next, multiplying both sides of (34) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) / Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœŒπ›½ π‘ž)(πœ‡βˆ’1) πœŒπ›½(πœ‚+1)βˆ’1 V(𝜌), integrating the resulting inequality with respect to 𝜌 from 0 to 𝑑, and using (26), we are led to the desired result (31).

4

The Scientific World Journal

Lemma 5. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true: πΌπ‘žπœ,],𝛿 {V} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓𝑔} (𝑑)

β‰₯ πΌπ‘žπœ,],𝛿 {V𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑)

(35)

Proof. Multiplying both sides of (34) by (]βˆ’1) 𝛿(𝜁+1)βˆ’1 π›Ώπ‘‘βˆ’π›Ώ(𝜁+]) 𝛿 𝜌 V (𝜌) , (𝑑 βˆ’ πœŒπ›Ώ π‘ž) Ξ“π‘ž (])

(36)

which remains nonnegative under the conditions in (35), integrating the resulting inequality with respect to 𝜌 from 0 to 𝑑, and using (26), we get the desired result (35). Theorem 6. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑙, π‘š, 𝑛 : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true: 2πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓𝑔} (𝑑)

(37)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑔} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓𝑔} (𝑑)]

(41)

Theorem 7. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑙, π‘š, 𝑛 : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true:

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ,],𝛿 {π‘šπ‘“π‘”} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑)

+ πΌπ‘žπœ,],𝛿 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑)]

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑)] ,

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓𝑔} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛} (𝑑)

for all πœ‡, 𝛽 > 0 and πœ‚ ∈ C.

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ,],𝛿 {π‘š} (𝑑)]

Proof. By setting 𝑒 = π‘š and V = 𝑛 in Lemma 4, we get

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛𝑔} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑) .

(40)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑)] ,

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [2πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛𝑓𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑)]

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑔} (𝑑)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑔} (𝑑)

Finally, by adding (39), (40), and (41), side by side, we arrive at the desired result (37).

{𝑛𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓𝑔} (𝑑)]

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑)] .

+ 2πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑)]

(39)

πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓𝑔} (𝑑)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑)]

β‰₯

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑔} (𝑑)

Similarly replacing 𝑒, V by 𝑙, 𝑛 and 𝑒, V by 𝑙, π‘š, respectively, in (31) and then multiplying both sides of the resulting inequalities by πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š}(𝑑) and πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛}(𝑑) both of which are nonnegative under the given assumptions, respectively, we get the following inequalities:

for all πœ‡, ], 𝛽, 𝛿 > 0 and πœ‚, 𝜁 ∈ C.

{π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑)] .

+ πΌπ‘žπœ,],𝛿 {V𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) ,

{𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽

both sides of (38) by πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙}(𝑑), we have

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑)]

+ πΌπ‘žπœ,],𝛿 {V𝑓𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽

Since πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙}(𝑑) β‰₯ 0 under the given conditions, multiplying

(38)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛𝑓} (𝑑)] + πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑) πΌπ‘žπœ,],𝛿 {𝑛𝑓} (𝑑)]

The Scientific World Journal

5

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) πΌπ‘žπœ,],𝛿 {π‘šπ‘”} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑) πΌπ‘žπœ,],𝛿 {π‘šπ‘“} (𝑑)] , (42) for all πœ‡, ], 𝛽, 𝛿 > 0 and πœ‚, 𝜁 ∈ C.

Corollary 10. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑙, π‘š, 𝑛 : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true:

Proof. Setting 𝑒 = π‘š and V = 𝑛 in (35), we have πΌπ‘žπœ,],𝛿 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑)

2πΌπ‘žπœ‚,πœ‡ {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑛𝑓𝑔} (𝑑)

+ πΌπ‘žπœ,],𝛿 {𝑛𝑓𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑)

(43)

β‰₯ πΌπ‘žπœ,],𝛿 {𝑛𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑) +

πΌπ‘žπœ,],𝛿

{𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

Multiplying both sides of (43) by simplification, we get

+ πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡ {π‘šπ‘“π‘”} (𝑑)] + 2πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑙𝑓𝑔} (𝑑)

{π‘šπ‘”} (𝑑) .

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙}(𝑑),

Remark 9. We remark further that we can present a large number of special cases of our main inequalities in Theorems 6 and 7. Here, we give only two examples: setting 𝛽 = 1 in (37) and 𝛽 = 𝛿 = 1 in (42), we obtain interesting inequalities involving ErdΒ΄elyi-Kober fractional integral operator.

after a little

β‰₯ πΌπ‘žπœ‚,πœ‡ {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡ {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑛𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡ {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡ {π‘šπ‘”} (𝑑)] + πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡ {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑛𝑔} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ,],𝛿 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“π‘”} (𝑑) + πΌπ‘žπœ,],𝛿 {𝑛𝑓𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑)] β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑) [πΌπ‘žπœ,],𝛿 {𝑛𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘“} (𝑑)

+ πΌπ‘žπœ‚,πœ‡ {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑙𝑔} (𝑑)] (44)

+ πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡ {𝑙𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡ {π‘šπ‘”} (𝑑) + πΌπ‘žπœ‚,πœ‡ {π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡ {𝑙𝑔} (𝑑)] ,

+ πΌπ‘žπœ,],𝛿 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘šπ‘”} (𝑑)] . Now, by replacing 𝑒, V by 𝑙, 𝑛 and 𝑒, V by 𝑙, π‘š in (35), respectively, and then multiplying both sides of the resulting inequalities by πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š}(𝑑) and πΌπ‘žπœ‚,πœ‡,𝛽 {𝑛}(𝑑), respectively, we get the following two inequalities: πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ,],𝛿 {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓𝑔} (𝑑)

{𝑛} (𝑑) [πΌπ‘žπœ,],𝛿 +

β‰₯

πΌπ‘žπœ‚,πœ‡,𝛽

{π‘š} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

πΌπ‘žπœ,],𝛿

{𝑙𝑓𝑔} (𝑑)

{π‘šπ‘“π‘”} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{𝑛} (𝑑) [πΌπ‘žπœ,],𝛿 +

πΌπ‘žπœ,],𝛿

+ πΌπ‘žπœ,] {𝑛} (𝑑) πΌπ‘žπœ‚,πœ‡ {π‘šπ‘“π‘”} (𝑑)] (45)

{𝑙} (𝑑)]

{π‘šπ‘”} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{𝑙𝑓} (𝑑)

{π‘šπ‘“} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

Corollary 11. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two continuous and synchronous functions on [0, ∞), and let 𝑙, π‘š, 𝑛 : [0, ∞) β†’ [0, ∞) be continuous functions. Then, the following inequality holds true:

+ πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) πΌπ‘žπœ,] {π‘šπ‘“π‘”} (𝑑)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘š} (𝑑) [πΌπ‘žπœ,],𝛿 {𝑛𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑓} (𝑑) + πΌπ‘žπœ,],𝛿 {𝑛𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙𝑔} (𝑑)] ,

for all πœ‡ > 0 and πœ‚ ∈ C.

πΌπ‘žπœ‚,πœ‡ {𝑙} (𝑑) [2πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) πΌπ‘žπœ,] {𝑛𝑓𝑔} (𝑑)

+ πΌπ‘žπœ,],𝛿 {𝑛𝑓𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑙} (𝑑)]

πΌπ‘žπœ‚,πœ‡,𝛽

(46)

{𝑙𝑔} (𝑑)] .

Finally, we find that the inequality (42) follows by adding the inequalities (44) and (45), side by side. Remark 8. It may be noted that inequalities (37) and (42) in Theorems 6 and 7, respectively, are reversed if the functions are asynchronous on [0, ∞). The special case of (42) in Theorem 7 when 𝛽 = 𝛿, πœ‚ = 𝜁, and πœ‡ = ] is easily seen to yield inequality (37) in Theorem 6.

+ πΌπ‘žπœ‚,πœ‡ {𝑙𝑓𝑔} (𝑑) [πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) πΌπ‘žπœ,] {𝑛} (𝑑) + πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) πΌπ‘žπœ,] {π‘š} (𝑑)] β‰₯ πΌπ‘žπœ‚,πœ‡ {𝑙} (𝑑) [πΌπ‘žπœ‚,πœ‡ {π‘šπ‘“} (𝑑) πΌπ‘žπœ,] {𝑛𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡ {π‘šπ‘”} (𝑑) πΌπ‘žπœ,] {𝑛𝑓} (𝑑)] + πΌπ‘žπœ‚,πœ‡ {π‘š} (𝑑) [πΌπ‘žπœ‚,πœ‡ {𝑙𝑓} (𝑑) πΌπ‘žπœ,] {𝑛𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡ {𝑙𝑔} (𝑑) πΌπ‘žπœ,] {𝑛𝑓} (𝑑)] + πΌπ‘žπœ‚,πœ‡ {𝑛} (𝑑) [πΌπ‘žπœ‚,πœ‡ {𝑙𝑓} (𝑑) πΌπ‘žπ›Ύ,𝛿 {π‘šπ‘”} (𝑑) + πΌπ‘žπœ‚,πœ‡ {𝑙𝑔} (𝑑) πΌπ‘žπœ,] {π‘šπ‘“} (𝑑)] , for all πœ‡, ] > 0 and πœ‚, 𝜁 ∈ C.

(47)

6

The Scientific World Journal

Remark 12. If we take πœ‚ = 0 and 𝛽 = 1 in Theorem 6 and πœ‚ = 𝜁 = 0 and 𝛽 = 𝛿 = 1 in Theorem 7, then we obtain the known results due to Dahmani [21].

