Jovian system exploration. ⢠JUNO (NASA) arrives next summer. ⢠JUICE (ESA) is being implemented. ⢠Planetary science virtual observatory (VO).
Session 2: Adding value to data and facilitation of data use Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions
Baptiste Cecconi, et al. Observatoire de Paris
Context • Jovian system exploration • JUNO (NASA) arrives next summer • JUICE (ESA) is being implemented • Planetary science virtual observatory (VO) • Europlanet2020-‐RI EU-‐funded project started on Sept. 1st 2015 • Its VESPA (Virtual European Solar and Planetary Access) work packages are dedicated to enable the planetary science VO, using EPN-‐TAP (developed in previous Europlanet project) • Amateur community • RadioJOVE (public outreach project) is willing to share their data • Europlanet is aiming at linking amateurs and scientists. The Europlanet H2020 Research Infrastructure project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 654208
Plasma in the Solar System Solar Wind & Magnetized Planets
B Magnetopause Solar Wind
Magnetosheath
Shock
Plasma in the Solar System Solar Wind & Magnetized Planets «Type II» «Type III»
B Solar Wind
Magneto
Interplanetary Shock Magnetosheath
Shock
Coronal Mass Ejection
electron beams
Plasma in the Solar System Solar Wind & Magnetized Planets reconnexion
B Solar Wind
Auroral Radio emissions
Magnetopause auroral precipitation
Magnetosheath
Shock
Magnetosphere of Jupiter: the largest solar system object in our sky
Radio sources at Jupiter Radio sources are linked
to electron acceleration
and circulation
Ω
HOM
bKOM QP? M
Io DAM
Non-Io DAM
Io δ1 Jupiter
δ2
Io DAM
B
nKOM
Io pla
sma t orus
Non-Io DAM
HOM
⌽ QP?
electron spiraling ~ helicoidal antenna !
bKOM
Jovian radio emissions
MHz
•Multi scale structure (a few milliseconds to a hours)
•Sporadic •Very dynamic •S-bursts [short-bursts]
[=millisecond bursts]
Voyager-2
VG2/PRA/High+Low [RH]
40 6 Frequency (MHz)
•Frequency: 0-40 MHz •Ground observations > 10
5
30
4 20
3 2
10
1
0 0
5
15 10 Hour of 1979197
20
Jovian radio emissions
MHz
•Multi scale structure (a few milliseconds to a hours)
•Sporadic •Very dynamic •S-bursts [short-bursts]
[=millisecond bursts]
Nançay (France)
Voyager-2
VG2/PRA/High+Low [RH]
40 6 Frequency (MHz)
•Frequency: 0-40 MHz •Ground observations > 10
5
30
4 20
3 2
10
1
0 0
5
15 10 Hour of 1979197
20
Jovian radio emissions
MHz
•Multi scale structure (a few milliseconds to a hours)
•Sporadic •Very dynamic •S-bursts [short-bursts]
[=millisecond bursts]
Voyager-2
VG2/PRA/High+Low [RH]
40
UTR-2 (Ukraine)
6 Frequency (MHz)
•Frequency: 0-40 MHz •Ground observations > 10
5
30
4 20
3 2
10
1
150 ms
0 0
5
15 10 Hour of 1979197
20
150 ms Nançay (France)
RadioJOVE • RadioJOVE is an EPO project developed in the USA: http://radiojove.org
-‐ Goal: introducing low frequency radioastronomy concepts to students, teachers, amateur radio community and the general public.
-‐ The participants are building their own radio telescope, using a kit sold by the Radio JOVE team. This instrument can observe the sky at frequencies around 20 -‐ 30 MHz.
-‐ The users can share their observations on
an archive web site, and on a mailing list.
-‐ About 2000 kits have been shipped to date,
all over the world. • Radio-‐JOVE web site:
http://radiojove.gsfc.nasa.gov • Radio-‐JOVE data Archive :
http://radiojove.org/cgi-‐bin/calendar/calendar.cgi
Sharing RadioJOVE data with the scientific community • Project with Paris Astronomical Data Center (PADC), started in 2014. • Amateur data must be calibrated with noise source provided by RadioJOVE team. • Convert RadioJOVE data (non-‐standard, or non VO) into CDF files, with VESPA and PDS compliant metadata. • Add a data scientific validation step. • Distribute RadioJOVE data to the scientific community using EPN-‐ TAP through VESPA. • Prepare Archive data into NASA/PDS.
