Sep 15, 2016 - Solving the electrical impedance tomography inverse problem for logarithmic conductivity. Numerical sensitivity. Sergio de Paula Pellegrini.
Solving the electrical impedance tomography inverse problem for logarithmic conductivity Numerical sensitivity
Sergio de Paula Pellegrini Flávio Celso Trigo Raul Gonzalez Lima
Universidade de São Paulo Escola Politécnica
September 15th 2016 Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
1 / 19
Outline
1 Introduction 2 Logarithmic conductivity improves convexity in EIT problem 3 Logarithmic conductivity might improve convergence rate
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
2 / 19
Introduction
Electrical Impedance Tomography (EIT) Estimate distribution of electrical properties in a domain with imposition of currents and measurements of potentials at its boundary
• Inverse • Ill-posed • Nonlinear
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
3 / 19
Introduction
EIT: methodology A typical approach: • Maxwell equations & material constitutive laws
• Finite Element Method • Iterative procedure: 1 Departing from an initial estimation of the property distribution (ˆ σ0 2
3 4
5
[e] )
−1 Estimate the potentials at the electrodes Vˆ[m] = T[m×n] Y[n×n] C[n] , k with Y[n×n] = f σ ˆ
An error function is evaluated: Φ1 σ ˆk =
1 2
V − Vˆ k
t
V − Vˆ k
A new distribution of electrical properties σ ˆ k+1 is determined in order to decrease the error function Go back to step 2 until stop criterion is matched
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
4 / 19
Introduction
EIT: methodology A typical approach: • Maxwell equations & material constitutive laws
• Finite Element Method • Iterative procedure: 1 Departing from an initial estimation of the property distribution (ˆ σ0 2
3 4
5
[e] )
−1 Estimate the potentials at the electrodes Vˆ[m] = T[m×n] Y[n×n] C[n] , k with Y[n×n] = f σ ˆ direct problem
An error function is evaluated: Φ1 σ ˆk =
1 2
V − Vˆ k
t
V − Vˆ k
A new distribution of electrical properties σ ˆ k+1 is determined in order to decrease the error function inverse problem Go back to step 2 until stop criterion is matched
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
4 / 19
Introduction
EIT: the negative conductivity problem Obtaining estimates in conductivity σ or resistivity ρ is particularly challenging when the actual values are between [0; 1], as the search algorithm (step 4) is prone to reach negative values
Actual values (1% uniform noise added to potential “measurements”) Pellegrini, Trigo, Lima (USP)
Converged solution using Gauss-Newton method, with σ ˆ0 = 2 σ ¯ and α = 40.0%
EIT inverse problem in log conductivity
September 15th 2016
5 / 19
Introduction
EIT: Literature solutions for negative conductivity problem
• Constrained search with backtracking: control the under relaxation
factor α to ensure positiveness
• Parametrization: using a different variable to describe the unknowns
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
6 / 19
Introduction
EIT: Literature solutions for negative conductivity problem
• Constrained search with backtracking: control the under relaxation
factor α to ensure positiveness
• Parametrization: using a different variable to describe the unknowns
Logarithmic conductivity ς, such that σ = σ0 exp ς with σ0 = 1
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
S m
6 / 19
Introduction
EIT: Literature solutions for negative conductivity problem
• Constrained search with backtracking: control the under relaxation
factor α to ensure positiveness
• Parametrization: using a different variable to describe the unknowns
Logarithmic conductivity ς, such that σ = σ0 exp ς with σ0 = 1
S m
• Ensures positiveness – EIT numerical search is implicitly
constrained to respect Physics
• However, no study explored the comparative effect of
using logarithmic conductivity in EIT
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
6 / 19
Logarithmic conductivity improves convexity in EIT problem
1 Introduction
2 Logarithmic conductivity improves convexity in EIT problem
3 Logarithmic conductivity might improve convergence rate
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
7 / 19
Logarithmic conductivity improves convexity in EIT problem