4. Inequalities Involving a Generalized ErdΓ©lyi-Kober Fractional π‘ž-Integral Operator for Bounded Functions In this section we obtain some new inequalities involving ErdΒ΄elyi-Kober fractional π‘ž-integral operator in the case where the functions are bounded by integrable functions and are not necessary increasing or decreasing as are the synchronous functions. Theorem 13. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞), and let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions. Assume the following. (𝐻1 ) There exist two integrable functions πœ‘1 , πœ‘2 on [0, ∞) such that πœ‘1 (𝑑) ≀ 𝑓 (𝑑) ≀ πœ‘2 (𝑑) ,

βˆ€π‘‘ ∈ [0, ∞) .

(48)

As special cases of Theorems 13, we obtain the following results. Corollary 14. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞) satisfying π‘š ≀ 𝑓(𝑑) ≀ 𝑀, for all 𝑑 ∈ [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let π‘š, 𝑀 ∈ R. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have π‘€πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) + π‘šπΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) β‰₯ π‘šπ‘€πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) . Corollary 15. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [1, ∞), and let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions. Assume that there exists an integrable function πœ‘(𝑑) on [0, ∞) and a constant 𝑀 > 0 such that πœ‘ (𝑑) βˆ’ 𝑀 ≀ 𝑓 (𝑑) ≀ πœ‘ (𝑑) + 𝑀, for all 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C; we have

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) + β‰₯

πΌπ‘žπœ‚,πœ‡,𝛽

{𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{Vπœ‘1 } (𝑑)

{Vπœ‘1 } (𝑑)

+ π‘€πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) + π‘€πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘} (𝑑)

(49)

+ 𝑀2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) .

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) (50)

+ π‘€πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘} (𝑑)

Therefore,

+ π‘€πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) . πœ‘2 (𝜏) 𝑓 (𝜌) + πœ‘1 (𝜌) 𝑓 (𝜏) β‰₯ πœ‘1 (𝜌) πœ‘2 (𝜏) + 𝑓 (𝜏) 𝑓 (𝜌) .

(51)

Multiplying both sides of (51) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) /Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœπ›½ π‘ž)(πœ‡βˆ’1) πœπ›½(πœ‚+1)βˆ’1 𝑒(𝜏), 𝜏 ∈ (0, 𝑑), and integrating both sides with respect to 𝜏 on (0, 𝑑), we obtain πΌπ‘žπœ‚,πœ‡,𝛽

(55)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘} (𝑑)

Proof. From (𝐻1 ), for all 𝜏 β‰₯ 0 and 𝜌 β‰₯ 0, we have (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) β‰₯ 0.

(54)

πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)

Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have

πΌπ‘žπœ‚,πœ‡,𝛽

(53)

{π‘’πœ‘2 } (𝑑) 𝑓 (𝜌) +

πΌπ‘žπœ‚,πœ‡,𝛽

{𝑒𝑓} (𝑑) πœ‘1 (𝜌)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πœ‘1 (𝜌) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) 𝑓 (𝜌) .

Theorem 16. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let πœƒ1 , πœƒ2 > 0 satisfying 1/πœƒ1 + 1/πœƒ2 = 1. Suppose that (𝐻1 ) holds. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have 1 πœ‚,πœ‡,𝛽 πœƒ 𝐼 {V} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓) 1 } (𝑑) πœƒ1 π‘ž +

(52)

Multiplying both sides of (52) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) /Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœŒπ›½ π‘ž)(πœ‡βˆ’1) πœŒπ›½(πœ‚+1)βˆ’1 V(𝜌), 𝜌 ∈ (0, 𝑑), and integrating both sides with respect to 𝜌 on (0, 𝑑), we get inequality (49) as requested. This completes the proof.

1 πœ‚,πœ‡,𝛽 πœƒ 𝐼 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑓 βˆ’ πœ‘1 ) 2 } (𝑑) πœƒ2 π‘ž

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑) .

(56)

The Scientific World Journal

7

Proof. According to the well-known Young inequality [3] 1 πœƒ1 1 πœƒ2 π‘₯ + 𝑦 β‰₯ π‘₯𝑦, πœƒ1 πœƒ2 πœƒ1 , πœƒ2 > 0,

βˆ€π‘₯, 𝑦 β‰₯ 0, (57)

1 1 + = 1, πœƒ1 πœƒ2

and setting π‘₯ = πœ‘2 (𝜏) βˆ’ 𝑓(𝜏) and 𝑦 = 𝑓(𝜌) βˆ’ πœ‘1 (𝜌), 𝜏, 𝜌 β‰₯ 0, we have 1 1 πœƒ πœƒ (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) 1 + (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) 2 πœƒ1 πœƒ2

by setting π‘₯ = πœ‘2 (𝜏) βˆ’ 𝑓(𝜏) and 𝑦 = 𝑓(𝜌) βˆ’ πœ‘1 (𝜌), 𝜏, 𝜌 > 1, we have πœƒ1 (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) + πœƒ2 (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) πœƒ

(πœ‡βˆ’1) 𝛽 (πœ‡βˆ’1) 𝛽2 π‘‘βˆ’2𝛽(πœ‚+πœ‡) 𝛽 (𝑑 βˆ’ πœŒπ›½ π‘ž) (𝑑 βˆ’ πœπ›½ π‘ž) 2 Ξ“π‘ž (πœ‡)

