T.E. Tezduyar, V. Kalro, and W. Garrard, âParallel computational methods 3D simulation of a parafoil with prescribed shape changesâ, Parallel ... James Liou.
TAFSM!
Symposium on Stabilized, Multiscale, and Isogeometric Methods in CFD, 19th International Conference on Finite Elements in Flow Problems, Rome, Italy, April 2017 (Keynote Lecture).
M S F A F T
Space–Time Computational Methods and Ram-Air Parachute Aerodynamics With the ST Isogeometric Analysis Kenji Takizawa
Tayfun E. Tezduyar
Takuya Terahara
Waseda University
University of Tokyo Rice University
Waseda University
TAFSM! Deforming-Spatial Domain/Stabilized Space–Time (DSD/SST) Method “ST-SUPS”
M S F A F T Summer 1994
Large Ram-Air Parachute 60 ft × 180 ft
First 3D parachute computation with the ST-SUPS method
One of the earliest 3D computations with the ST-SUPS method
TAFSM! Flare Maneuver of a Large Ram-Air Parachute ST-SUPS
M S F A F T
T.E. Tezduyar, V. Kalro, and W. Garrard, “Parallel computational methods 3D simulation of a parafoil with prescribed shape changes”, Parallel Computing, 23 (1997) 1349–1363
TAFSM! Fluid–Structure Interactions of a Large Ram-Air Parachute December 1997
M S F A F T ST-SUPS
ALE-SUPS
V. Kalro and T.E. Tezduyar, “A parallel finite element methodology for 3D computation of fluid–structure interactions in airdrop systems”, Proceedings of the 4th Japan-US Symposium on Finite Element Methods in Large-Scale Computational Fluid Dynamics, Tokyo, Japan (1998)
V. Kalro and T.E. Tezduyar, “A parallel 3D computational method for fluid–structure interactions in parachute systems”, Computer Methods in Applied Mechanics and Engineering, 190 (2000) 321–332
TAFSM! DSD/SST Method “ST-SUPS”
M S F A F T ST slab
TAFSM! ST-SUPS and ST-VMS
M S F A F T Z
✓
◆ Z h @u h h h h w ·⇢ + u · ru f dQ + " (wh ) : (uh , ph )dQ @t Qn Z Z Z Qn h + wh · hh dP + q hr · uh dQ + (wh )+ (uh )n d⌦ n · ⇢ (u )n (Pn )h
XZ
Qn
(nel )n
+
e=1
XZ
⌦n
✓ ✓ h ◆ ◆ @w ⇢ + uh · r wh + r q h · rM (uh , ph )dQ @t
Qen
⌧SUPS ⇢
Qen
⌫LSICr · wh ⇢rC (uh )dQ
(nel )n
+
e=1
XZ
Terms existed in ST-SUPS
(nel )n
e=1
XZ
Qen
⌧SUPS wh · rM (uh , ph ) · r uh dQ
Qen
2 ⌧SUPS rM (uh , ph ) · r wh · rM (uh , ph )dQ = 0 ⇢
(nel )n
e=1
Terms added in ST-VMS
K. Takizawa, and T.E. Tezduyar, “Multiscale space–time fluid–structure interaction techniques”, Computational Mechanics,
48 (2011) 247–267
TAFSM! ST-SUPS and ST-VMS Milestones and Key Players in the Development
M S F A F T
1990
James Liou
ST-SUPS
Implementation
1997
Vinay Kalro
ST-SUPS FSI
Implementation
2004
Sunil Sathe
ST-SUPS FSI+
Development and Implementation
2010
Kenji Takizawa
ST-SUPS FSI++ ST-VMS ST-VMS FSI++ + ST-SI ST-TC ST-SI-TC ST-IGA ST-SI-TC-IGA
Development and Implementation
TAFSM! Mesh Update No reason to be afraid of…
M S F A F T
25-year history of development…
Starting from Jacobian-Based Stiffening (JBS) in 1992…
To ST NURBS Mesh Update Method (STNMUM) in 2011…
To Element-Based Mesh Relaxation (EBMR) in 2013…
TAFSM! Fluid–Particle Interactions Reaching 1000 Spheres ST-SUPS
M S F A F T ST-SUPS was the first in 3D FPI… … (1994)
… reaching 100 spheres (1996)
• Large displacements • Near contact • Near topology changes
June 1998
… reaching 1000 spheres (1998) … in tri-periodic domains (1999)
• “Nearness” is sufficiently “near” for the purpose of solving the problem
TAFSM! ST Topology Change Method ST-TC (2013)
M S F A F T
• A moving-mesh method that can handle an actual TC • High-resolution flow representation near solid surfaces
Heart valve (2014)
Mechanical valve (2014)
Wing clapping (2014)
Tire aerodynamics (2016)
+ (Pn )SI
Z
TAFSM!
