Solving industrial design problems by using COMSOL Multiphysics ...

2 downloads 0 Views 2MB Size Report
Jun 12, 2015 - Industrial examples. - Microfluidic mixer. - Toy problem. • COMSOL Multiphysics. - Creation of the model. - Conversion to MATLAB. • MATLAB.
Solving industrial design problems by using COMSOL Multiphysics with MATLAB Benjamin Ivorra MOMAT Research group & Instituto de Matem´ atica Interdisciplinar & Departamento de Matem´ atica Aplicada Universidad Complutense de Madrid

1 / 20

Outline Outline



Part I: Industrial examples

- Microfluidic mixer - Toy problem

Part II: COMSOL Multiphysics Part III: MATLAB

Industrial examples



Conclusions

COMSOL Multiphysics - Creation of the model - Conversion to MATLAB



MATLAB - Structure of the M-script - Useful commands - Creating a function



12/06/2015

Conclusions

Iberian COMSOL Multiphysics Conference 2015 – 2 / 20

Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Part I: Industrial examples

Iberian COMSOL Multiphysics Conference 2015 – 3 / 20

Device: Microfluidic mixer Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics

Application: Microfluidic mixers are used to quickly mix a protein solution with a solvent provoking a rapid change in chemical potential resulting in the unfold of certain proteins. Example of microfluidic mixer: There exist a wide range of techniques to create microfluidic mixers. For instance:

Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 4 / 20

Industrial problem Outline Part I: Industrial examples Microfluidic mixer Toy problem

Objective: optimize the mixer to reduce the time needed to reach a certain protein concentration. Considered mixer: Knight mixer

Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 5 / 20

Parameters Center inlet Outline lc

Part I: Industrial examples Microfluidic mixer Toy problem

Side inlet

uc

px (cx2,cy2) l2 h2

Part III: MATLAB Conclusions

Axial symmetry

Part II: COMSOL Multiphysics



us

ls

h1 l1 (cx1,cy1)

θ

le

exit

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 6 / 20

Mathematical Modeling Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

C90 Steady equations:

C30

Navier−Stokes + Convective−Diffusion

Iberian COMSOL Multiphysics Conference 2015 – 7 / 20

Design Problem We are interested in minimizing: Outline

x

Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

J(xparam ) = x

Z

c30param x

c90param

dy , uxparam (y) · t

x

where c90param , c30param and uxparam are computed by solving numerically (COMSOL) the following system:  ⊤ )) + ρ(u · ∇)u + ∇p = 0 in Ω, −∇ · (η(∇u + (∇u)    ∇·u=0 in Ω, ∇ · (−D∇c + cu) = 0 in Ω,    + boundary conditions. This optimization problem is solved by using the Global Optimization Platform software (MATLAB): http://www.mat.ucm.es/momat/software.htm

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 8 / 20

Some Results Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 9 / 20

Experimental implementation Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 10 / 20

Bibliography Outline



Benjamin Ivorra, Juana Redondo, Juan Santiago, Pilar Ortigosa, and Angel Ramos. Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Physics of Fluids, 25, 032001, 2013.



David E. Hertzog, Benjamin Ivorra, Bijan Mohammadi, Olgica Bakajin, Juan G. Santiago. Optimization of a Fast Microfluidic Mixer for Studying Protein Folding Kinetics. Analytical chemistry, 78(13), 4299-4306, 2006.



Benjamin Ivorra, David E. Hertzog, Bijan Mohammadi, Juan G. Santiago. Semi-deterministic and genetic algorithms for global optimization of microfluidic protein-folding devices. International Journal for Numerical Methods in Engineering , 66(2), 319-333, 2006.

Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 11 / 20

Toy problem Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB

We want to optimize the temperature of the left wall (Tl ) of a given rectangular heat chamber such that the mean spatial temperature is 50◦ C: ZZ ZZ  min J(Tl ) = T (x, y, Tl )dxdy/ 1dxdy − 50 Tl ∈[0,100]





11111111111111111111111111111 00000000000000000000000000000 00000000000000000000000000000 11111111111111111111111111111 00000000000000000000000000000 11111111111111111111111111111

Conclusions

Wall

Tl=[0,100]ºC Parameter



Heat PDE

T=25ºC Fixed

11111111111111111111111111111 00000000000000000000000000000 00000000000000000000000000000 11111111111111111111111111111 00000000000000000000000000000 11111111111111111111111111111

Wall 12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 12 / 20

Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

Part II: COMSOL Multiphysics

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 13 / 20

Main steps Outline



Use the COMSOL GUI to easily create the model.



Identify and isolate all the parameters to be modified by the MATLAB code.



Compress history before exporting the model to MATLAB format.

Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 14 / 20

Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

Part III: MATLAB

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 15 / 20

Useful MATLAB commands Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB



mphgeom(model,’geom1’)



mphmesh(model,’mesh1’)



model.result.table(’tbl1’).getReal



mphint(model,’u’,’T’,tf,’edim’,2,’selection’,[1])



mphinterp(model,’u’,’T’,tf,’coord’,[0.2;0.2])



mphsave(model,’optimum’)



model=mphload(’optimum’)



model.variable(’var1’).set(’Tmax’, num2str(x(1)))

Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 16 / 20

Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 17 / 20

Extended courses Outline



etodo de Elementos Finitos: Course (10H): M´ Aplicaciones y Optimizaci´ on con COMSOL MULTIPHYSICS. Doctorado en Ingenier´ıa Matem´atica, Estad´ıstica e Investigaci´ on Operativa. Universidad Complutense de Madrid. February.



Seminary (2H): Simulaci´ on num´ erica en Ingenier´ıa y Ciencias con MATLAB + COMSOL Multiphysics. Departamento de F´ısica Aplicada II y Vicerrectorado de Investigaci´ on. Universidad de M´ alaga. May.

Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 18 / 20

Download files Google keywords: Ivorra Benjamin Researchgate Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 19 / 20

Thank you Outline

!!! Thank you for your attention!!!

Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB

Global Optimization Platform http://www.mat.ucm.es/momat/software.htm

Conclusions

12/06/2015

Iberian COMSOL Multiphysics Conference 2015 – 20 / 20