Threshold α for monotone convergence Gauss-Newton method: there is a threshold under relaxation factor αthr that leads to monotone convergence. For the problem in analysis, with σ ˆ0 = 2 σ ¯:
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
search variable
αthr
σ
34.0%
ρ
17.7%
ς
63.2%
September 15th 2016
8 / 19
Logarithmic conductivity improves convexity in EIT problem
Threshold α for monotone convergence Gauss-Newton method: there is a threshold under relaxation factor αthr that leads to monotone convergence. For the problem in analysis, with σ ˆ0 = 2 σ ¯:
search variable
αthr
σ
34.0%
ρ
17.7%
ς
63.2%
Converged solution Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
8 / 19
Logarithmic conductivity improves convexity in EIT problem
Threshold α for monotone convergence Gauss-Newton method: there is a threshold under relaxation factor αthr that leads to monotone convergence. For the problem in analysis, with σ ˆ0 = 2 σ ¯: 5
10
0
10
−5
10
−10
10
Φ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂Φ ¯¯ ¯¯ ∂Vc t ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂σ ¯¯ = ¯¯ ∂σ (Vm −Vc )¯¯ ¯¯ k−1 k ¯¯ ¯¯σ −σ ¯¯
10
20
30
40
Pellegrini, Trigo, Lima (USP)
50
60
70
80
search variable
αthr
σ
34.0%
ρ
17.7%
ς
63.2%
90
It. EIT inverse problem in log conductivity
September 15th 2016
8 / 19
Logarithmic conductivity improves convexity in EIT problem
Threshold α for monotone convergence Gauss-Newton method: there is a threshold under relaxation factor αthr that leads to monotone convergence. For the problem in analysis, with σ ˆ0 = 2 σ ¯: 5
10
5.4 · 10−4 0
10
−5
10
−10
10
Φ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂Φ ¯¯ ¯¯ ∂Vc t ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂σ ¯¯ = ¯¯ ∂σ (Vm −Vc )¯¯ ¯¯ k−1 k ¯¯ ¯¯σ −σ ¯¯
10
20
30
40
Pellegrini, Trigo, Lima (USP)
50
60
70
80
search variable
αthr
σ
34.0%
ρ
17.7%
ς
63.2%
90
It. EIT inverse problem in log conductivity
September 15th 2016
8 / 19
Logarithmic conductivity improves convexity in EIT problem
Existence of local minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ and α = 40.0%
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
9 / 19
Logarithmic conductivity improves convexity in EIT problem
Existence of local minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ and α = 40.0% 100
10
Φ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂Φ ¯¯ ¯¯ ∂Vc t ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂σ ¯¯ = ¯¯ ∂σ (Vm −Vc )¯¯ ¯¯ k−1 k ¯¯ ¯¯σ −σ ¯¯
50
10
0
10
−50
10
Pellegrini, Trigo, Lima (USP)
2
4
6
8 It.
EIT inverse problem in log conductivity
10
12
14
September 15th 2016
9 / 19
Logarithmic conductivity improves convexity in EIT problem
Existence of local minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ and α = 40.0% 100
10
Φ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂Φ ¯¯ ¯¯ ∂Vc t ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂σ ¯¯ = ¯¯ ∂σ (Vm −Vc )¯¯ ¯¯ k−1 k ¯¯ ¯¯σ −σ ¯¯
50
10
0
10
−50
10
2
4
6
8 It.
10
12
2.6 · 10−9
14
Solution is local minimum Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
9 / 19
Logarithmic conductivity improves convexity in EIT problem
Existence of local minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ and α = 40.0% 100
10
Φ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂Φ ¯¯ ¯¯ ∂Vc t ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ¯¯ ∂σ ¯¯ = ¯¯ ∂σ (Vm −Vc )¯¯ ¯¯ k−1 k ¯¯ ¯¯σ −σ ¯¯
50
10
2.8 · 100 0
10
−50
10
2
4
6
8 It.
10
12
2.6 · 10−9
14
Solution is local minimum This minimum has higher “energy” than physically plausible solution Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
9 / 19
Logarithmic conductivity improves convexity in EIT problem
Negative values may lead to other minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ α = αthr = 34.0%
α = 34.1%
12
60
10
50
8
40
6 σ
σ
30
4
20
2 10
0 0
−2 −4
−10
10
20
30
40
50
60
70
80
90
2
It.
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
4
6
8
10
12
It.
September 15th 2016
10 / 19
Logarithmic conductivity improves convexity in EIT problem
Negative values may lead to other minimae Gauss-Newton in σ, with σ ˆ0 = 2 σ ¯ α = αthr = 34.0%
α = 34.1%
12
60
10
50
8
40
6 σ
σ
30
4
20
2 10
0 0
−2 −4
−10
10
20
30
40
50
60
70
80
90
2
It.
4
6
8
10
12
It.