(58)

𝛽(πœ‚+1)βˆ’1

Γ— (𝜏𝜌)

𝛽(πœ‚+1)βˆ’1

(59)

𝑒 (𝜏) V (𝜌) ,

for 𝜏, 𝜌 ∈ (0, 𝑑), and integrating with respect to 𝜏 and 𝜌 from 0 to 𝑑, we deduce the desired result in (56). Corollary 17. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞) satisfying π‘š ≀ 𝑓(𝑑) ≀ 𝑀, for all 𝑑 ∈ [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let π‘š, 𝑀 ∈ R. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have (π‘š + 𝑀)2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) +

2πΌπ‘žπœ‚,πœ‡,𝛽

{𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{V𝑓} (𝑑) (60)

β‰₯ 2 (π‘š + 𝑀) (πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)) . Theorem 18. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let πœƒ1 , πœƒ2 > 0 satisfying πœƒ1 + πœƒ2 = 1. In addition, suppose that (𝐻1 ) holds. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑)

Corollary 19. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞) satisfying π‘š ≀ 𝑓(𝑑) ≀ 𝑀, for all 𝑑 ∈ [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let π‘š, 𝑀 ∈ R. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have (𝑀 βˆ’ π‘š) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) + 2πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’βˆšπ‘€ βˆ’ 𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vβˆšπ‘“ βˆ’ π‘š} (𝑑) . (65)

π‘ž 𝑝 βˆ’ π‘ž π‘ž/𝑝 π‘Žπ‘ž/𝑝 ≀ ( π‘˜(π‘žβˆ’π‘)/𝑝 π‘Ž + π‘˜ ), 𝑝 𝑝

π‘ž/𝑝

(𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓) ≀

β‰₯ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑)

(61)

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑) πœƒ

Proof. From the well-known Weighted AM-GM inequality [3] βˆ€π‘₯, 𝑦 β‰₯ 0, πœƒ1 , πœƒ2 > 0, πœƒ1 + πœƒ2 = 1,

(62)

} (𝑑) +

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) π‘˜ 𝑝

𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘2 } (𝑑) + π‘˜ π‘˜ πΌπ‘ž {𝑒} (𝑑) , 𝑝 𝑝 (67)

(𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 ) ≀

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑓 βˆ’ πœ‘1 ) 2 } (𝑑) .

π‘“π‘œπ‘Ÿ π‘Žπ‘›π‘¦ π‘˜ > 0. (66)

Theorem 21. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞), let 𝑒 : [0, ∞) β†’ [0, ∞) be a continuous function, and let constants 𝑝 β‰₯ π‘ž β‰₯ 0, 𝑝 =ΜΈ 0. In addition, assume that (𝐻1 ) holds. Then, for any π‘˜ > 0, 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, the following two inequalities hold:

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)

πœƒ1 π‘₯ + πœƒ2 𝑦 β‰₯ π‘₯πœƒ1 π‘¦πœƒ2 ,

𝑒 (𝜏) V (𝜌) ,

Lemma 20 (see [22]). Assume that π‘Ž β‰₯ 0, 𝑝 β‰₯ π‘ž β‰₯ 0, and 𝑝 =ΜΈ 0. Then,

+ πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓2 } (𝑑) (πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑))

πœƒ

(64)

for 𝜏, 𝜌 ∈ (0, 𝑑), and integrating with respect to 𝜏 and 𝜌 from 0 to 𝑑, we deduce inequality (61).

Multiplying both sides of (58) by

Γ— (𝜏𝜌)

(63)

Multiplying both sides of (63) by

β‰₯ (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) . (πœ‡βˆ’1) 𝛽 (πœ‡βˆ’1) 𝛽2 π‘‘βˆ’2𝛽(πœ‚+πœ‡) 𝛽 (𝑑 βˆ’ πœŒπ›½ π‘ž) (𝑑 βˆ’ πœπ›½ π‘ž) Ξ“π‘ž2 (πœ‡)

πœƒ

β‰₯ (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) 1 (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) 2 .

π‘ž/𝑝

} (𝑑) +

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘1 } (𝑑) π‘˜ 𝑝

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) + π‘˜ π‘˜ πΌπ‘ž {𝑒} (𝑑) . 𝑝 𝑝 (68)

Proof. By condition (𝐻1 ) and Lemma 20, for 𝑝 β‰₯ π‘ž β‰₯ 0, 𝑝 =ΜΈ 0, it follows that (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏))

π‘ž/𝑝

≀

π‘ž (π‘žβˆ’π‘)/𝑝 𝑝 βˆ’ π‘ž π‘ž/𝑝 π‘˜ π‘˜ , (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) + 𝑝 𝑝 (69)

