statistical language models is to consider the word de- pending ... Therefore, we propose a Statistical ... teristics or features could be the word itself, its syntactic.
equations defining this equivalence relation still enjoys PSN. Equations are ... Actually, â¡o can be understood as the quotient induced by the translation [1] of λj-terms to Pure ... Section 5 first considers λj enriched with the linear equivalen
A._____. 12a. DISTRIBUTION / AVAILABILITY STATEMENT. Approved for public release; ... Feature extraction, feature selection, and classification are the major ...
Available Online at www.jgrcs.info ... image feature extraction approach that is used to predict oral ... order to automatically extract those features Registration.
09.01.2004, ui-vorlage-en.rtf. Normalisation of Environmental Quality Data. Anders Grimvall. 1. , Hans Wackernagel. 2 and Christian Lajaunie. 2. Abstract.
1 Departamento de Lenguajes y Sistemas Informáticos. Universidad de ...... Merijn van Erp, Louis Vuurpijl, and Lambert Schomaker. An overview and com-.
University of Marburg. FG Neuroinformatik & Künstliche Intelligenz. Research Report 0994. Abstract. In this paper we oppose some classical statistical clustering ...
Statistical Feature Fusion for Sassanian Coin. Classification. Seyyedeh-Sahar Parsa1, Maryam Rastgarpour1, and Mohammad Mahdi Dehshibi2. 1 Department ...
clustering methods to a connectionist approach in the field of exploratory data analysis. Using an Artificial. Neural network, namely Kohonen's Self-Organizing.
ABSTRACT. Android Smartphone popularity has increased malware threats forc- ... [10] explored 1100 apps from Google Play store to ascertain security ...
International Journal of Statistics in Medical Research, 2012, 1, 177-178 ... Keywords: Statistical classification, supervised statistical learning, machine learning, ...
Hybrid DIAAF/RS: Statistical Textual Feature. Selection for Language-independent Text Classification. Yanbo J. Wang1, Fan Li1, Frans Coenen2, Robert ...
are presented in section 4, both with synthetic data and with a real large DB of .... Experiments were computed on a Pentium IV (CPU 2.5 GHz, cache size 512Kb ...
Resumo. Técnicas e sistemas de extração de informações são capazes de ... As soluções existentes proporcionam formas alternativas de representar expressões ... métodos de similaridade para procurar palavras válidas dentro de um texto. ...... (b) the
09.01.2004, ui-vorlage-en.rtf. Normalisation of Environmental Quality Data. Anders Grimvall. 1. , Hans Wackernagel. 2 and Christian Lajaunie. 2. Abstract.
Nov 18, 2009 ... Si c'était à refaire, recommenceriez-vous ? dit la chanson. Jamais on ne
recommencerait, à moins d'être gâteux ou d'ignorer le goût de ...
ferroviaire européenne. : Bernard TREUIL – Dir du Bureau de Normalisation
Ferroviaire (BNF). ... Exigences de compatibilité technique. Exigences générales
...
1Institute of Computing and Information Technology, Gomal University, D.I.Khan, Pakistan, ..... Amitava Das et al , 2008, Topic-Based Bengali Opinion Summarization, Coling ... Mishne, G. Experiments with mood classification in blog posts.
AbstractâWe present a new framework for feature-based statistical analysis of large-scale ... Index TermsâTopology, Statistics, Data analysis, Data exploration, ...
ables us to build a dedicated noun phrase translation ... We define the NP/PPs in a sentence as follows: .... constantly formed: web server, home page, instant.
Grid(2,i)=ceil(-(Grid(1,i)-Grid(3,i))/dX(i)); end else for i=1:N ...... on Statistics and Applied Probability, London: Chapman and Hall, 1986. [11] M. Girolami and C.
Sep 3, 2010 - Journal of Statistical Software. September 2010, Volume 36, ... A good discussion outlining why finding al
ROBUST SPEECH RECOGNITION. Erfan Loweimi, Jon Barker and Thomas Hain. Speech and Hearing Research Group (SPandH), University of Sheffield, ...
