The purpose of this paper to show the upper and lower bounds of the second order Dehn functions of particular split extensions of the form 2Ð£Ï , where is the ...
!"#"
$ " " # % "#
# # " "
" & ' # % & $ % % "# " (" % " " # #" "
) *+, # *-, " # #"# #& # # " " ) *+, # *+., # " # # " # #" #" # )
" " # % "# " " & ' # % & / 01 0 1 % # &# % 0 1 # 2 !"#$%
) *3, 4 # # 5 &# & #
" "
0 1
0
1
Æ
Æ
+ # 6 %
"
0
1
/ 7 / / /
Æ
+
/ 7 / / /
Æ -
# % "
0 1
Æ
Æ
0
1
+
Æ
0
1
+ Æ
Æ
Æ
Æ
7
+
Æ
8 # "# %
% #" # " # # *+, 0 *- . ++ +- +3,1 9 / 7 % & " # # 01 " # % 2 " (" 01 " 01 8 # # # % # # 0 1 # 2 " # #
0 1 " " # *., # 8 " # 0 1 # "% # # # # 0 1 " "% # " % "# % $ " # % (" % % # % "% #
0 *. +-,1 $ (" # % " # # % 4 #& ## : / : # /
0 *. +-, #& : # 1 (" " #" 0 1 9 % 0 1 $ 01 " #&# % 01 /
/
/ / + - $ Æ
#&# " "% % Æ 01 / 01 01
8 " 0 "%1 % " 01 01 : 0 1 # % # $ " (" 8 " 0 # % & & # 0 11 Æ
" *-, 0 *++ +-,1 # Æ # # "
8 % # % / 7 * , * , / % " & # / 8 # " 0 1 # 0 1 # " # 4 ;3
*,1 $ " " * , # % "# % * ,
$ 6 % " / # % / 7 * , / / " %
01 01 / 0 1 # " # &# / # / $ " # # 8 +
$ / # % / 7 * , / / " %
0 1 01 0 101 / 01 0 101 # " # &# / # / $ "
# # 8 +
Æ
8 +
Æ
; # # 0 1 # % # % % # % 8 " 0 1 " % # % %# % % (" % %# % % ("
% # %# % * ,
0 ' 1 % " # # %# % * , 0 " ' 1 % 2 " " # #
8 - 0 1 / -0 1 2 # % 2 * ,# 0 #1 # ; # " " " # # 8 - 2 / # 0 1 / -0 1 :
0 0 11
0+1
Æ
Æ0 1 0 1
8
9
/
# % " # % % $ +
*+., # #" 0 1
0 1 * , 0 1 0 *+?, 1
/
0
1 0
1
0 1
0 1 /
0 0 11 /
0 0 11
$ " 0 1 9 - *+.,
$ 0
1 9 @- *+, % " $ + *+., $ 0
1 / : A : : A 4 0 1 ? +
/
# # %" # B A % A # A ? ! " + + # 0 0 11 # + $ 0 0 11 $ 0
1 % 0
1
2 # 6 % " + # "
-
9 / # 9 % " "# 8 . $ 0 1 / 8 " 0 1 / 0 1 0 1
0 0 11 / - : - : -0 +1 / - : - $ " % 0+1 0 1/- :- : 0 :+1 0-1 8 " % # #
0 1 0 1 # "% " ¦ # ¦ $ 0 1 /
0 1: 0 1 4
0 0 11 / -
0 1 : 0 1 # 0 0 11 /
0 1 : 0 1
0 0 11 /
0 0 11 : 0 0 11 / .
0 1 : - 0 1 . 0 1 )#" " 00 11 . 0 1 ) "
0 0 11 - . 0 : 1 # % 0+1 0 1 - :
03 . 1 / - :0 : 10. +1
! ! ! ! 8 .
0.1
!
!
9 / + # / - $ % 9 -. # 0 1 # 0 1 # 0 1 # # 0 1 4 9 -. 0 1 /
0 0 11 /
0 1 / # / + - 031
!