8

The Scientific World Journal (𝑖V) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑)

for any π‘˜ > 0. Multiplying both sides of (69) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) / Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœπ›½ π‘ž)(πœ‡βˆ’1) πœπ›½(πœ‚+1)βˆ’1 𝑒(𝜏), 𝜏 ∈ (0, 𝑑), and integrating the resulting identity with respect to 𝜏 from 0 to 𝑑, one has inequality (𝑖). Inequality (𝑖𝑖) is proved by setting π‘Ž = 𝑓(𝜏) βˆ’ πœ‘1 (𝜏) in Lemma 20. Corollary 22. Let 0 < π‘ž < 1, let 𝑓 be an integrable function on [0, ∞) satisfying π‘š ≀ 𝑓(𝑑) ≀ 𝑀, for all 𝑑 ∈ [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let π‘š, 𝑀 ∈ R. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, we have (𝑖) 2πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’βˆšπ‘€ βˆ’ 𝑓} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) ≀ (𝑀 + 1) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) ,

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) . (72) Proof. To prove (𝑖), from (𝐻1 ) and (𝐻2 ), we have for 𝑑 ∈ [0, ∞) that (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“1 (𝜌)) β‰₯ 0. Therefore,

(70)

πœ‘2 (𝜏) 𝑔 (𝜌) + πœ“1 (𝜌) 𝑓 (𝜏) β‰₯ πœ“1 (𝜌) πœ‘2 (𝜏)

(𝑖𝑖) 2πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’βˆšπ‘“ βˆ’ π‘š} (𝑑) + (π‘š βˆ’ 1) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑)

+ 𝑓 (𝜏) 𝑔 (𝜌) .

≀ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) . Theorem 23. Let 0 < π‘ž < 1, let 𝑓 and 𝑔 be two integrable functions on [0, ∞), and let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions. Suppose that (𝐻1 ) holds and moreover we assume the following. (𝐻2 ) There exist πœ“1 and πœ“2 integrable functions on [0, ∞) such that πœ“1 (𝑑) ≀ 𝑔 (𝑑) ≀ πœ“2 (𝑑)

βˆ€π‘‘ ∈ [0, ∞) .

(71)

Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, the following inequalities hold:

𝑔 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) + πœ“1 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) β‰₯ πœ“1 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) + 𝑔 (𝜌) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) .

(𝑖𝑖) (πœ“2 (𝜏) βˆ’ 𝑔 (𝜏)) (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) β‰₯ 0,

+

{V𝑔} (𝑑) ,

(𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ“2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑) β‰₯

πΌπ‘žπœ‚,πœ‡,𝛽

{π‘’πœ“2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

{Vπœ‘1 } (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) , (𝑖𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) ,

(76)

(𝑖V) (πœ‘1 (𝜏) βˆ’ 𝑓 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“1 (𝜌)) ≀ 0.

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑)

{𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

(75)

Multiplying both sides of (75) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) /Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœŒπ›½ π‘ž)(πœ‡βˆ’1) πœŒπ›½(πœ‚+1)βˆ’1 V(𝜌), 𝜌 ∈ (0, 𝑑), and integrating both sides with respect to 𝜌 on (0, 𝑑), we get the desired inequality (𝑖). To prove (𝑖𝑖)–(𝑖V), we use the following inequalities:

(𝑖𝑖𝑖) (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“2 (𝜌)) ≀ 0,

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑)

(74)

Multiplying both sides of (74) by (π›½π‘‘βˆ’π›½(πœ‚+πœ‡) /Ξ“π‘ž (πœ‡))(𝑑𝛽 βˆ’ πœπ›½ π‘ž)(πœ‡βˆ’1) πœπ›½(πœ‚+1)βˆ’1 𝑒(𝜏), 𝜏 ∈ (0, 𝑑), and integrating both sides with respect to 𝜏 on (0, 𝑑), we obtain

(𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽

(73)

Theorem 24. Let 𝑓 and 𝑔 be two integrable functions on [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let πœƒ1 , πœƒ2 > 0 satisfying 1/πœƒ1 + 1/πœƒ2 = 1. Suppose that (𝐻1 ) and (𝐻2 ) hold. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, the following inequalities hold: (𝑖)

1 πœ‚,πœ‡,𝛽 πœƒ 𝐼 {𝑒(πœ‘2 βˆ’ 𝑓) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) πœƒ1 π‘ž +

1 πœ‚,πœ‡,𝛽 πœƒ 𝐼 {V(πœ“2 βˆ’ 𝑔) 2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πœƒ2 π‘ž

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) ,

The Scientific World Journal (𝑖𝑖)

9

1 πœ‚,πœ‡,𝛽 πœƒ πœƒ 𝐼 {𝑒(πœ‘2 βˆ’ 𝑓) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(πœ“2 βˆ’ 𝑔) 1 } (𝑑) πœƒ1 π‘ž

(𝑖𝑖) πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑)

1 πœƒ πœƒ + πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ“2 βˆ’ 𝑔) 2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(πœ‘2 βˆ’ 𝑓) 2 } (𝑑) πœƒ2 β‰₯

