Session 2: Adding value to data and facilitation of ...

2 downloads 0 Views 23MB Size Report
Jovian system exploration. • JUNO (NASA) arrives next summer. • JUICE (ESA) is being implemented. • Planetary science virtual observatory (VO).
Session 2: Adding value to data and facilitation of data use Virtual observatory tools and amateur radio observations supporting scientific analysis of Jupiter radio emissions

Baptiste Cecconi, et al. Observatoire de Paris

Context • Jovian  system  exploration   • JUNO  (NASA)  arrives  next  summer   • JUICE  (ESA)  is  being  implemented   • Planetary  science  virtual  observatory  (VO)   • Europlanet2020-­‐RI  EU-­‐funded  project  started  on  Sept.  1st  2015   • Its  VESPA  (Virtual  European  Solar  and  Planetary  Access)  work   packages  are  dedicated  to  enable  the  planetary  science  VO,  using   EPN-­‐TAP  (developed  in  previous  Europlanet  project)   • Amateur  community   • RadioJOVE  (public  outreach  project)  is  willing  to  share  their  data   • Europlanet  is  aiming  at  linking  amateurs  and  scientists.   The  Europlanet  H2020  Research  Infrastructure  project  has  received  funding  from  the  European  Union's  Horizon  2020   research  and  innovation  programme  under  grant  agreement  No  654208

Plasma  in  the  Solar  System   Solar  Wind  &  Magnetized  Planets

B Magnetopause Solar Wind

Magnetosheath

Shock

Plasma  in  the  Solar  System   Solar  Wind  &  Magnetized  Planets «Type II» «Type III»

B Solar Wind

Magneto

Interplanetary Shock Magnetosheath

Shock

Coronal Mass Ejection

electron beams

Plasma  in  the  Solar  System   Solar  Wind  &  Magnetized  Planets reconnexion

B Solar Wind

Auroral Radio emissions

Magnetopause auroral precipitation

Magnetosheath

Shock

Magnetosphere  of  Jupiter:   the  largest  solar  system  object  in  our  sky

Radio  sources   at  Jupiter Radio sources are linked 
 to electron acceleration
 and circulation

Ω

HOM

bKOM QP? M

Io DAM

Non-Io DAM

Io δ1 Jupiter

δ2

Io DAM

B

nKOM

Io pla

sma t orus

Non-Io DAM

HOM

⌽ QP?

electron spiraling ~ helicoidal antenna !

bKOM

Jovian  radio  emissions

MHz

•Multi scale structure (a few milliseconds to a hours)

•Sporadic •Very dynamic •S-bursts [short-bursts]
 [=millisecond bursts]

Voyager-2

VG2/PRA/High+Low [RH]

40 6 Frequency (MHz)

•Frequency: 0-40 MHz •Ground observations > 10

5

30

4 20

3 2

10

1

0 0

5

15 10 Hour of 1979197

20

Jovian  radio  emissions

MHz

•Multi scale structure (a few milliseconds to a hours)

•Sporadic •Very dynamic •S-bursts [short-bursts]
 [=millisecond bursts]

Nançay (France)

Voyager-2

VG2/PRA/High+Low [RH]

40 6 Frequency (MHz)

•Frequency: 0-40 MHz •Ground observations > 10

5

30

4 20

3 2

10

1

0 0

5

15 10 Hour of 1979197

20

Jovian  radio  emissions

MHz

•Multi scale structure (a few milliseconds to a hours)

•Sporadic •Very dynamic •S-bursts [short-bursts]
 [=millisecond bursts]

Voyager-2

VG2/PRA/High+Low [RH]

40

UTR-2 (Ukraine)

6 Frequency (MHz)

•Frequency: 0-40 MHz •Ground observations > 10

5

30

4 20

3 2

10

1

150 ms

0 0

5

15 10 Hour of 1979197

20

150 ms Nançay (France)

RadioJOVE • RadioJOVE  is  an  EPO  project  developed  in  the  USA:  http://radiojove.org  
 -­‐  Goal:  introducing  low  frequency  radioastronomy  concepts  to  students,    teachers,   amateur  radio  community  and  the  general  public.  
 -­‐  The  participants  are  building  their  own  radio  telescope,  using  a  kit  sold  by  the  Radio   JOVE  team.  This  instrument  can  observe  the  sky  at  frequencies  around  20  -­‐  30  MHz.  
 -­‐  The  users  can  share  their  observations  on  
      an  archive  web  site,  and  on  a  mailing  list.  
 -­‐  About  2000  kits  have  been  shipped  to  date,  
    all  over  the  world.   • Radio-­‐JOVE  web  site:  
 http://radiojove.gsfc.nasa.gov     • Radio-­‐JOVE  data  Archive  :  
 http://radiojove.org/cgi-­‐bin/calendar/calendar.cgi  

Sharing  RadioJOVE  data  with  the   scientific  community • Project  with  Paris  Astronomical  Data  Center  (PADC),  started  in   2014.   • Amateur  data  must  be  calibrated  with  noise  source  provided  by   RadioJOVE  team.   • Convert  RadioJOVE  data  (non-­‐standard,  or  non  VO)  into  CDF  files,   with  VESPA  and  PDS  compliant  metadata.     • Add  a  data  scientific  validation  step.   • Distribute  RadioJOVE  data  to  the  scientific  community  using  EPN-­‐ TAP  through  VESPA.   • Prepare  Archive  data  into  NASA/PDS.