Why Sharing a lot of Jovian Radio Emissions Data ? • Occurrence can be predicted in a statistical manner but they are intrinsically sporadic. • Getting better (continuous, if possible) the temporal coverage of the Jovian radio emission is a key aspect for understanding the intermittence of the emission. • In addition to the temporal variability of the emission, a larger spatial and temporal coverage will provide informations on the temporal width of each burst (radio arc), the short term variability beaming pattern shape... • This may provide key information on the radio source properties, as well as on the radio source environment.
JUNO arrives next year !
and then JUICE in 2029…
Ground support needed for JUNO (and then waiting for JUICE…) • Professional low frequency telescopes (10-‐40 MHz):
-‐ Nançay (France): Decameter Array,
LOFAR station, NenuFAR
-‐ Europe: LOFAR
-‐ Kharkov (Ukraine): UTR-‐2
-‐ Japan: Iitate and Fukui observatories
-‐ New Mexico (USA): LWA1 • Radio Emission modeling/prediction tools
-‐ ExPRES tool: http://maser.obspm.fr/serpe, by Obs Paris team (France)
-‐ JRM (Jovian Radio Map) iPhone App, by Kochi College team (Japan) • Amateur community: RadioJOVE !
-‐ more than 2000 RadioJOVE kits sold (single frequency at ~20 MHz)
-‐ about 10 “RadioJOVE-‐SUG” (Spectrograph User Group) in the USA.
JUNO Ground Radio Observation Support 📻
📡 📻
📻 📻 📻
📡📻 📡 📡 📻
📡
📻 📻
RadioJOVE SUG
📡 professional 📻 amateurs
JUNO Ground Radio Observation Support 📻
📡 📻
📻 📻 📻
📡📻 📡 📡 📻
📡
📻 📻
RadioJOVE SUG
📡 professional 📻 amateurs
NDA RH polar flux density
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00
Frequency (Hz)
80. 75. 70. 65. 60. 55. 50. 45. 40.
no data in interval: data ends before range
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
00:00 2015-01-20
02:00 04:00 Data stream on Channel 1
06:00
08:00
2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.
no data in interval: data ends before range
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00
00:00 2015-01-20
02:00 04:00 Iitate/PWS Power Flux Density (RH)
06:00
08:00
frequency (Hz)
-120. -130.
2.5×10 7
-140. -150. -160.
2.0×10 7
-170. -180.
1.5×10 7 22:00
00:00 2015-01-20
02:00
04:00
06:00
08:00
Guess which is the amateur RadioJOVE spectrogram ? … :-)
RH (dBW/m^2/Hz)
3.0×10 7
Stacked plot made with autoplot.org
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)
Frequency (Hz)
Towards continuous temporal coverage
NDA RH polar flux density
no data in interval: data ends before range
Frequency (Hz)
80. 75. 70. 65. 60. 55. 50. 45. 40.
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00 3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
no data in interval: data ends before range
00:00 2015-01-20
02:00 04:00 Data stream on Channel 1
06:00
08:00
D. Typinski (Florida) [8 RadioJOVE phased-dipoles array]
2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00
00:00 2015-01-20
02:00 04:00 Iitate/PWS Power Flux Density (RH)
06:00
08:00
Iitate Observatory (Fukushima, Japan) [2 log-periodic Yagi-Antennas]
-120. -130.
2.5×10 7
-140. -150. -160.
2.0×10 7
-170. -180.
1.5×10 7 22:00
00:00 2015-01-20
02:00
04:00
06:00
08:00
Guess which is the amateur RadioJOVE spectrogram ? … :-)
RH (dBW/m^2/Hz)
3.0×10 7
frequency (Hz)
Nançay Decameter Array (France) [144 log-spiral antenna array]
Stacked plot made with autoplot.org
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)
Frequency (Hz)
Towards continuous temporal coverage
NDA RH polar flux density
no data in interval: data ends before range
Frequency (Hz)
80. 75. 70. 65. 60. 55. 50. 45. 40.