πΌπ‘žπœ‚,πœ‡,𝛽 Γ—

{𝑒 (πœ‘2 βˆ’ 𝑓) (πœ“2 βˆ’ 𝑔)} (𝑑)

πΌπ‘žπœ‚,πœ‡,𝛽

{V (πœ“2 βˆ’ 𝑔) (πœ‘2 βˆ’ 𝑓)} (𝑑) ,

β‰₯ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) + πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑)

1 πœ‚,πœ‡,𝛽 πœƒ 𝐼 {V(𝑔 βˆ’ πœ“1 ) 2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πœƒ2 π‘ž

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ“2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑)

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘2 } (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓) 1 (πœ“2 βˆ’ 𝑔) } (𝑑)

β‰₯ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

β‰₯

{𝑒 (𝑓 βˆ’ πœ‘1 ) (𝑔 βˆ’ πœ“1 )} (𝑑)

β‰₯ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) + πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) πœƒ

(77) Proof. The inequalities (𝑖)–(𝑖V) can be proved by choosing the parameters in the Young inequality [3]:

πœƒ

(𝑖V) πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) + πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) + πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)

𝑦 = πœ“2 (𝜌) βˆ’ 𝑔 (𝜌) ,

(𝑖𝑖) π‘₯ = (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (πœ“2 (𝜌) βˆ’ 𝑔 (𝜌)) ,

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ“1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑)

𝑦 = (πœ“2 (𝜏) βˆ’ 𝑔 (𝜏)) (πœ‘2 (𝜌) βˆ’ 𝑓 (𝜌)) , 𝑦 = 𝑔 (𝜌) βˆ’ πœ“1 (𝜌) ,

(𝑖𝑖𝑖) π‘₯ = 𝑓 (𝜏) βˆ’ πœ‘1 (𝜏) ,

πœƒ

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 ) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑔 βˆ’ πœ“1 ) 2 } (𝑑) ,

Γ— πΌπ‘žπœ‚,πœ‡,𝛽 {V (𝑔 βˆ’ πœ“1 ) (𝑓 βˆ’ πœ‘1 )} (𝑑) .

(𝑖) π‘₯ = πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏) ,

πœƒ

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑)

1 πœ‚,πœ‡,𝛽 πœƒ πœƒ 𝐼 {𝑒(𝑔 βˆ’ πœ“1 ) 2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑓 βˆ’ πœ‘1 ) 2 } (𝑑) πœƒ2 π‘ž

πΌπ‘žπœ‚,πœ‡,𝛽

πœƒ2

(𝑖𝑖𝑖) πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑)

1 πœ‚,πœ‡,𝛽 πœƒ πœƒ 𝐼 {𝑒(𝑓 βˆ’ πœ‘1 ) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑔 βˆ’ πœ“1 ) 1 } (𝑑) πœƒ1 π‘ž +

πœƒ

Γ— πΌπ‘žπœ‚,πœ‡,𝛽 {V(πœ“2 βˆ’ 𝑔) 1 (πœ‘2 βˆ’ 𝑓) 2 } (𝑑) ,

+ πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) , (𝑖V)

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ“2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘2 } (𝑑) + πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑)

1 πœƒ (𝑖𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 ) 1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) πœƒ1 +

+ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

(78)

(𝑖V) π‘₯ = (𝑓 (𝜏) βˆ’ πœ‘1 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“1 (𝜌)) ,

β‰₯ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) + πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑)

𝑦 = (𝑔 (𝜏) βˆ’ πœ“1 (𝜏)) (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) .

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ‘1 } (𝑑)

Theorem 25. Let 𝑓 and 𝑔 be two integrable functions on [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let πœƒ1 , πœƒ2 > 0 satisfying πœƒ1 + πœƒ2 = 1. Suppose that (𝐻1 ) and (𝐻2 ) hold. Then, for 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, the following inequalities hold:

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ“1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑓} (𝑑) πœƒ

πœƒ2

πœƒ

πœƒ

+ πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 ) 1 (𝑔 βˆ’ πœ“1 ) } (𝑑) Γ— πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑔 βˆ’ πœ“1 ) 1 (𝑓 βˆ’ πœ‘1 ) 2 } (𝑑) . (79)

(𝑖) πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑)

Proof. The inequalities (𝑖)–(𝑖V) can be proved by choosing the parameters in the Weighted AM-GM [3]:

+ πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒} (𝑑) β‰₯ πœƒ1 πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) +

πœƒ2 πΌπ‘žπœ‚,πœ‡,𝛽

+

πΌπ‘žπœ‚,πœ‡,𝛽

{V𝑔} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 πœƒ1

{𝑒(πœ‘2 βˆ’ 𝑓)

(𝑖) π‘₯ = πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏) ,

{𝑒} (𝑑)

} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽

𝑦 = πœ“2 (𝜌) βˆ’ 𝑔 (𝜌) ,

(𝑖𝑖) π‘₯ = (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (πœ“2 (𝜌) βˆ’ 𝑔 (𝜌)) , πœƒ2

{V(πœ“2 βˆ’ 𝑔) } (𝑑) ,

𝑦 = (πœ“2 (𝜏) βˆ’ 𝑔 (𝜏)) (πœ‘2 (𝜌) βˆ’ 𝑓 (𝜌)) .