Why  Sharing  a  lot  of     Jovian  Radio  Emissions  Data  ? • Occurrence  can  be  predicted  in  a  statistical  manner  but  they   are  intrinsically  sporadic.   • Getting  better  (continuous,  if  possible)  the  temporal  coverage   of  the  Jovian  radio  emission  is  a  key  aspect  for  understanding   the  intermittence  of  the  emission.     • In  addition  to  the  temporal  variability  of  the  emission,  a   larger  spatial  and  temporal  coverage  will  provide  informations   on  the  temporal  width  of  each  burst  (radio  arc),  the  short   term  variability  beaming  pattern  shape...     • This  may  provide  key  information  on  the  radio  source   properties,  as  well  as  on  the  radio  source  environment.

JUNO  arrives  next  year  !    

and then JUICE in 2029…

Ground  support  needed  for  JUNO  (and  then   waiting  for  JUICE…) • Professional  low  frequency  telescopes  (10-­‐40  MHz):
 -­‐  Nançay  (France):  Decameter  Array,  
      LOFAR  station,  NenuFAR
 -­‐  Europe:  LOFAR  
 -­‐  Kharkov  (Ukraine):  UTR-­‐2
 -­‐  Japan:  Iitate  and  Fukui  observatories
 -­‐  New  Mexico  (USA):  LWA1   • Radio  Emission  modeling/prediction  tools
 -­‐  ExPRES  tool:  http://maser.obspm.fr/serpe,  by  Obs   Paris  team  (France)
 -­‐  JRM  (Jovian  Radio  Map)  iPhone  App,  by  Kochi  College   team  (Japan)   • Amateur  community:  RadioJOVE  !  
 -­‐  more  than  2000  RadioJOVE  kits  sold  (single  frequency   at  ~20  MHz)
 -­‐  about  10  “RadioJOVE-­‐SUG”  (Spectrograph  User   Group)  in  the  USA.

JUNO  Ground  Radio  Observation  Support 📻

📡 📻

📻 📻 📻

📡📻 📡 📡 📻

📡

📻 📻

RadioJOVE SUG

📡 professional 📻 amateurs

JUNO  Ground  Radio  Observation  Support 📻

📡 📻

📻 📻 📻

📡📻 📡 📡 📻

📡

📻 📻

RadioJOVE SUG

📡 professional 📻 amateurs

NDA RH polar flux density

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00

Frequency (Hz)

80. 75. 70. 65. 60. 55. 50. 45. 40.

no data in interval: data ends before range

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

00:00 2015-01-20

02:00 04:00 Data stream on Channel 1

06:00

08:00

2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.

no data in interval: data ends before range

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00

00:00 2015-01-20

02:00 04:00 Iitate/PWS Power Flux Density (RH)

06:00

08:00

frequency (Hz)

-120. -130.

2.5×10 7

-140. -150. -160.

2.0×10 7

-170. -180.

1.5×10 7 22:00

00:00 2015-01-20

02:00

04:00

06:00

08:00

Guess which is the amateur RadioJOVE spectrogram ? … :-)

RH (dBW/m^2/Hz)

3.0×10 7

Stacked plot made with autoplot.org

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)

Frequency (Hz)

Towards  continuous  temporal  coverage

NDA RH polar flux density

no data in interval: data ends before range

Frequency (Hz)

80. 75. 70. 65. 60. 55. 50. 45. 40.

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00 3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

no data in interval: data ends before range

00:00 2015-01-20

02:00 04:00 Data stream on Channel 1

06:00

08:00

D. Typinski (Florida) [8 RadioJOVE phased-dipoles array]

2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00

00:00 2015-01-20

02:00 04:00 Iitate/PWS Power Flux Density (RH)

06:00

08:00

Iitate Observatory (Fukushima, Japan) [2 log-periodic Yagi-Antennas]

-120. -130.

2.5×10 7

-140. -150. -160.

2.0×10 7

-170. -180.

1.5×10 7 22:00

00:00 2015-01-20

02:00

04:00

06:00

08:00

Guess which is the amateur RadioJOVE spectrogram ? … :-)

RH (dBW/m^2/Hz)

3.0×10 7

frequency (Hz)

Nançay Decameter Array (France) [144 log-spiral antenna array]

Stacked plot made with autoplot.org

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)

Frequency (Hz)

Towards  continuous  temporal  coverage

NDA RH polar flux density

no data in interval: data ends before range

Frequency (Hz)

80. 75. 70. 65. 60. 55. 50. 45. 40.

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00 3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

no data in interval: data ends before range

00:00 2015-01-20

02:00 04:00 Data stream on Channel 1

06:00

08:00

D. Typinski (Florida) [8 RadioJOVE phased-dipoles array]

2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.