STATISTICAL NORMALISATION OF PHASE-BASED FEATURE REPRESENTATION FOR ROBUST SPEECH RECOGNITION Erfan Loweimi, Jon Barker and Thomas Hain Speech and Hearing Research Group (SPandH), University of Sheffield, Sheffield, UK {e.loweimi1, j.p.barker, t.hain}@sheffield.ac.uk
Distribution Evolution Along MFCC Pipeline
** This is paradoxical … – Signal and its information are recoverable from the phase through phase-only signal reconstruction – One-to-one relationship between phase and magnitude spectra necessitate both carry the same amount of information
– using all Aurora2 training data ( > 1.4 M frames) – with suboptimal assumption that dimensions are independent (for mathematical convenience) 1.2
1e 5
6
PDF of Magnitude Spectrum
Normalised Count
1.0
4
0.6
3
0.4
2
0.2
1 0.5
1.0
1.5
2.5
3.0
3.5
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
LogFBE(3)
PDF of LogFBE
0.4
LogFBE(9)
0.3
LogFBE(15)
0.2
LogFBE(21)
0.1 0.0 0
2
4
6
8
10
12
14
3.5
FBE(9) FBE(21)
0.5
1.0
1.5
2.0
C(1)
PDF of MFCC
C(5) C(10)
8
6
∆ C(5)
6
∆∆ C(5)
2.0
∆ C(8)
5
∆∆ C(8)
1.5
∆ C(10)
2.5
4
0.8
Gauss. Lapla.
0.6 0.4 0.2
3
2
1
0
1
2
3
0.0
4
3
2
1
0
1
– Skewness almost zero – Gaussian < Kurtosis < Laplacian
Statistical Normalisation
4
2
0
2
Principle Equation ...
4
PDF of Delta-Delta
∆∆ C(10)
3
1.0
2
0.5
1
0.0 1.5
1.0
0.5
0.0
0.5
1.0
0
1.5
0.6
0.4
0.2
0.0
0.2
0.4
0.6
Distribution Evolution of Phase-Based Feature
Normalised Count
0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00
B
Non-linearity
D
DCT
Normalised Count
GDF
Temporal Derivative
Post-processing
Recognition Results
E
0.6
arg[X MinPh (10)]
0.5
arg[XVT (10)]
arg[X MinPh (35)]
0.4
arg[XVT (35)]
arg[X MinPh (55)] arg[XMinPh(110)]
2
0
2
arg[XVT (110)]
0.2
1 4
arg[XVT (55)]
0.3
2
0.1
4
6
0.0
4
3
2
1
0
1
2
3
1.2
GDVT (10)
3.0
GDVT (35)
2.5
1.0
3
0.5 0.2
0.0
0.2
0.4
(20)
0.4
B
0.2
A
0.6
(17)
0.6
GDVT (110)
1.5
(13)
0.8
GDVT (55)
2.0
(9)
1.0
0.0
0.8
1.2
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0
1.0
(9)
1.0 Normalised Count
A
FilterBank
3.5
C
(13)
0.8 0.6
C(1)
0.8
D
C(5)
(17)
0.6
C(8)
(20)
0.4
C(10)
0.4
0.2
0.2 0.0
1.5
1.0
0.5
0.0
0.5
1.0
0.0
1.5
5
2
1
0
1
14
∆ C(1)
12
∆∆ C(1)
∆ C(5)
10
∆∆ C(5)
3
∆ C(8)
8
∆∆ C(8)
2
∆ C(10)
6
∆∆ C(10)
4 Normalised Count
Extract
Frame Blocking And Windowing
Pre-emphasis
0.0
4
1
E1
0
0.4
0.2
0.0
0.2
0.4
E2
2 0.6
0
0.2
0.1
0.0
0.1
0.2
Distribution of Principle (Wrapped) Phase (ARG) N o rm a lis e d C o u n t
ARG[X(45)]
ARG[X(55)]
ARG[X(80)]
ARG[X(100)]
0.166 0.164 0.162 0.160 0.158 0.156
N o rm a lis e d C o u n t
0.154
3
2
1
0
1
2
3
0.40 0.35
ARG[X(ω)]
0.30
Gauss. Lapla.
0.25 0.20 0.15 0.10 0.05 0.00
3
2
1
0
1
2
3
- Uniform distribution for phase spectrum is – paradoxical ! – artefact of wrapping !