10

The Scientific World Journal (𝑖𝑖𝑖) π‘₯ = 𝑓 (𝜏) βˆ’ πœ‘1 (𝜏) ,

π‘ž/𝑝

(𝑖V) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 )

𝑦 = 𝑔 (𝜌) βˆ’ πœ“1 (𝜌) ,

(𝑖V) π‘₯ = (𝑓 (𝜏) βˆ’ πœ‘1 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“1 (𝜌)) , 𝑦 = (𝑔 (𝜏) βˆ’ πœ“1 (𝜏)) (𝑓 (𝜌) βˆ’ πœ‘1 (𝜌)) . (80)

Theorem 26. Let 𝑓 and 𝑔 be two integrable functions on [0, ∞), let 𝑒, V : [0, ∞) β†’ [0, ∞) be continuous functions, and let constants 𝑝 β‰₯ π‘ž β‰₯ 0, 𝑝 =ΜΈ 0. Assume that (𝐻1 ) and (𝐻2 ) hold. Then, for any π‘˜ > 0, 𝑑 > 0, πœ‡, 𝛽 > 0, and πœ‚ ∈ C, the following inequalities hold: π‘ž/𝑝

(𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓)

≀

} (𝑑)

+

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘2 𝑔} (𝑑) π‘˜ 𝑝

+

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’π‘“πœ“2 } (𝑑) π‘˜ 𝑝

+

π‘ž/𝑝

+

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) π‘˜ 𝑝

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) π‘˜ 𝑝

+

𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 π‘˜ πΌπ‘ž {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) . 𝑝

(82)

} (𝑑)

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“2 } (𝑑) π‘˜ 𝑝 +

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) 𝑔 (𝑑) π‘˜ 𝑝

+

𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 π‘˜ πΌπ‘ž {𝑒} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V} (𝑑) , 𝑝 π‘ž/𝑝

(𝑔 βˆ’ πœ“1 )

} (𝑑)

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ“1 𝑓} (𝑑) π‘˜ 𝑝

π‘ž + π‘˜(π‘žβˆ’π‘)/𝑝 πΌπ‘žπœ‚,πœ‡,𝛽 {π‘’πœ‘1 𝑔} (𝑑) 𝑝 ≀

+

(𝑖V) π‘Ž = (𝑓 (𝜏) βˆ’ πœ‘1 (𝜏)) (𝑔 (𝜌) βˆ’ πœ“1 (𝜌)) .

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘2 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) π‘˜ 𝑝

+

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) π‘˜ 𝑝

(𝑖𝑖𝑖) π‘Ž = (𝑓 (𝜏) βˆ’ πœ‘1 (𝜏)) (𝑔 (𝜏) βˆ’ πœ“1 (𝜏)) ,

} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(πœ“2 βˆ’ 𝑔)

π‘ž/𝑝

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘1 } (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V𝑔} (𝑑) π‘˜ 𝑝

(𝑖𝑖) π‘Ž = (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (πœ“2 (𝜌) βˆ’ 𝑔 (𝜌)) ,

+

(𝑖𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(𝑓 βˆ’ πœ‘1 )

+

(𝑖) π‘Ž = (πœ‘2 (𝜏) βˆ’ 𝑓 (𝜏)) (πœ“2 (𝜏) βˆ’ 𝑔 (𝜏)) ,

𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 π‘˜ πΌπ‘ž {𝑒} (𝑑) , 𝑝 π‘ž/𝑝

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {Vπœ“1 } (𝑑) π‘˜ 𝑝

Proof. The inequalities (𝑖)–(𝑖V) can be proved by choosing the parameters in Lemma 20:

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓𝑔} (𝑑) π‘˜ 𝑝

(𝑖𝑖) πΌπ‘žπœ‚,πœ‡,𝛽 {𝑒(πœ‘2 βˆ’ 𝑓)

+

} (𝑑)

(81)

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘2 πœ“2 } (𝑑) π‘˜ 𝑝 +

≀

π‘ž/𝑝

(πœ“2 βˆ’ 𝑔)

≀

π‘ž/𝑝

} (𝑑) πΌπ‘žπœ‚,πœ‡,𝛽 {V(𝑔 βˆ’ πœ“1 )

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {𝑒𝑓𝑔} (𝑑) π‘˜ 𝑝 +

π‘ž (π‘žβˆ’π‘)/𝑝 πœ‚,πœ‡,𝛽 πΌπ‘ž {π‘’πœ‘1 πœ“1 } (𝑑) π‘˜ 𝑝

+

𝑝 βˆ’ π‘ž π‘ž/𝑝 πœ‚,πœ‡,𝛽 π‘˜ πΌπ‘ž {𝑒} (𝑑) , 𝑝

5. Concluding Remark We conclude our present investigation with the remark that the results derived in this paper are general in character and give some contributions to the theory of π‘ž-integral inequalities and fractional calculus. Moreover, they are expected to find some applications for establishing uniqueness of solutions in fractional boundary value problems and in fractional partial differential equations. In last, use of the generalized ErdΒ΄elyi-Kober fractional π‘ž-integral operator due to GauluΒ΄e is the advantage of our results because after setting suitable parameter values in our main results, we get known results established by number of authors.

Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments The research of J. Tariboon is supported by King Mongkut’s University of Technology North Bangkok, Thailand. Sotiris K. Ntouyas is a Member of Nonlinear Analysis and Applied Mathematics (NAAM) Research Group at King Abdulaziz University, Jeddah, Saudi Arabia.

The Scientific World Journal

References [1] P. L. Chebyshev, β€œSur les expressions approximati ves des integrales definies par les autres prises entre les memes limites,” Proceedings of the Mathematical Society of Kharkov, vol. 2, pp. 93–98, 1882. [2] J. C. Kuang, Applied Inequalities, Shandong Sciences and Technologie Press, Shandong, China, 2004. [3] D. S. MitrinoviΒ΄c, Analytic Inequalities, Springer, Berlin, Germany, 1970. [4] A. M. Ostrowski, β€œOn an integral inequality,” Aequationes Mathematicae, vol. 4, pp. 358–373, 1970. [5] G. A. Anastassiou, Advances on Fractional Inequalities, Springer Briefs in Mathematics, Springer, New York, NY, USA, 2011. [6] S. Belarbi and Z. Dahmani, β€œOn some new fractional integral inequalities,” Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 3, article 86, 5 pages, 2009. [7] Z. Dahmani, O. Mechouar, and S. Brahami, β€œCertain inequalities related to the Chebyshev’s functional involving a RiemannLiouville operator,” Bulletin of Mathematical Analysis and Applications, vol. 3, no. 4, pp. 38–44, 2011. [8] S. S. Dragomir, β€œSome integral inequalities of GrΒ¨uss type,” Indian Journal of Pure and Applied Mathematics, vol. 31, no. 4, pp. 397–415, 2000. [9] V. Lakshmikantham and A. S. Vatsala, β€œTheory of fractional differential inequalities and applications,” Communications in Applied Analysis, vol. 11, no. 3-4, pp. 395–402, 2007. Β¨ guΒ¨ nmez and U. M. Ozkan, Β¨ [10] H. O˘ β€œFractional quantum integral inequalities,” Journal of Inequalities and Applications, vol. 2011, Article ID 787939, 7 pages, 2011. [11] W. T. Sulaiman, β€œSome new fractional integral inequalities,” Journal of Mathematical Analysis, vol. 2, no. 2, pp. 23–28, 2011. [12] G. A. Anastassiou, β€œπ‘ž-fractional inequalities,” Cubo: A Mathematical Journal, vol. 13, no. 1, pp. 61–71, 2011. [13] D. Baleanu and P. Agarwal, β€œCertain inequalities involving the fractional q integral operators,” Abstract and Applied Analysis, vol. 2014, Article ID 371274, 10 pages, 2014. [14] J. Choi and P. Agarwal, β€œCertain fractional integral inequalities involving hypergeometric operators,” East Asian Mathematical Journal, vol. 30, no. 3, pp. 283–291, 2014. [15] J. Choi and P. Agarwal, β€œCertain new pathway type fractional integral inequalities,” Honam Mathematical Journal, vol. 36, no. 2, pp. 437–447, 2014. [16] J. Choi and P. Agarwal, β€œCertain inequalities associated with Saigo fractional integrals and their q-analogues,” Abstract and Applied Analysis, vol. 2014, Article ID 579260, 11 pages, 2014. [17] L. GaluΒ΄e, β€œGeneralized ErdΒ΄elyi-Kober fractional π‘ž-integral operator,” Kuwait Journal of Science & Engineering, vol. 36, no. 2, pp. 21–34, 2009. [18] H. M. Srivastava and J. Choi, Zeta and q -Zeta Functions and Associated Series and Integrals, Elsevier Science, New York, NY, USA, 2006. [19] F. H. Jackson, β€œOn q-definite integrals,” The Quarterly Journal of Pure and Applied Mathematics, vol. 41, pp. 193–203, 1910. [20] R. P. Agarwal, β€œCertain fractional q-integrals and q-derivatives,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 66, pp. 365–370, 1969. [21] Z. Dahmani, β€œNew inequalities in fractional integrals,” International Journal of Nonlinear Science, vol. 9, no. 4, pp. 493–497, 2010.

11 [22] F. Jiang and F. Meng, β€œExplicit bounds on some new nonlinear integral inequalities with delay,” Journal of Computational and Applied Mathematics, vol. 205, no. 1, pp. 479–486, 2007.