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00 3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
no data in interval: data ends before range
00:00 2015-01-20
02:00 04:00 Data stream on Channel 1
06:00
08:00
D. Typinski (Florida) [8 RadioJOVE phased-dipoles array]
2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.
2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00
00:00 2015-01-20
02:00 04:00 Iitate/PWS Power Flux Density (RH)
06:00
08:00
Iitate Observatory (Fukushima, Japan) [2 log-periodic Yagi-Antennas]
-120. -130.
2.5×10 7
-140. -150. -160.
2.0×10 7
-170. -180.
1.5×10 7 22:00
00:00 2015-01-20
02:00
04:00
06:00
08:00
Guess which is the amateur RadioJOVE spectrogram ? … :-) ExPRES Tool (Meudon) [Prediction of Jovian Radio Emissions]
RH (dBW/m^2/Hz)
3.0×10 7
frequency (Hz)
Nançay Decameter Array (France) [144 log-spiral antenna array]
Stacked plot made with autoplot.org
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)
Frequency (Hz)
Towards continuous temporal coverage
How to efficiently share data? • Provide calibrated data, or data include enough pieces of information to calibrate the data. • Provide data in a standard format commonly used by scientists. • Provide data with observation «metadata» (location of observer, accurate time of observation in UT, observation target name...) using a standard set of keywords. • Make it available to a database network (a.k.a. «virtual observatory») used by scientists. This consists in a network of databases that all speak a common language to share their data. The user goes to a simple interface and searches for data, the portal is looking into remote databases and fetches results. • Same data distribution framework (VESPA) will be used for professional JUNO ground radio observation support and amateur RadioJOVE observations.
JUNO-‐Ground-‐Radio Observation Support team
Frequency (Hz)
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7
NDA RH polar flux density
no data in interval: data ends before range
7 2.2×10 7 2.0×10 7 1.8×10 7 1.6×10
Frequency (Hz)
22:00
3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7 2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7
frequency (Hz)
2.0×10
06:00
08:00
00:00 2015-01-20
02:00 04:00 Iitate/PWS Power Flux Density (RH)
06:00
08:00
7 7 7
2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.
-120. -130. -140. -150. -160. -170. -180.
1.5×10 7 22:00
00:00 2015-01-20
02:00
04:00
06:00
08:00
RH (dBW/m^2/Hz)
2.5×10
02:00 04:00 Data stream on Channel 1
no data in interval: data ends before range
22:00
3.0×10
00:00 2015-01-20
80. 75. 70. 65. 60. 55. 50. 45. 40.
Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)
• All data providers use the same infrastructure: • EPN-‐TAP server + CDF files with same metadata • Metadata compliant with: • International Solar Terrestrial Program guidelines: ok with NASA/SPDF or CNES/CDPP • NASA Planetary Data System – Planetary Plasma Interaction node recommendation • EPNcore: automated distribution in VESPA • Usage of CDF: • Data can be plotted in various tools (such
as autoplot). Example => • Usage of VESPA: • Unified access. • Used for scheduling (time_min/max)
JUNO-‐Ground-‐Radio using VESPA infrastructure Data Files File01.bin
File01.cdf
File02.bin
File02.cdf
File03.bin
build CDF File03.cdf build quickview
extract metadata
Data Server PgSQL EPNcore table
online data files
TAP JUNO-‐GR
NDA France http
File01.png File02.png File03.png
IVOA Registry
JUNO-‐Ground-‐Radio using VESPA infrastructure Data Providers JUNO-‐GR
NDA France JUNO-‐GR
UTR2 Ukraine
Users {time_min,time_max} ?
TAP
TAP
list of
o
RadioJOVE
granu les =>
n list of gra
list
Planning Tool
ules =>
VESPA Portal
=> les u an f gr
TAP IVOA Registry
JUNO-‐Ground-‐Radio using VESPA infrastructure Data Providers JUNO-‐GR
NDA France JUNO-‐GR
UTR2 Ukraine
Users
TAP
list o
f gra
nule s => {target_name=Jupiter; ucd=em.radio} ?
list of granules =>
TAP
l
RadioJOVE
Planning Tool
n gra f o ist
s => e l u
of list
TAP IVOA Registry
UR
> Ls =