2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7 22:00

00:00 2015-01-20

02:00 04:00 Iitate/PWS Power Flux Density (RH)

06:00

08:00

Iitate Observatory (Fukushima, Japan) [2 log-periodic Yagi-Antennas]

-120. -130.

2.5×10 7

-140. -150. -160.

2.0×10 7

-170. -180.

1.5×10 7 22:00

00:00 2015-01-20

02:00

04:00

06:00

08:00

Guess which is the amateur RadioJOVE spectrogram ? … :-) ExPRES Tool (Meudon) [Prediction of Jovian Radio Emissions]

RH (dBW/m^2/Hz)

3.0×10 7

frequency (Hz)

Nançay Decameter Array (France) [144 log-spiral antenna array]

Stacked plot made with autoplot.org

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)

Frequency (Hz)

Towards  continuous  temporal  coverage

How  to  efficiently  share  data?   • Provide  calibrated  data,  or  data  include  enough  pieces  of  information  to   calibrate  the  data.   • Provide  data  in  a  standard  format  commonly  used  by  scientists.   • Provide  data  with  observation  «metadata»  (location  of  observer,  accurate   time  of  observation  in  UT,  observation  target  name...)  using  a  standard  set  of   keywords.   • Make  it  available  to  a  database  network  (a.k.a.  «virtual  observatory»)  used   by  scientists.  This  consists  in  a  network  of  databases  that  all  speak  a  common   language  to  share  their  data.  The  user  goes  to  a  simple  interface  and   searches  for  data,  the  portal  is  looking  into  remote  databases  and  fetches   results.   • Same  data  distribution  framework  (VESPA)  will  be  used  for  professional  JUNO   ground  radio  observation  support  and  amateur  RadioJOVE  observations.    

JUNO-­‐Ground-­‐Radio   Observation  Support  team

Frequency (Hz)

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7

NDA RH polar flux density

no data in interval: data ends before range

7 2.2×10 7 2.0×10 7 1.8×10 7 1.6×10

Frequency (Hz)

22:00

3.0×10 7 2.8×10 7 2.6×10 7 2.4×10 7 2.2×10 7 2.0×10 7 1.8×10 7 1.6×10 7

frequency (Hz)

2.0×10

06:00

08:00

00:00 2015-01-20

02:00 04:00 Iitate/PWS Power Flux Density (RH)

06:00

08:00

7 7 7

2200. 2150. 2100. 2050. 2000. 1950. 1900. 1850.

-120. -130. -140. -150. -160. -170. -180.

1.5×10 7 22:00

00:00 2015-01-20

02:00

04:00

06:00

08:00

RH (dBW/m^2/Hz)

2.5×10

02:00 04:00 Data stream on Channel 1

no data in interval: data ends before range

22:00

3.0×10

00:00 2015-01-20

80. 75. 70. 65. 60. 55. 50. 45. 40.

Power Spectral Density on Channel 1 RH polar flux density (W/m^2/Hz)

• All  data  providers  use  the  same  infrastructure:     • EPN-­‐TAP  server  +  CDF  files  with  same  metadata   • Metadata  compliant  with:   • International  Solar  Terrestrial  Program  guidelines:  ok  with  NASA/SPDF  or   CNES/CDPP   • NASA  Planetary  Data  System  –  Planetary  Plasma  Interaction  node   recommendation   • EPNcore:  automated  distribution  in  VESPA   • Usage  of  CDF:   • Data  can  be  plotted  in  various  tools  (such  
 as  autoplot).  Example  =>   • Usage  of  VESPA:   • Unified  access.   • Used  for  scheduling  (time_min/max)  

JUNO-­‐Ground-­‐Radio   using  VESPA  infrastructure Data  Files File01.bin

File01.cdf

File02.bin

File02.cdf

File03.bin

build  CDF File03.cdf build  quickview

extract   metadata

Data  Server PgSQL   EPNcore   table

online     data  files

TAP JUNO-­‐GR
 NDA   France http

File01.png File02.png File03.png

IVOA   Registry

JUNO-­‐Ground-­‐Radio   using  VESPA  infrastructure Data  Providers JUNO-­‐GR
 NDA   France JUNO-­‐GR
 UTR2   Ukraine

Users {time_min,time_max}  ?

TAP

TAP

list  of  

 o

RadioJOVE

granu les  =>

n list  of  gra

list

Planning   Tool

ules  =>

VESPA   Portal

 => les u an f  gr

TAP IVOA   Registry

JUNO-­‐Ground-­‐Radio   using  VESPA  infrastructure Data  Providers JUNO-­‐GR
 NDA   France JUNO-­‐GR
 UTR2   Ukraine

Users

TAP

list  o

f  gra

nule s  => {target_name=Jupiter;     ucd=em.radio}  ?

list  of  granules  =>

TAP

l

RadioJOVE

Planning   Tool

n gra   f o ist  

s  => e l u

of list  

TAP IVOA   Registry

 UR

> Ls  =