Jun 12, 2015 - Industrial examples. - Microfluidic mixer. - Toy problem. ⢠COMSOL Multiphysics. - Creation of the model. - Conversion to MATLAB. ⢠MATLAB.
Solving industrial design problems by using COMSOL Multiphysics with MATLAB Benjamin Ivorra MOMAT Research group & Instituto de Matem´ atica Interdisciplinar & Departamento de Matem´ atica Aplicada Universidad Complutense de Madrid
1 / 20
Outline Outline
•
Part I: Industrial examples
- Microfluidic mixer - Toy problem
Part II: COMSOL Multiphysics Part III: MATLAB
Industrial examples
•
Conclusions
COMSOL Multiphysics - Creation of the model - Conversion to MATLAB
•
MATLAB - Structure of the M-script - Useful commands - Creating a function
•
12/06/2015
Conclusions
Iberian COMSOL Multiphysics Conference 2015 – 2 / 20
Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Part I: Industrial examples
Iberian COMSOL Multiphysics Conference 2015 – 3 / 20
Device: Microfluidic mixer Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics
Application: Microfluidic mixers are used to quickly mix a protein solution with a solvent provoking a rapid change in chemical potential resulting in the unfold of certain proteins. Example of microfluidic mixer: There exist a wide range of techniques to create microfluidic mixers. For instance:
Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 4 / 20
Industrial problem Outline Part I: Industrial examples Microfluidic mixer Toy problem
Objective: optimize the mixer to reduce the time needed to reach a certain protein concentration. Considered mixer: Knight mixer
Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 5 / 20
Parameters Center inlet Outline lc
Part I: Industrial examples Microfluidic mixer Toy problem
Side inlet
uc
px (cx2,cy2) l2 h2
Part III: MATLAB Conclusions
Axial symmetry
Part II: COMSOL Multiphysics
Ω
us
ls
h1 l1 (cx1,cy1)
θ
le
exit
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 6 / 20
Mathematical Modeling Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
C90 Steady equations:
C30
Navier−Stokes + Convective−Diffusion
Iberian COMSOL Multiphysics Conference 2015 – 7 / 20
Design Problem We are interested in minimizing: Outline
x
Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
J(xparam ) = x
Z
c30param x
c90param
dy , uxparam (y) · t
x
where c90param , c30param and uxparam are computed by solving numerically (COMSOL) the following system: ⊤ )) + ρ(u · ∇)u + ∇p = 0 in Ω, −∇ · (η(∇u + (∇u) ∇·u=0 in Ω, ∇ · (−D∇c + cu) = 0 in Ω, + boundary conditions. This optimization problem is solved by using the Global Optimization Platform software (MATLAB): http://www.mat.ucm.es/momat/software.htm
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 8 / 20
Some Results Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 9 / 20
Experimental implementation Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 10 / 20
Bibliography Outline
■
Benjamin Ivorra, Juana Redondo, Juan Santiago, Pilar Ortigosa, and Angel Ramos. Two- and three-dimensional modeling and optimization applied to the design of a fast hydrodynamic focusing microfluidic mixer for protein folding. Physics of Fluids, 25, 032001, 2013.
■
David E. Hertzog, Benjamin Ivorra, Bijan Mohammadi, Olgica Bakajin, Juan G. Santiago. Optimization of a Fast Microfluidic Mixer for Studying Protein Folding Kinetics. Analytical chemistry, 78(13), 4299-4306, 2006.
■
Benjamin Ivorra, David E. Hertzog, Bijan Mohammadi, Juan G. Santiago. Semi-deterministic and genetic algorithms for global optimization of microfluidic protein-folding devices. International Journal for Numerical Methods in Engineering , 66(2), 319-333, 2006.
Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 11 / 20
Toy problem Outline Part I: Industrial examples Microfluidic mixer Toy problem Part II: COMSOL Multiphysics Part III: MATLAB
We want to optimize the temperature of the left wall (Tl ) of a given rectangular heat chamber such that the mean spatial temperature is 50◦ C: ZZ ZZ min J(Tl ) = T (x, y, Tl )dxdy/ 1dxdy − 50 Tl ∈[0,100]
Ω
Ω
11111111111111111111111111111 00000000000000000000000000000 00000000000000000000000000000 11111111111111111111111111111 00000000000000000000000000000 11111111111111111111111111111
Conclusions
Wall
Tl=[0,100]ºC Parameter
Ω
Heat PDE
T=25ºC Fixed
11111111111111111111111111111 00000000000000000000000000000 00000000000000000000000000000 11111111111111111111111111111 00000000000000000000000000000 11111111111111111111111111111
Wall 12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 12 / 20
Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
Part II: COMSOL Multiphysics
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 13 / 20
Main steps Outline
■
Use the COMSOL GUI to easily create the model.
■
Identify and isolate all the parameters to be modified by the MATLAB code.
■
Compress history before exporting the model to MATLAB format.
Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 14 / 20
Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
Part III: MATLAB
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 15 / 20
Useful MATLAB commands Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB
■
mphgeom(model,’geom1’)
■
mphmesh(model,’mesh1’)
■
model.result.table(’tbl1’).getReal
■
mphint(model,’u’,’T’,tf,’edim’,2,’selection’,[1])
■
mphinterp(model,’u’,’T’,tf,’coord’,[0.2;0.2])
■
mphsave(model,’optimum’)
■
model=mphload(’optimum’)
■
model.variable(’var1’).set(’Tmax’, num2str(x(1)))
Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 16 / 20
Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 17 / 20
Extended courses Outline
■
etodo de Elementos Finitos: Course (10H): M´ Aplicaciones y Optimizaci´ on con COMSOL MULTIPHYSICS. Doctorado en Ingenier´ıa Matem´atica, Estad´ıstica e Investigaci´ on Operativa. Universidad Complutense de Madrid. February.
■
Seminary (2H): Simulaci´ on num´ erica en Ingenier´ıa y Ciencias con MATLAB + COMSOL Multiphysics. Departamento de F´ısica Aplicada II y Vicerrectorado de Investigaci´ on. Universidad de M´ alaga. May.
Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 18 / 20
Download files Google keywords: Ivorra Benjamin Researchgate Outline Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 19 / 20
Thank you Outline
!!! Thank you for your attention!!!
Part I: Industrial examples Part II: COMSOL Multiphysics Part III: MATLAB
Global Optimization Platform http://www.mat.ucm.es/momat/software.htm
Conclusions
12/06/2015
Iberian COMSOL Multiphysics Conference 2015 – 20 / 20