(Pn )SI Z ST Slip Interface Method
ST-SI
h nB · wBh + nA · wA
wBh
ACI
1 h pB + phA dP 2
h ˆ B · µ " (uhB ) + " (uhA ) wA · n h ˆ B · µ " wBh + " wA n
· uhB
M S F A F T Z Z
(Pn )SI
qBh nB
qAh nA
1 h · u 2 B
uhA
dP
+
Z
(Pn )SI
(Pn )SI
µC wBh h
1 FBh FBh uhB FBh FBh uhA dP 2 (P ) Z n SI h 1 ⇢wA · FAh FAh uhA FAh FAh uhB dP 2 (P ) Z n SI h 1 + nB · wBh + nA · wA phB + phA dP 2 (P ) Z n SI h ˆ B · µ " (uhB ) + " (uhA ) dP wBh wA · n (Pn )SI Z h ˆ B · µ " wBh + " wA n · uhB uhA dP ACI (Pn )SI Z µC h + wBh wA · uhB uhA dP (Pn )SI h ⇢wBh ·
h wA · uhB
uhA dP
FBh = nB · uhB
vBh
FAh = nA · uhA
h vA
A: above
B: below
K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with h h h slip interfaces (ST-SI)”, Mathematical ModelsFand Methods 2377–2406
nB · inuApplied vSciences, 25 (2015) B = B B
ST version of…
FAh = nA · uhA
h vA
Y. Bazilevs, and T.J.R. Hughes “NURBS-based isogeometric analysis for the computation of flows about rotating components”,
Computational Mechanics, 43 (2008) 143–150
dP
uhA dP
TAFSM! Vertical-Axis Wind Turbine VAWT
M S F A F T Blade
Support column
Shaft
Arm
Rotor
Turbine model
Blade chord length
1.5
Blade length
18
Arm chord length
1.35
Arm length
7
Rotor diameter
16
Tower height
45
Dimensions (m)
TAFSM! 2D Fluid Mechanics Computations Tip-Speed Ratio = 3
M S F A F T 1.0 0.8
CPOW
0.6 0.4 0.2 0.0
0.2 0
Velocity magnitude m/s
0.0
Low
10.0
High
Velocity magnitude
90
Three-airfoils model Three-airfoils model (average) Betz theory
180
()
270
360
Full-machine model Full-machine model (average)
TAFSM! ST-SI Weakly-Imposed Dirichlet Boundary Condition
M S F A F T Z
+
Z
(Pn )SI
qBh nB · uhB dP
(Pn )SI
⇢wBh ·
(Pn )SI
wBh · nB ·
(Pn )SI
µC h wB · uhB hB
Z
+
Z
1 2
Z
⇢wBh · FBh uhB dP +
(Pn )SI
FBh + FBh h B
dP
uhB + FBh Z
ACI
(Pn )SI
gh dP
FBh
Z
(Pn )SI
qBh nB · gh dP
gh dP
nB · 2µ"" wBh · uhB
gh dP
g: given
B: boundary
K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406
ST version of…
Y. Bazilevs, and T.J.R. Hughes “NURBS-based isogeometric analysis for the computation of flows about rotating components”,
Computational Mechanics, 43 (2008) 143–150
TAFSM! 3D Fluid Mechanics Computation Vorticity Magnitude
M S F A F T 0.1
157.0
1/s
TAFSM! ST-SI Between a Thin Porous Structure and the Fluid on Its Two Sides
M S F A F T Z
Z
(Pn )SI
qBh nB · uhB dP 1 2
(Pn )SI
⇢wBh · FBh uhB dP +
Z
(Pn )SI
qBh uhPORO + uhS · nB dP
FBh + FBh uhB + FBh FBh (nB nB ) · uhA + (I nB nB ) · uhS dP (P ) Z n SI Z + wBh · nB phB dP (nB nB ) · wBh · nB · µ " (uhB ) + " (uhA ) dP (P ) (Pn )SI Z n SI (I nB nB ) · wBh · nB · 2µ""(uhB ) dP (Pn )SI Z nB · µ"" wBh · (nB nB ) · uhB uhA dP ACI (P ) Z n SI nB · 2µ"" wBh · (I nB nB ) · uhB uhS dP ACI (Pn )SI Z A: above µC + (nB nB ) · wBh · uhB uhA dP h (P ) S: structure Z n SI µC + (I nB nB ) · wBh · uhB uhS dP B: below (Pn )SI h +
⇢wBh ·
Z
K. Takizawa, T.E. Tezduyar, H. Mochizuki, H. Hattori, S. Mei, L. Pan, and K. Montel, “Space–time VMS method for flow computations with slip interfaces (ST-SI)”, Mathematical Models and Methods in Applied Sciences, 25 (2015) 2377–2406
TAFSM! Ram-Air Parachute Geometry and Flow Conditions
M S F A F T 8m×3m
18 air cells
19 ribs
Glide speed = 12.5 m/s
α = −2°, 0°, 2°, 4°, 6°, 8°, 10°, 12°
K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200
TAFSM! Ram-Air Parachute Structural Mechanics Control Mesh
M S F A F T
• NURBS mesh enables increased accuracy in representing the parafoil geometry • Special-purpose mesh generation technique enables complex-geometry representation
K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200
TAFSM! Ram-Air Parachute Fluid Mechanics Mesh
M S F A F T
• Surface mesh = canopy structure mesh • Volume mesh both inside and outside • Challenging near the trailing edge
NURBS mesh enables…
• Increased accuracy in representing the parafoil surface • Increased accuracy in obtaining the flow solution
• Reasonable element density near the trailing edge
• Special-purpose mesh generation technique enables complex-geometry representation
K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200
TAFSM! Ram-Air Parachute Fluid Mechanics Control Mesh
M S F A F T First deform at α = 0°
α = 0°
α = 0°
Next deform from α = 0° to other α values
K. Takizawa, T.E. Tezduyar, and T. Terahara, “Ram-air parachute structural and fluid mechanics computations with the space–time isogeometric analysis (ST-IGA)”, Computers & Fluids, 141 (2016) 191–200
TAFSM! Ram-Air Parachute Vorticity
M S F A F T α = 0°
α = 12°
TAFSM! Ram-Air Parachute α = 0°
M S F A F T Porosity modeling
TAFSM!
M S F A F T Japanese Translation"
TAFSM!
M S F A F T Thank you!