Negative conductivities inject “energy” into the numerical equations Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
10 / 19
Logarithmic conductivity improves convexity in EIT problem
Using ς allows faster algorithm 0
10
σ ρ ς
−1
α thr
10
−2
10
−3
10
−2
10
−1
10
0
10
1
10
2
10
3
10
4
10
σ ˆ 0/ σ ¯ Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
11 / 19
Logarithmic conductivity improves convexity in EIT problem
Hypersurface Φ is modified Local minimae with negative values for σ or ρ are not reachable using ς Using Nonlinear Conjugate Gradient: Estimating in σ
Estimating in ς
(Polak-Ribière with exact line search) Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
12 / 19
Logarithmic conductivity might improve convergence rate
1 Introduction
2 Logarithmic conductivity improves convexity in EIT problem
3 Logarithmic conductivity might improve convergence rate
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
13 / 19
Logarithmic conductivity might improve convergence rate
Convergence rate Gauss-Newton, with σ ˆ0 = 2 σ ¯ and α = 20.0% Estimating in ς
12
12
10
10
8
8
6
6
σ
σ
Estimating in σ
4
4
2
2
0
10
20
30
40 It.
Pellegrini, Trigo, Lima (USP)
50
60
70
0
10
EIT inverse problem in log conductivity
20
30
40 It.
50
60
September 15th 2016
70
14 / 19
Logarithmic conductivity might improve convergence rate
Convergence rate Gauss-Newton, with σ ˆ0 = 2 σ ¯ and α = 20.0% Estimating in ς
12
12
10
10
8
8
6
6
σ
σ
Estimating in σ
4
4
2
2
0
10
20
30
40 It.
50
60
70
0
10
20
30
40 It.
50
60
70
Convergence rate more independent of actual property distribution Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
14 / 19
Logarithmic conductivity might improve convergence rate
Assymetry in direct problem I Varying the conductivity of a inhomogeneity, electric potentials are measured (no noise added) for all bipolar electric current inputs
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
15 / 19
Logarithmic conductivity might improve convergence rate
Assymetry in direct problem II The measured potentials are compared with the ones of a reference homogeneous case, and plotted as a function of the inhomogeneity value 0.35
0.25 ¯¯ ¯¯ ¯¯ ˆ ˆ ¯¯ ¯¯V −Vref ¯¯
2
2
0.3
0.25 ¯¯ ¯¯ ¯¯ ˆ ˆ ¯¯ ¯¯V −Vref ¯¯
0.35
0.3
0.2
0.2
0.15
0.15
0.1
0.1
0.05
0.05
0
0.1
0.2
0.3
0.4 σ (S/m)
0.5
0.6
0.7
0
−2
−1.5 ς (−)
−1
−0.5
• This analysis shows the aggregate influence of the inhomogeneous
elements
• The plots, based on the direct problem, show tendencies for
convergence rate of the inverse problem (formally, at initial guess)
• A more symmetric behavior implies in a convergence rate more
independent of under- or overestimation
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
16 / 19
Logarithmic conductivity might improve convergence rate
Assymetry in direct problem – large phantom I Same test for a numerical model of 385 601 elements and 32 electrodes
Varying conductivity of inhomogeneity from 3.38 · 10−3 to 6.17 · 107 Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
S m 17 / 19
Logarithmic conductivity might improve convergence rate
Assymetry in direct problem – large phantom II −3
−8
x 10
4.5
5
x 10
4 3.5
4 ¯¯ ¯¯ ¯¯ ˆ ˆ ¯¯ ¯¯V −Vref ¯¯
¯¯ ¯¯ ¯¯ ˆ ˆ ¯¯ ¯¯V −Vref ¯¯
2
2
3 2.5
3
2
2
1.5 1
1
0.5
0
1
2
3 σ (S/m)
4
5
6 7 x 10
0
−5
0
5
10
15
ς (−)
• Similar conclusions are drawn for symmetry near the homogeneous
setup • For the contrasting inhomogeneity values, the numerical scheme executes a large step when estimating in σ – which might lead to negative conductivities – but a smaller one when estimating for ς
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
18 / 19
Logarithmic conductivity might improve convergence rate
Core references
• T. Murai, Y. Kagawa. Electrical impedance computed tomography
based on a finite element model. IEEE Transactions on Biomedical Engineering, BME-32(3), 1985, pp. 177-184.
• P. J. Vauhkonen. Image Reconstruction in Three-Dimensional
Electrical Impedance Tomography. PhD thesis, University of Kuopio, 2004.
• A. Tarantola. Elements for Physics: quantities, qualities and intrinsic
theories. Springer, 2006.
Pellegrini, Trigo, Lima (USP)
EIT inverse problem in log conductivity
September 15th 2016
19 / 19