0 1 Æ 0
1 Æ
"
0 1 9 % # / * ,
* , / * , $ % 0-1 0 1 - : - : 0 : +1 @
/
% + *%, % + + + $ " % 031 + 0 1 > # Æ 0@1 >+ $ 0 1 0
1 9 % # / / * , / * , $ % 0.1 0
/ - : - / 3 1 -0 1 : - .
C + . + + $ " % 031 + + 0 1 / > +@
#
# 0
1
Æ 0.1
+ +@
9 % & # / 7 * , / / 0 % " "
/ 7 * , / / / #
Æ Æ
9 % " #&# % $
% " # "% " $ " %## & % & & = $ +. *+?, #"# &£ 0 1 0 1 %
0 " 1
%## ; % # % " 0 1 $ " " /
0 1 0 1 / + + ' # ' / 0 1 $ 0 1 / &£ 0 1 / &0 1
4 9 -. 0 1 #" % " (" 0 1 6 0 1 / 0 1 # Æ 01 0 1 " 0 1
/ 0 1 " 0 1
/ Æ 01 (" #
$ (" "# # # 9 D3 *+,
!
Æ
9 % # % %
" # Æ 0(1 ( 0 *E, *@,1 " Æ 0(1 ( + # ( 8 0 8 3 % 1 # % "# % # 2 # C ) # # % )
#
+0+ 1+01+Æ & /
"/ " & Æ Æ
,',
$%$
,,
2 "
*$$
++++0
& "-- 0 Æ (
& Æ Æ '. .
"# # #
)
# # #
8 3
01 % #" "% ) / ? " # (" " $ " 01/? 9 + " ) $ "% " # )
8 D
2
8 D
"% # 9 % # "% # $ " % #" # 9 -+ *+, 01 0 1 : 0 1 : 0 : 1 / " 2 ' ) ( # ( # ( 9 % "% " $ # # " # ) % "# % # # " ) "# # # "# 8 @ $ 0 1 / ( 2 " 0 1 ( # F % " ¼ 01 # # % "# % $ (" "
(" % $' %# % * ) "# 8 @ # + % * % ; % (" " # 8 @
3 4 :
! 65 Æ 5 * 7
+
)
' 0 1 Æ Æ !
" 0 1 Æ 889
8 @ 4 9 -+ *+, 01 0 1 : 0 1 # % " # 9 -. ¼ 0 1 0 1 ( ( $ " 0 1/ ( # + 6 % #"
01
( : 0 (1
( ( ( : 0 (1 ( , ( 0%" 0 1 (1
) ( ( 01 0 (1 : ( / /
( ( + : + ( (
+ + + ( (
+ +
0 0 (1 (1
) ( , ( 01 0 (1 : ( / / !
( ( + : ( ( 0 (1 + + ( (
+ +
0 0 (1 ! (1
2
01
) # " ) # # #
"# 8 E ' %# % * ) "# 8 E # + % * %
2 " 0 1 ) 3
" Æ Æ Æ Æ 4 !
! *
65 Æ 5 " 0 1
Æ
7
;;<
+
8 E
$ " 0 1 / ( 9 % " % "# % # 0 1 / 0 1 ( $ " (" " " # # 0$ "# 8 E1 " (" " % 4 0 1 / 0 1 / 0 1 / 0 0 11 0 1 6 0 1 ( # + $ " # #
& " 01 (" # 4 9 ++ # $ @3 *+,
Æ
9 ++ 0 1 @ *-, # $
@3 *+, 0 1 9 ++ 0
1 @ *-, .+ # 3+ # $ @3 *+, 0
1
) *D, $ " # 9 B # )
" + Æ
$ % 9 ++ 0
1 @ *-, .+ 0
1 # $ @3 *+, 0
1 "
$ " % $ +- # 3+
) (" Æ
" + # & #G
"
! $ " ' ' H #
# ' " " #
*+, H C 2 C 4 4" H # # I 2 % J" H F
# 0-1 "0+